메뉴 건너뛰기




Volumn 11, Issue 3, 2016, Pages 364-373

Detection of abnormal MR brains based on wavelet entropy and feature selection

Author keywords

Feature selection; Feed forward neural network; Magnetic resonance imaging; Wavelet entropy

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; DIAGNOSIS; ENTROPY; FEATURE EXTRACTION; MAGNETIC LEVITATION VEHICLES; MAGNETIC RESONANCE IMAGING; PATIENT TREATMENT;

EID: 84962667208     PISSN: 19314973     EISSN: 19314981     Source Type: Journal    
DOI: 10.1002/tee.22226     Document Type: Article
Times cited : (34)

References (31)
  • 1
    • 84911441675 scopus 로고    scopus 로고
    • Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique
    • Dong Z, Zhang Y, Liu F, Duan Y, Kangarlu A, Peterson BS. Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique. NMR in Biomedicine; 2014: 1325-1332.
    • (2014) NMR in Biomedicine , pp. 1325-1332
    • Dong, Z.1    Zhang, Y.2    Liu, F.3    Duan, Y.4    Kangarlu, A.5    Peterson, B.S.6
  • 2
    • 84902184683 scopus 로고    scopus 로고
    • Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging
    • Goh S, Dong Z, Zhang Y, DiMauro S, Peterson BS. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiatry; 2014: 665-671.
    • (2014) JAMA Psychiatry , pp. 665-671
    • Goh, S.1    Dong, Z.2    Zhang, Y.3    DiMauro, S.4    Peterson, B.S.5
  • 3
    • 84919414956 scopus 로고    scopus 로고
    • Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging
    • Yu D, Shui H, Gen L, Zheng C. Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging. IEEJ Transactions on Electrical and Electronic Engineering; 2015: 116-117.
    • (2015) IEEJ Transactions on Electrical and Electronic Engineering , pp. 116-117
    • Yu, D.1    Shui, H.2    Gen, L.3    Zheng, C.4
  • 4
    • 84905217158 scopus 로고    scopus 로고
    • An improved quality guided phase unwrapping method and its applications to MRI
    • Wang S, Ji G, Dong Z, Zhang Y. An improved quality guided phase unwrapping method and its applications to MRI. Progress in Electromagnetics Research; 2014; 145: 273-286.
    • (2014) Progress in Electromagnetics Research , vol.145 , pp. 273-286
    • Wang, S.1    Ji, G.2    Dong, Z.3    Zhang, Y.4
  • 5
    • 33847043225 scopus 로고    scopus 로고
    • A Slantlet transform based intelligent system for magnetic resonance brain image classification
    • Maitra M, Chatterjee A. A Slantlet transform based intelligent system for magnetic resonance brain image classification. Biomedical Signal Processing and Control; 2006: 299-306.
    • (2006) Biomedical Signal Processing and Control , pp. 299-306
    • Maitra, M.1    Chatterjee, A.2
  • 7
    • 79960338927 scopus 로고    scopus 로고
    • Brain tissue classification of MR images using fast Fourier transform based expectation-maximization Gaussian mixture model
    • In Wyld DC, Wozniak M, Chaki N, Meghanathan N, Nagamalai D (eds). Springer: Berlin Heidelberg;
    • Ramasamy R, Anandhakumar P. Brain tissue classification of MR images using fast Fourier transform based expectation-maximization Gaussian mixture model. In Wyld DC, Wozniak M, Chaki N, Meghanathan N, Nagamalai D (eds). Advances in Computing and Information Technology. Springer: Berlin Heidelberg; 2011; 387-398.
    • (2011) Advances in Computing and Information Technology. , pp. 387-398
    • Ramasamy, R.1    Anandhakumar, P.2
  • 8
    • 79958134346 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification by an improved artificial bee colony algorithm
    • Wu L, Wang S. Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Progress in Electromagnetics Research; 2011: 65-79.
    • (2011) Progress in Electromagnetics Research , pp. 65-79
    • Wu, L.1    Wang, S.2
  • 9
    • 84866525215 scopus 로고    scopus 로고
    • An MR brain images classifier via principal component analysis and kernel support vector machine
    • Zhang Y, Wu L. An MR brain images classifier via principal component analysis and kernel support vector machine. Progress in Electromagnetics Research; 2012: 369-388.
    • (2012) Progress in Electromagnetics Research , pp. 369-388
    • Zhang, Y.1    Wu, L.2
  • 10
    • 84884870289 scopus 로고    scopus 로고
    • Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series
    • Kalbkhani H, Shayesteh MG, Zali-Vargahan B. Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series. Biomedical Signal Processing and Control; 2013: 909-919.
    • (2013) Biomedical Signal Processing and Control , pp. 909-919
    • Kalbkhani, H.1    Shayesteh, M.G.2    Zali-Vargahan, B.3
  • 12
    • 84884575083 scopus 로고    scopus 로고
    • Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
    • Saritha M, Joseph KP, Mathew AT. Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognition Letters; 2013: 2151-2156.
    • (2013) Pattern Recognition Letters , pp. 2151-2156
    • Saritha, M.1    Joseph, K.P.2    Mathew, A.T.3
  • 14
    • 84893083296 scopus 로고    scopus 로고
    • Segmentation and classification of brain CT images using combined wavelet statistical texture features
    • Padma A, Sukanesh R. Segmentation and classification of brain CT images using combined wavelet statistical texture features. Arabian Journal for Science and Engineering; 2014: 767-776.
    • (2014) Arabian Journal for Science and Engineering , pp. 767-776
    • Padma, A.1    Sukanesh, R.2
  • 16
    • 84892614873 scopus 로고    scopus 로고
    • Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree
    • Wang S, Dong Z. Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Progress in Electromagnetics Research; 2014: 171-184.
    • (2014) Progress in Electromagnetics Research , pp. 171-184
    • Wang, S.1    Dong, Z.2
  • 17
    • 84944456448 scopus 로고    scopus 로고
    • Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier
    • Ortuño F, Rojas I. (eds). Springer International Publishing: Granada
    • Zhou X, Wang S, Xu W, Ji G, Phillips P, Sun P. Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier. In Bioinformatics and Biomedical Engineering. Ortuño F, Rojas I. (eds). Springer International Publishing: Granada; 2015; 201-209.
    • (2015) Bioinformatics and Biomedical Engineering , pp. 201-209
    • Zhou, X.1    Wang, S.2    Xu, W.3    Ji, G.4    Phillips, P.5    Sun, P.6
  • 18
    • 84930332968 scopus 로고    scopus 로고
    • Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)
    • Zhang Y, Dong Z, Wang S, Ji G, Yang J. Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy; 2015: 1795-1813.
    • (2015) Entropy , pp. 1795-1813
    • Zhang, Y.1    Dong, Z.2    Wang, S.3    Ji, G.4    Yang, J.5
  • 22
    • 84930681763 scopus 로고    scopus 로고
    • Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
    • Dong Z, Phillips P, Wang S, Ji G, Yang J, Yuan T-F. Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning. Frontiers in Computational Neuroscience; 2015: 1-15.
    • (2015) Frontiers in Computational Neuroscience , pp. 1-15
    • Dong, Z.1    Phillips, P.2    Wang, S.3    Ji, G.4    Yang, J.5    Yuan, T.-F.6
  • 23
    • 84922461060 scopus 로고    scopus 로고
    • Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor
    • Harikumar R, Kumar BV. Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor. International Journal of Imaging Systems and Technology; 2015: 33-40.
    • (2015) International Journal of Imaging Systems and Technology , pp. 33-40
    • Harikumar, R.1    Kumar, B.V.2
  • 24
    • 84931263154 scopus 로고    scopus 로고
    • Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC
    • Zhang Y, Wang S, Phillips P, Dong Z, Ji G, Yang J. Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomedical Signal Processing and Control; 2015: 58-73.
    • (2015) Biomedical Signal Processing and Control , pp. 58-73
    • Zhang, Y.1    Wang, S.2    Phillips, P.3    Dong, Z.4    Ji, G.5    Yang, J.6
  • 25
    • 84858328439 scopus 로고    scopus 로고
    • Shift-invariant and sampling spaces associated with the fractional Fourier transform domain
    • Bhandari A, Zayed AI. Shift-invariant and sampling spaces associated with the fractional Fourier transform domain. IEEE Transactions on Signal Processing; 2012: 1627-1637.
    • (2012) IEEE Transactions on Signal Processing , pp. 1627-1637
    • Bhandari, A.1    Zayed, A.I.2
  • 26
    • 84861643378 scopus 로고    scopus 로고
    • Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features
    • Mookiah MRK, Acharya UR, Lim CM, Petznick A, Suri JS. Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowledge-Based Systems; 2012: 73-82.
    • (2012) Knowledge-Based Systems , pp. 73-82
    • Mookiah, M.R.K.1    Acharya, U.R.2    Lim, C.M.3    Petznick, A.4    Suri, J.S.5
  • 27
    • 84904977190 scopus 로고    scopus 로고
    • Fruit classification using computer vision and feedforward neural network
    • Wang S, Ji G, Phillips P. Fruit classification using computer vision and feedforward neural network. Journal of Food Engineering; 2014: 167-177.
    • (2014) Journal of Food Engineering , pp. 167-177
    • Wang, S.1    Ji, G.2    Phillips, P.3
  • 28
    • 84906846036 scopus 로고    scopus 로고
    • Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification
    • Moshrefi R, Mahjani MG, Jafarian M. Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification. Electrochemistry Communications; 2014: 49-51.
    • (2014) Electrochemistry Communications , pp. 49-51
    • Moshrefi, R.1    Mahjani, M.G.2    Jafarian, M.3
  • 29
    • 84904625723 scopus 로고    scopus 로고
    • Improved radio frequency identification indoor localization method via radial basis function neural network
    • Guo D, Xiang Q, Li Z. Improved radio frequency identification indoor localization method via radial basis function neural network. Mathematical Problems in Engineering; 2014: 9.
    • (2014) Mathematical Problems in Engineering , pp. 9
    • Guo, D.1    Xiang, Q.2    Li, Z.3
  • 30
    • 84901238143 scopus 로고    scopus 로고
    • Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
    • Zhang Y, Wang S, Phillips P, Ji G. Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowledge-Based Systems; 2014: 22-31.
    • (2014) Knowledge-Based Systems , pp. 22-31
    • Zhang, Y.1    Wang, S.2    Phillips, P.3    Ji, G.4
  • 31
    • 84908283246 scopus 로고    scopus 로고
    • False ventricular tachycardia alarm suppression in the ICU based on the discrete wavelet transform in the ECG signal
    • Salas-Boni R, Bai Y, Harris PRE, Drew BJ, Hu X. False ventricular tachycardia alarm suppression in the ICU based on the discrete wavelet transform in the ECG signal. Journal of Electrocardiology; 2014: 775-780.
    • (2014) Journal of Electrocardiology , pp. 775-780
    • Salas-Boni, R.1    Bai, Y.2    Harris, P.R.E.3    Drew, B.J.4    Hu, X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.