메뉴 건너뛰기




Volumn 24, Issue 1, 2016, Pages 219-233

Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets

Author keywords

Convex hull; Fuzzy clustering method; Noisy training dataset; QHull algorithm; Reduction set method; Support vector machine

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; COMPUTATIONAL GEOMETRY; FUZZY CLUSTERING; FUZZY SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; SUPPORT VECTOR MACHINES; TUNNELING (EXCAVATION);

EID: 84950295459     PISSN: 13000632     EISSN: 13036203     Source Type: Journal    
DOI: 10.3906/elk-1304-139     Document Type: Article
Times cited : (29)

References (47)
  • 1
    • 71749101234 scopus 로고    scopus 로고
    • Knowledge discovery from imbalanced and noisy data
    • Hulse JV, Khoshgoftaar TM. Knowledge discovery from imbalanced and noisy data. Data Knowl Eng 2009; 68: 1513-1542.
    • (2009) Data Knowl Eng , vol.68 , pp. 1513-1542
    • Hulse, J.V.1    Khoshgoftaar, T.M.2
  • 2
    • 33646516358 scopus 로고    scopus 로고
    • A geometric approach to Support Vector Machine (SVM) classification
    • Mavroforakis ME, Theodoridis S. A geometric approach to Support Vector Machine (SVM) classification. IEEE T Neural Networ 2006; 17: 671-682.
    • (2006) IEEE T Neural Networ , vol.17 , pp. 671-682
    • Mavroforakis, M.E.1    Theodoridis, S.2
  • 3
    • 24644505329 scopus 로고    scopus 로고
    • Pruning training sets for learning of object categories
    • Angelova A, Abu-Mostafa Y, Perona P. Pruning training sets for learning of object categories. Proc Cvpr IEEE 2005; 494-501.
    • (2005) Proc Cvpr IEEE , pp. 494-501
    • Angelova, A.1    Abu-Mostafa, Y.2    Perona, P.3
  • 4
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. Attribute noise: A quantitative study of their impacts
    • Zhu X, Wu X. Class noise vs. attribute noise: a quantitative study of their impacts. Artif Intell Rev 2004; 22: 177-210.
    • (2004) Artif Intell Rev , vol.22 , pp. 177-210
    • Zhu, X.1    Wu, X.2
  • 5
    • 79551627018 scopus 로고    scopus 로고
    • A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises
    • Yang X, Zhang G, Lu J, Ma J. A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises. IEEE T Fuzzy Syst 2011; 19: 105-115.
    • (2011) IEEE T Fuzzy Syst , vol.19 , pp. 105-115
    • Yang, X.1    Zhang, G.2    Lu, J.3    Ma, J.4
  • 8
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • Bordes A, Ertekin S, Weston J, Bottou L. Fast kernel classifiers with online and active learning. J Mach Learn Res 2005; 6: 1579-1619.
    • (2005) J Mach Learn Res , vol.6 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Weston, J.3    Bottou, L.4
  • 9
    • 76749097649 scopus 로고    scopus 로고
    • Scaling up support vector machines using nearest neighbor condensation
    • Angiulli F, Astorino A. Scaling up support vector machines using nearest neighbor condensation. IEEE T Neural Networ 2010; 21: 351-357.
    • (2010) IEEE T Neural Networ , vol.21 , pp. 351-357
    • Angiulli, F.1    Astorino, A.2
  • 10
    • 17144374074 scopus 로고    scopus 로고
    • Fast SVM training algorithm with decomposition on very large data sets
    • Dong JX, Krzyzak A, Suen CY. Fast SVM training algorithm with decomposition on very large data sets. IEEE T Pattern Anal 2005; 27: 603-618.
    • (2005) IEEE T Pattern Anal , vol.27 , pp. 603-618
    • Dong, J.X.1    Krzyzak, A.2    Suen, C.Y.3
  • 11
    • 77958154093 scopus 로고    scopus 로고
    • A nu-twin support vector machine (nu-TSVM) classifier and its geometric algorithms
    • Xinjun P. A nu-twin support vector machine (nu-TSVM) classifier and its geometric algorithms. Inform Sciences 2010; 180: 3863-3875.
    • (2010) Inform Sciences , vol.180 , pp. 3863-3875
    • Xinjun, P.1
  • 12
    • 84855563151 scopus 로고    scopus 로고
    • SVM with a new fuzzy membership function to solve the two-class problems
    • Tang WM. SVM with a new fuzzy membership function to solve the two-class problems. Neural Process Lett 2011; 34: 209-219.
    • (2011) Neural Process Lett , vol.34 , pp. 209-219
    • Tang, W.M.1
  • 14
    • 0036505650 scopus 로고    scopus 로고
    • Fuzzy support vector machines
    • Lin CF, Wang S. Fuzzy support vector machines. IEEE T Neural Networ 2002; 13: 464-471.
    • (2002) IEEE T Neural Networ , vol.13 , pp. 464-471
    • Lin, C.F.1    Wang, S.2
  • 17
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf B, Burges C, Smola A, editors, Cambridge, MA, USA: MIT Press
    • Platt J. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges C, Smola A, editors. Advances in Kernel Methods-Support Vector Learning, Cambridge, MA, USA: MIT Press, 1999. pp. 185-208.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 21
    • 67949120315 scopus 로고    scopus 로고
    • A novel geometric approach to binary classification based on scaled convex hulls
    • Liu Z, Liu JG, Pan C, Wang G. A novel geometric approach to binary classification based on scaled convex hulls. IEEE T Neural Networ 2009; 20: 1215-1220.
    • (2009) IEEE T Neural Networ , vol.20 , pp. 1215-1220
    • Liu, Z.1    Liu, J.G.2    Pan, C.3    Wang, G.4
  • 24
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R, Wunsch D. Survey of clustering algorithms. IEEE T Neural Networ 2005; 16: 645-678.
    • (2005) IEEE T Neural Networ , vol.16 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 25
    • 38649116270 scopus 로고    scopus 로고
    • Support vector machine classification for large data sets via minimum enclosing ball clustering
    • Cervantes J, Li X, Yu W, Li K. Support vector machine classification for large data sets via minimum enclosing ball clustering. Neurocomputing 2008; 71: 611-619.
    • (2008) Neurocomputing , vol.71 , pp. 611-619
    • Cervantes, J.1    Li, X.2    Yu, W.3    Li, K.4
  • 26
    • 33845934479 scopus 로고    scopus 로고
    • Support vector machine classification based on fuzzy clustering for large data sets
    • Berlin, Germany: Springer-Verlag
    • Cervantes J, Li X, Yu W. Support vector machine classification based on fuzzy clustering for large data sets. In: MICAI 2006: Advances in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2006. pp. 572-582.
    • (2006) MICAI 2006 Advances in Artificial Intelligence , pp. 572-582
    • Cervantes, J.1    Li, X.2    Yu, W.3
  • 27
    • 77958554968 scopus 로고    scopus 로고
    • A novel SVM classification method for large data sets
    • 14-16 August; Silicon Valley, CA, USA: IEEE
    • Li X, Cervantes J, Yu W. A novel SVM classification method for large data sets. In: IEEE International Conference on Granular Computing; 14-16 August 2010; Silicon Valley, CA, USA: IEEE. pp. 297-302.
    • (2010) IEEE International Conference on Granular Computing , pp. 297-302
    • Li, X.1    Cervantes, J.2    Yu, W.3
  • 28
    • 80052027978 scopus 로고    scopus 로고
    • Improvement of new automatic differential fuzzy clustering using SVM classifier for microarray analysis
    • Saha I, Ujjwal M, Sanghamitra B, Dariusz P. Improvement of new automatic differential fuzzy clustering using SVM classifier for microarray analysis. Expert Syst Appl 2011; 38: 15122-15133.
    • (2011) Expert Syst Appl , vol.38 , pp. 15122-15133
    • Saha, I.1    Ujjwal, M.2    Sanghamitra, B.3    Dariusz, P.4
  • 30
    • 84872497428 scopus 로고    scopus 로고
    • Relational partitioning fuzzy clustering algorithms based on multiple dissimilarity matrices
    • Carvalho D, De AT F, Lechevallier Y, De Melo FM. Relational partitioning fuzzy clustering algorithms based on multiple dissimilarity matrices. Fuzzy Set Syst 2013: 215: 1-28.
    • (2013) Fuzzy Set Syst , vol.215 , pp. 1-28
    • Carvalho, D.1    De At, F.2    Lechevallier, Y.3    De Melo, F.M.4
  • 31
    • 34250891299 scopus 로고    scopus 로고
    • Constructing L2-SVM-based fuzzy classifiers in high-dimensional space with automatic model selection and fuzzy rule ranking
    • Zhou SM, Gan JQ. Constructing L2-SVM-based fuzzy classifiers in high-dimensional space with automatic model selection and fuzzy rule ranking. IEEE T Fuzzy Syst 2007; 15: 398-409.
    • (2007) IEEE T Fuzzy Syst , vol.15 , pp. 398-409
    • Zhou, S.M.1    Gan, J.Q.2
  • 32
    • 9444231677 scopus 로고    scopus 로고
    • Error detection and impact-sensitive instance ranking in noisy data
    • 25-29 July; San Jose, CA, USA: AAAI
    • Zhu X, Wu X, Yang Y. Error detection and impact-sensitive instance ranking in noisy data. In: AAAI National Conference on Artificial Intelligence; 25-29 July 2004; San Jose, CA, USA: AAAI. pp. 378-384.
    • (2004) AAAI National Conference on Artificial Intelligence , pp. 378-384
    • Zhu, X.1    Wu, X.2    Yang, Y.3
  • 33
    • 33747739087 scopus 로고
    • Robust decision trees: Removing outliers from databases
    • John GH. Robust decision trees: removing outliers from databases. Lect Notes Artif Int 1995; 174-179.
    • (1995) Lect Notes Artif Int , pp. 174-179
    • John, G.H.1
  • 34
    • 0034863318 scopus 로고    scopus 로고
    • Fuzzy support vector machines for pattern classification
    • 15-19 July; Washington DC, USA: IEEE
    • Inoue T, Abe S. Fuzzy support vector machines for pattern classification. In: The International Joint Conference on Neural Networks; 15-19 July 2001; Washington DC, USA: IEEE. pp. 1449-1454.
    • (2001) The International Joint Conference on Neural Networks , pp. 1449-1454
    • Inoue, T.1    Abe, S.2
  • 35
    • 0000046054 scopus 로고    scopus 로고
    • Identifying mislabeled training data
    • Brodley CE, Friedl MA. Identifying mislabeled training data. J Artif Intell Res 1999; 11: 131-167.
    • (1999) J Artif Intell Res , vol.11 , pp. 131-167
    • Brodley, C.E.1    Friedl, M.A.2
  • 36
    • 79551627018 scopus 로고    scopus 로고
    • A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises
    • Yang X, Zhang G, Lu J, Ma J. A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises. IEEE T Fuzzy Syst 2011; 19: 105-115.
    • (2011) IEEE T Fuzzy Syst , vol.19 , pp. 105-115
    • Yang, X.1    Zhang, G.2    Lu, J.3    Ma, J.4
  • 38
    • 76749132106 scopus 로고    scopus 로고
    • Analysis of the distance between two classes for tuning SVM hyper-parameters
    • Sun J, Zheng C, Li X, Zhou Y. Analysis of the distance between two classes for tuning SVM hyper-parameters. IEEE T Neural Networ 2010; 21: 305-318.
    • (2010) IEEE T Neural Networ , vol.21 , pp. 305-318
    • Sun, J.1    Zheng, C.2    Li, X.3    Zhou, Y.4
  • 39
    • 58349089675 scopus 로고    scopus 로고
    • A geometric method for model selection in support vector machine
    • Peng X, Wang Y. A geometric method for model selection in support vector machine. Expert Syst Appl 2009; 36: 5745-5749.
    • (2009) Expert Syst Appl , vol.36 , pp. 5745-5749
    • Peng, X.1    Wang, Y.2
  • 40
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Pal NR, Bezdek JC. On cluster validity for the fuzzy c-means model. IEEE T Fuzzy Syst 1995; 3: 370-379.
    • (1995) IEEE T Fuzzy Syst , vol.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 43
    • 0017453547 scopus 로고
    • Convex hulls of finite sets of points in two and three dimensions
    • Preparata FP, Hong SJ. Convex hulls of finite sets of points in two and three dimensions. Commun ACM 1977; 20: 87-93.
    • (1977) Commun ACM , vol.20 , pp. 87-93
    • Preparata, F.P.1    Hong, S.J.2
  • 44
    • 77952669532 scopus 로고    scopus 로고
    • Kernel subclass convex hull sample selection method for SVM on face recognition
    • Zhou X, Wenhan J, Yingjie T, Yong S. Kernel subclass convex hull sample selection method for SVM on face recognition. Neurocomputing 2010; 73: 2234-2246.
    • (2010) Neurocomputing , vol.73 , pp. 2234-2246
    • Zhou, X.1    Wenhan, J.2    Yingjie, T.3    Yong, S.4
  • 45
    • 0030381077 scopus 로고
    • The quickhull algorithm for convex hulls
    • Barber CB, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM T Math Software 1966; 22: 469-483.
    • (1966) ACM T Math Software , vol.22 , pp. 469-483
    • Barber, C.B.1    Huhdanpaa, H.2
  • 46
    • 33947404760 scopus 로고    scopus 로고
    • The pairwise attribute noise detection algorithm
    • Hulse JV, Khoshgoftaar TM, Huang H. The pairwise attribute noise detection algorithm. Knowl Inf Syst 2007; 11: 171-190.
    • (2007) Knowl Inf Syst , vol.11 , pp. 171-190
    • Hulse, J.V.1    Khoshgoftaar, T.M.2    Huang, H.3
  • 47
    • 84883723652 scopus 로고    scopus 로고
    • Enhancing software quality estimation using ensemble-classifier based noise filtering
    • Khoshgoftaar TM, Zhong S, Joshi V. Enhancing software quality estimation using ensemble-classifier based noise filtering. Intell Data Anal 2005; 9: 3-27.
    • (2005) Intell Data Anal , vol.9 , pp. 3-27
    • Khoshgoftaar, T.M.1    Zhong, S.2    Joshi, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.