메뉴 건너뛰기




Volumn 4, Issue 1, 2015, Pages 1-16

Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine

Author keywords

Computer aided diagnosis; Discrete wavelet packet transform; Fuzzy support vector machine; Magnetic resonance imaging; Pathological brain detection (PBD); Pattern recognition; Tsallis entropy

Indexed keywords


EID: 84948461606     PISSN: None     EISSN: 21931801     Source Type: Journal    
DOI: 10.1186/s40064-015-1523-4     Document Type: Article
Times cited : (80)

References (53)
  • 2
    • 84878492833 scopus 로고    scopus 로고
    • Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers
    • Ashkezari AD, Ma H, Saha TK, Ekanayake C (2013) Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers. IEEE Trans Dielectr Electr Insul 20(3):965–973
    • (2013) IEEE Trans Dielectr Electr Insul , vol.20 , Issue.3 , pp. 965-973
    • Ashkezari, A.D.1    Ma, H.2    Saha, T.K.3    Ekanayake, C.4
  • 3
    • 55549130436 scopus 로고    scopus 로고
    • Generalized relative entropy in functional magnetic resonance imaging
    • Cabella BCT, Sturzbecher MJ, de Araujo DB, Neves UPC (2009) Generalized relative entropy in functional magnetic resonance imaging. Phys A 388(1):41–50. doi:10.1016/j.physa.2008.09.029
    • (2009) Phys A , vol.388 , Issue.1 , pp. 41-50
    • Cabella, B.C.T.1    Sturzbecher, M.J.2    de Araujo, D.B.3    Neves, U.P.C.4
  • 4
    • 77955309523 scopus 로고    scopus 로고
    • Real and spurious contributions for the Shannon, Rényi and Tsallis entropies
    • Campos D (2010) Real and spurious contributions for the Shannon, Rényi and Tsallis entropies. Physica A 389(18):3761–3768
    • (2010) Physica A , vol.389 , Issue.18 , pp. 3761-3768
    • Campos, D.1
  • 5
    • 33745255698 scopus 로고    scopus 로고
    • Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
    • Chaplot S, Patnaik LM, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92. doi:10.1016/j.bspc.2006.05.002
    • (2006) Biomed Signal Process Control , vol.1 , Issue.1 , pp. 86-92
    • Chaplot, S.1    Patnaik, L.M.2    Jagannathan, N.R.3
  • 6
    • 84901791518 scopus 로고    scopus 로고
    • Tsallis wavelet entropy and its application in power signal analysis
    • Chen JK, Li GQ (2014) Tsallis wavelet entropy and its application in power signal analysis. Entropy 16(6):3009–3025. doi:10.3390/e16063009
    • (2014) Entropy , vol.16 , Issue.6 , pp. 3009-3025
    • Chen, J.K.1    Li, G.Q.2
  • 7
    • 84920501690 scopus 로고    scopus 로고
    • Combining tissue segmentation and neural network for brain tumor detection
    • Damodharan S, Raghavan D (2015) Combining tissue segmentation and neural network for brain tumor detection. Int Arab J Inf Technol 12(1):42–52
    • (2015) Int Arab J Inf Technol , vol.12 , Issue.1 , pp. 42-52
    • Damodharan, S.1    Raghavan, D.2
  • 8
    • 84873725415 scopus 로고    scopus 로고
    • Brain MR image classification using multiscale geometric analysis of ripplet
    • Das S, Chowdhury M, Kundu MK (2013) Brain MR image classification using multiscale geometric analysis of ripplet. Prog Electromagn Res-Pier 137:1–17. doi:10.2528/pier13010105
    • (2013) Prog Electromagn Res-Pier , vol.137 , pp. 1-17
    • Das, S.1    Chowdhury, M.2    Kundu, M.K.3
  • 9
    • 75649152833 scopus 로고    scopus 로고
    • Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images
    • Diniz PRB, Murta LO, Brum DG, de Araujo DB, Santos AC (2010) Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images. Brazilian J Med Biol Res 43(1):77–84. doi:10.1590/s0100-879x2009007500019
    • (2010) Brazilian J Med Biol Res , vol.43 , Issue.1 , pp. 77-84
    • Diniz, P.R.B.1    Murta, L.O.2    Brum, D.G.3    de Araujo, D.B.4    Santos, A.C.5
  • 10
    • 79953706565 scopus 로고    scopus 로고
    • A hybrid method for MRI brain image classification
    • Dong Z, Wu L, Wang S, Zhang Y (2011) A hybrid method for MRI brain image classification. Expert Syst Appl 38(8):10049–10053
    • (2011) Expert Syst Appl , vol.38 , Issue.8 , pp. 10049-10053
    • Dong, Z.1    Wu, L.2    Wang, S.3    Zhang, Y.4
  • 11
    • 84911441675 scopus 로고    scopus 로고
    • Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique
    • Dong Z, Zhang Y, Liu F, Duan Y, Kangarlu A, Peterson BS (2014) Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique. NMR Biomed 27(11):1325–1332
    • (2014) NMR Biomed , vol.27 , Issue.11 , pp. 1325-1332
    • Dong, Z.1    Zhang, Y.2    Liu, F.3    Duan, Y.4    Kangarlu, A.5    Peterson, B.S.6
  • 12
    • 84930681763 scopus 로고    scopus 로고
    • Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning
    • Dong Z, Phillips P, Wang S, Ji G, Yang J, T-f Yuan (2015) Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 66(9):1–15
    • (2015) Front Comput Neurosci , vol.66 , Issue.9 , pp. 1-15
    • Dong, Z.1    Phillips, P.2    Wang, S.3    Ji, G.4    Yang, J.5    T-f, Y.6
  • 13
    • 76549108474 scopus 로고    scopus 로고
    • Hybrid intelligent techniques for MRI brain images classification
    • El-Dahshan ESA, Hosny T, Salem ABM (2010) Hybrid intelligent techniques for MRI brain images classification. Digit Signal Proc 20(2):433–441. doi:10.1016/j.dsp.2009.07.002
    • (2010) Digit Signal Proc , vol.20 , Issue.2 , pp. 433-441
    • El-Dahshan, E.S.A.1    Hosny, T.2    Salem, A.B.M.3
  • 14
    • 84899008824 scopus 로고    scopus 로고
    • Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm
    • El-Dahshan ESA, Mohsen HM, Revett K, Salem ABM (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5545. doi:10.1016/j.eswa.2014.01.021
    • (2014) Expert Syst Appl , vol.41 , Issue.11 , pp. 5526-5545
    • El-Dahshan, E.S.A.1    Mohsen, H.M.2    Revett, K.3    Salem, A.B.M.4
  • 15
    • 84929379453 scopus 로고    scopus 로고
    • Boosting diagnosis accuracy of Alzheimer’s disease using high dimensional recognition of longitudinal brain atrophy patterns
    • Farzan A, Mashohor S, Ramli AR, Mahmud R (2015) Boosting diagnosis accuracy of Alzheimer’s disease using high dimensional recognition of longitudinal brain atrophy patterns. Behav Brain Res 290:124–130. doi:10.1016/j.bbr.2015.04.010
    • (2015) Behav Brain Res , vol.290 , pp. 124-130
    • Farzan, A.1    Mashohor, S.2    Ramli, A.R.3    Mahmud, R.4
  • 16
    • 84902184683 scopus 로고    scopus 로고
    • Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging
    • Goh S, Dong Z, Zhang Y, DiMauro S, Peterson BS (2014) Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA psychiatry 71(6):665–671. doi:10.1001/jamapsychiatry.2014.179
    • (2014) JAMA psychiatry , vol.71 , Issue.6 , pp. 665-671
    • Goh, S.1    Dong, Z.2    Zhang, Y.3    DiMauro, S.4    Peterson, B.S.5
  • 17
    • 84922461060 scopus 로고    scopus 로고
    • Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor
    • Harikumar R, Kumar BV (2015) Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor. Int J Imaging Syst Technol 25(1):33–40. doi:10.1002/ima.22118
    • (2015) Int J Imaging Syst Technol , vol.25 , Issue.1 , pp. 33-40
    • Harikumar, R.1    Kumar, B.V.2
  • 18
    • 84911424769 scopus 로고    scopus 로고
    • Mammogram enhancement using lifting dyadic wavelet transform and normalized Tsallis entropy
    • Hussain M (2014) Mammogram enhancement using lifting dyadic wavelet transform and normalized Tsallis entropy. J Comput Sci Technol 29(6):1048–1057. doi:10.1007/s11390-014-1489-7
    • (2014) J Comput Sci Technol , vol.29 , Issue.6 , pp. 1048-1057
    • Hussain, M.1
  • 19
    • 34047225880 scopus 로고    scopus 로고
    • Twin support vector machines for pattern classification
    • Jayadeva Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910. doi:10.1109/tpami.2007.1068
    • (2007) IEEE Trans Pattern Anal Mach Intell , vol.29 , Issue.5 , pp. 905-910
    • Jayadeva, K.R.1    Chandra, S.2
  • 20
    • 80052561997 scopus 로고    scopus 로고
    • Nonrigid image registration using an entropic similarity
    • Khader M, Ben Hamza A (2011) Nonrigid image registration using an entropic similarity. IEEE Trans Inf Technol Biomed 15(5):681–690. doi:10.1109/titb.2011.2159806
    • (2011) IEEE Trans Inf Technol Biomed , vol.15 , Issue.5 , pp. 681-690
    • Khader, M.1    Ben Hamza, A.2
  • 21
    • 84894083764 scopus 로고    scopus 로고
    • Effect of contrast leakage on the detection of abnormal brain tumor vasculature in high-grade glioma
    • LaViolette PS, Daun MK, Paulson ES, Schmainda KM (2014) Effect of contrast leakage on the detection of abnormal brain tumor vasculature in high-grade glioma. J Neurooncol 116(3):543–549. doi:10.1007/s11060-013-1318-9
    • (2014) J Neurooncol , vol.116 , Issue.3 , pp. 543-549
    • LaViolette, P.S.1    Daun, M.K.2    Paulson, E.S.3    Schmainda, K.M.4
  • 22
    • 84879435515 scopus 로고    scopus 로고
    • Diagnostic method for insulated power cables based on wavelet energy
    • Lee SH, Lee CK, Park JB, Choi YH (2013) Diagnostic method for insulated power cables based on wavelet energy. IEICE Electronics Express 10(12):335–335. doi:10.1587/elex.10.20130335
    • (2013) IEICE Electronics Express , vol.10 , Issue.12 , pp. 335
    • Lee, S.H.1    Lee, C.K.2    Park, J.B.3    Choi, Y.H.4
  • 23
    • 0036505650 scopus 로고    scopus 로고
    • Fuzzy support vector machines
    • Lin C-F, Wang S-D (2002) Fuzzy support vector machines. Neural Netw IEEE Trans 13(2):464–471. doi:10.1109/72.991432
    • (2002) Neural Netw IEEE Trans , vol.13 , Issue.2 , pp. 464-471
    • Lin, C.-F.1    Wang, S.-D.2
  • 24
    • 84904332825 scopus 로고    scopus 로고
    • A new detection approach of transient disturbances combining wavelet packet and Tsallis entropy
    • Liu ZG, Hu QL, Cui Y, Zhang QG (2014) A new detection approach of transient disturbances combining wavelet packet and Tsallis entropy. Neurocomputing 142:393–407. doi:10.1016/j.neucom.2014.04.020
    • (2014) Neurocomputing , vol.142 , pp. 393-407
    • Liu, Z.G.1    Hu, Q.L.2    Cui, Y.3    Zhang, Q.G.4
  • 25
    • 84937763002 scopus 로고    scopus 로고
    • Classification of mild cognitive impairment and Alzheimer’s Disease with machine-learning techniques using H-1 magnetic resonance spectroscopy data
    • Munteanu CR, Fernandez-Lozano C, Abad VM, Fernandez SP, Alvarez-Linera J, Hernandez-Tamames JA, Pazos A (2015) Classification of mild cognitive impairment and Alzheimer’s Disease with machine-learning techniques using H-1 magnetic resonance spectroscopy data. Expert Syst Appl 42(15–16):6205–6214. doi:10.1016/j.eswa.2015.03.011
    • (2015) Expert Syst Appl , vol.42 , Issue.15-16 , pp. 6205-6214
    • Munteanu, C.R.1    Fernandez-Lozano, C.2    Abad, V.M.3    Fernandez, S.P.4    Alvarez-Linera, J.5    Hernandez-Tamames, J.A.6    Pazos, A.7
  • 26
    • 84923171982 scopus 로고    scopus 로고
    • A simple and intelligent approach for brain MRI classification
    • Nazir M, Wahid F, Khan SA (2015) A simple and intelligent approach for brain MRI classification. J Intell Fuzzy Syst 28(3):1127–1135. doi:10.3233/ifs-141396
    • (2015) J Intell Fuzzy Syst , vol.28 , Issue.3 , pp. 1127-1135
    • Nazir, M.1    Wahid, F.2    Khan, S.A.3
  • 27
    • 84893083296 scopus 로고    scopus 로고
    • Segmentation and classification of brain CT images using combined wavelet statistical texture features
    • Padma A, Sukanesh R (2014) Segmentation and classification of brain CT images using combined wavelet statistical texture features. Arab J Sci Eng 39(2):767–776. doi:10.1007/s13369-013-0649-3
    • (2014) Arab J Sci Eng , vol.39 , Issue.2 , pp. 767-776
    • Padma, A.1    Sukanesh, R.2
  • 28
    • 84894505464 scopus 로고    scopus 로고
    • Unsupervised segmentation, clustering, and groupwise registration of heterogeneous populations of brain MR images
    • Ribbens A, Hermans J, Maes F, Vandermeulen D, Suetens P, Alzheimers Dis N (2014) Unsupervised segmentation, clustering, and groupwise registration of heterogeneous populations of brain MR images. IEEE Trans Med Imaging 33(2):201–224. doi:10.1109/tmi.2013.2270114
    • (2014) IEEE Trans Med Imaging , vol.33 , Issue.2 , pp. 201-224
    • Ribbens, A.1    Hermans, J.2    Maes, F.3    Vandermeulen, D.4    Suetens, P.5    Alzheimers Dis, N.6
  • 29
    • 84884575083 scopus 로고    scopus 로고
    • Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
    • Saritha M, Joseph KP, Mathew AT (2013) Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recogn Lett 34(16):2151–2156. doi:10.1016/j.patrec.2013.08.017
    • (2013) Pattern Recogn Lett , vol.34 , Issue.16 , pp. 2151-2156
    • Saritha, M.1    Joseph, K.P.2    Mathew, A.T.3
  • 30
    • 84898016888 scopus 로고    scopus 로고
    • Brain morphometry of MR images for automated classification of first-episode schizophrenia
    • Schwarz D, Kasparek T (2014) Brain morphometry of MR images for automated classification of first-episode schizophrenia. Inf Fusion 19:97–102. doi:10.1016/j.inffus.2013.02.002
    • (2014) Inf Fusion , vol.19 , pp. 97-102
    • Schwarz, D.1    Kasparek, T.2
  • 31
    • 58149271161 scopus 로고    scopus 로고
    • Non-extensive entropy and the extraction of BOLD spatial information in event-related functional MRI
    • Sturzbecher MJ, Tedeschi W, Cabella BCT, Baffa O, Neves UPC, De Araujo DB (2009) Non-extensive entropy and the extraction of BOLD spatial information in event-related functional MRI. Phys Med Biol 54(1):161–174. doi:10.1088/0031-9155/54/1/011
    • (2009) Phys Med Biol , vol.54 , Issue.1 , pp. 161-174
    • Sturzbecher, M.J.1    Tedeschi, W.2    Cabella, B.C.T.3    Baffa, O.4    Neves, U.P.C.5    De Araujo, D.B.6
  • 32
    • 67949089638 scopus 로고    scopus 로고
    • Nonadditive entropy: the concept and its use
    • Tsallis C (2009) Nonadditive entropy: the concept and its use. European Phys J A 40(3):257–266. doi:10.1140/epja/i2009-10799-0
    • (2009) European Phys J A , vol.40 , Issue.3 , pp. 257-266
    • Tsallis, C.1
  • 33
    • 82655173397 scopus 로고    scopus 로고
    • The nonadditive entropy S-q and its applications in physics and elsewhere: some remarks
    • Tsallis C (2011) The nonadditive entropy S-q and its applications in physics and elsewhere: some remarks. Entropy 13(10):1765–1804. doi:10.3390/e13101765
    • (2011) Entropy , vol.13 , Issue.10 , pp. 1765-1804
    • Tsallis, C.1
  • 34
    • 84898745434 scopus 로고    scopus 로고
    • An introduction to nonadditive entropies and a thermostatistical approach to inanimate and living matter
    • Tsallis C (2014) An introduction to nonadditive entropies and a thermostatistical approach to inanimate and living matter. Contemp Phys 55(3):179–197. doi:10.1080/00107514.2014.900977
    • (2014) Contemp Phys , vol.55 , Issue.3 , pp. 179-197
    • Tsallis, C.1
  • 35
    • 84902958719 scopus 로고    scopus 로고
    • A novel nature inspired fuzzy tsallis entropy segmentation of magnetic resonance images
    • Venkatesan AS, Parthiban L (2014) A novel nature inspired fuzzy tsallis entropy segmentation of magnetic resonance images. Neuroquantology 12(2):221–229
    • (2014) Neuroquantology , vol.12 , Issue.2 , pp. 221-229
    • Venkatesan, A.S.1    Parthiban, L.2
  • 36
    • 84892614873 scopus 로고    scopus 로고
    • Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree
    • Wang S, Dong Z, Ji G, Zhang Y (2014) Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog Electromagn Res 144:171–184
    • (2014) Prog Electromagn Res , vol.144 , pp. 171-184
    • Wang, S.1    Dong, Z.2    Ji, G.3    Zhang, Y.4
  • 38
    • 84940487338 scopus 로고    scopus 로고
    • Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic abc and biogeography-based optimization
    • Wang S, Zhang Y, Ji G, Yang J, Wu J, Wei L (2015b) Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic abc and biogeography-based optimization. Entropy 17(8):5711–5728
    • (2015) Entropy , vol.17 , Issue.8 , pp. 5711-5728
    • Wang, S.1    Zhang, Y.2    Ji, G.3    Yang, J.4    Wu, J.5    Wei, L.6
  • 39
    • 79958134346 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification by an improved artificial bee colony algorithm
    • Wu L, Wang S (2011) Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog Electromagn Res 116:65–79
    • (2011) Prog Electromagn Res , vol.116 , pp. 65-79
    • Wu, L.1    Wang, S.2
  • 40
    • 79955753380 scopus 로고    scopus 로고
    • An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM
    • Xian G-m (2010) An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM. Expert Syst Appl 37(10):6737–6741
    • (2010) Expert Syst Appl , vol.37 , Issue.10 , pp. 6737-6741
    • Xian, G.-M.1
  • 41
    • 84928688048 scopus 로고    scopus 로고
    • Automated classification of brain images using wavelet-energy and biogeography-based optimization
    • Yang G, Zhang Y, Yang J, Ji G, Dong Z, Wang S, Feng C, Wang Q (2015) Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimedia Tools Appl. doi:10.1007/s11042-015-2649-7
    • (2015) Multimedia Tools Appl
    • Yang, G.1    Zhang, Y.2    Yang, J.3    Ji, G.4    Dong, Z.5    Wang, S.6    Feng, C.7    Wang, Q.8
  • 43
    • 84919414956 scopus 로고    scopus 로고
    • Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging
    • Yu D, Shui H, Gen L, Zheng C (2015b) Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging. IEEJ Transact Electr Electron Eng 10(1):116–117. doi:10.1002/tee.22059
    • (2015) IEEJ Transact Electr Electron Eng , vol.10 , Issue.1 , pp. 116-117
    • Yu, D.1    Shui, H.2    Gen, L.3    Zheng, C.4
  • 44
    • 84937437761 scopus 로고    scopus 로고
    • Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
    • Yu D, Shui H, Zheng C, Phillip P, Ji G, Yang J (2015c) Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Prog Electromagn Res 152:41–58
    • (2015) Prog Electromagn Res , vol.152 , pp. 41-58
    • Yu, D.1    Shui, H.2    Zheng, C.3    Phillip, P.4    Ji, G.5    Yang, J.6
  • 45
    • 84929627799 scopus 로고    scopus 로고
    • Effect of spider-web-plot in MR brain image classification
    • Yu D, Zheng C, Gen L, Shui H (2015d) Effect of spider-web-plot in MR brain image classification. Pattern Recogn Lett 62:14–16. doi:10.1016/j.patrec.2015.04.016
    • (2015) Pattern Recogn Lett , vol.62 , pp. 14-16
    • Yu, D.1    Zheng, C.2    Gen, L.3    Shui, H.4
  • 46
    • 79955977546 scopus 로고    scopus 로고
    • Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach
    • Zhang Y, Wu L (2011) Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach. Entropy 13(4):841–859
    • (2011) Entropy , vol.13 , Issue.4 , pp. 841-859
    • Zhang, Y.1    Wu, L.2
  • 47
    • 84866525215 scopus 로고    scopus 로고
    • An Mr brain images classifier via principal component analysis and kernel support vector machine
    • Zhang Y, Wu L (2012) An Mr brain images classifier via principal component analysis and kernel support vector machine. Prog Electromagn Res 130:369–388
    • (2012) Prog Electromagn Res , vol.130 , pp. 369-388
    • Zhang, Y.1    Wu, L.2
  • 48
    • 84885597453 scopus 로고    scopus 로고
    • An MR brain images classifier system via particle swarm optimization and kernel support vector machine
    • Zhang Y, Wang S, Ji G, Dong Z (2013) An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci World J 2013:9. doi:10.1155/2013/130134
    • (2013) Sci World J , vol.2013 , pp. 9
    • Zhang, Y.1    Wang, S.2    Ji, G.3    Dong, Z.4
  • 49
    • 84940020478 scopus 로고    scopus 로고
    • Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging
    • Zhang Y, Dong Z, Phillips P, Wang S, Ji G, Yang J (2015a) Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging. Inf Sci 322:115–132. doi:10.1016/j.ins.2015.06.017
    • (2015) Inf Sci , vol.322 , pp. 115-132
    • Zhang, Y.1    Dong, Z.2    Phillips, P.3    Wang, S.4    Ji, G.5    Yang, J.6
  • 50
    • 84930332968 scopus 로고    scopus 로고
    • Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)
    • Zhang Y, Dong Z, Wang S, Ji G, Yang J (2015b) Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17(4):1795–1813
    • (2015) Entropy , vol.17 , Issue.4 , pp. 1795-1813
    • Zhang, Y.1    Dong, Z.2    Wang, S.3    Ji, G.4    Yang, J.5
  • 51
    • 84931263154 scopus 로고    scopus 로고
    • Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC
    • Zhang Y, Wang S, Phillips P, Dong Z, Ji G, Yang J (2015c) Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed Signal Process Control 21:58–73
    • (2015) Biomed Signal Process Control , vol.21 , pp. 58-73
    • Zhang, Y.1    Wang, S.2    Phillips, P.3    Dong, Z.4    Ji, G.5    Yang, J.6
  • 52
    • 84977465820 scopus 로고    scopus 로고
    • Pathological brain detection based on wavelet entropy and Hu moment invariants
    • Zhang Y, Wang S, Sun P, Phillips P (2015d) Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-Med Mater Eng 26(s1):1283–1290
    • (2015) Bio-Med Mater Eng , vol.26 , Issue.s1 , pp. 1283-1290
    • Zhang, Y.1    Wang, S.2    Sun, P.3    Phillips, P.4
  • 53
    • 84944456448 scopus 로고    scopus 로고
    • Detection of pathological brain in MRI scanning based on wavelet-entropy and naive bayes classifier. In: Ortuño F, Rojas I (eds) Bioinformatics and Biomedical Engineering, vol 9043. Lecture Notes in Computer Science. Springer International Publishing, Granada, pp 201–209
    • Zhou X, Wang S, Xu W, Ji G, Phillips P, Sun P, Zhang Y (2015) Detection of pathological brain in MRI scanning based on wavelet-entropy and naive bayes classifier. In: Ortuño F, Rojas I (eds) Bioinformatics and Biomedical Engineering, vol 9043. Lecture Notes in Computer Science. Springer International Publishing, Granada, pp 201–209. doi:10.1007/978-3-319-16483-0_20
    • (2015) doi:10.1007/978-3-319-16483-0_20
    • Zhou, X.1    Wang, S.2    Xu, W.3    Ji, G.4    Phillips, P.5    Sun, P.6    Zhang, Y.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.