메뉴 건너뛰기




Volumn 122, Issue , 2016, Pages 222-227

Extreme learning machine for prediction of heat load in district heating systems

Author keywords

District heating systems; Estimation; Extreme Learning Machine (ELM); Heat load; Prediction

Indexed keywords

ESTIMATION; FORECASTING; GENETIC ALGORITHMS; GENETIC PROGRAMMING; HEATING; HEATING EQUIPMENT; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MODEL PREDICTIVE CONTROL; NEURAL NETWORKS; THERMAL LOAD;

EID: 84971607430     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2016.04.021     Document Type: Article
Times cited : (127)

References (20)
  • 2
    • 42749090169 scopus 로고    scopus 로고
    • Profitability of sparse district heating
    • C. Reihav, and S. Werner Profitability of sparse district heating Appl. Energy 85 2008 867 877
    • (2008) Appl. Energy , vol.85 , pp. 867-877
    • Reihav, C.1    Werner, S.2
  • 3
    • 77953157422 scopus 로고    scopus 로고
    • Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems
    • S. Amiri, and B. Moshfegh Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems Appl. Energy 87 2010 2401 2410
    • (2010) Appl. Energy , vol.87 , pp. 2401-2410
    • Amiri, S.1    Moshfegh, B.2
  • 5
    • 37549058586 scopus 로고    scopus 로고
    • Department of Economic and Social affairs, United Nations World Urbanization Prospects: The 2009 Revision (Data in digital form POP/DB/WUP/Rev.2009)
    • Population Division, Department of Economic and Social affairs, United Nations World Urbanization Prospects: The 2009 Revision (Data in digital form POP/DB/WUP/Rev.2009).
    • Population Division
  • 6
    • 37549058586 scopus 로고    scopus 로고
    • Department of Economic and Social affairs, United Nations
    • Population Division, Department of Economic and Social affairs, United Nations (2010).
    • (2010) Population Division
  • 7
    • 0032209969 scopus 로고    scopus 로고
    • Supply water temperature regulation problems in district heating network with both direct and indirect connection
    • B. Jaćimovic, B. Zivković, S. Genić, and P. Zekonja Supply water temperature regulation problems in district heating network with both direct and indirect connection Energy Build. 28 3 1998 317 322
    • (1998) Energy Build. , vol.28 , Issue.3 , pp. 317-322
    • Jaćimovic, B.1    Zivković, B.2    Genić, S.3    Zekonja, P.4
  • 8
    • 84907790387 scopus 로고    scopus 로고
    • Achieving low return temperatures from district heating substations
    • H. Gadd, and S. Werner Achieving low return temperatures from district heating substations Appl. Energ. 136 2014 59 67
    • (2014) Appl. Energ. , vol.136 , pp. 59-67
    • Gadd, H.1    Werner, S.2
  • 10
    • 84939781965 scopus 로고    scopus 로고
    • A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation
    • Shahaboddin Shamshirbanda, Kasra Mohammadib, Por Lip Yeea, Dalibor Petkovićc, and Ali Mostafaeipourd A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation Renewable Sustainable Energy Rev. 52 December 2015 1031 1042
    • (2015) Renewable Sustainable Energy Rev. , vol.52 , Issue.DECEMBER , pp. 1031-1042
    • Shamshirbanda, S.1    Mohammadib, K.2    Lip Yeea, P.3    Petkovićc, D.4    Mostafaeipourd, A.5
  • 11
    • 84943555405 scopus 로고    scopus 로고
    • Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran
    • Shahaboddin Shamshirbanda, Kasra Mohammadib, Hui-Ling Chenc, Ganthan Narayana Samyd, Dalibor Petkoviće, and Chao Maf Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: a case study for Iran J. Atmos. Sol. Terr. Phys. 134 November 2015 109 117
    • (2015) J. Atmos. Sol. Terr. Phys. , vol.134 , Issue.NOVEMBER , pp. 109-117
    • Shamshirbanda, S.1    Mohammadib, K.2    Chenc, H.-L.3    Narayana Samyd, G.4    Petkoviće, D.5    Maf, C.6
  • 12
    • 84893091209 scopus 로고    scopus 로고
    • Bankruptcy prediction using extreme learning machine and financial expertise
    • Q. Yu, Y. Miche, E. Séverin, and A. Lendasse Bankruptcy prediction using extreme learning machine and financial expertise Neurocomputing 128 2014 296 302
    • (2014) Neurocomputing , vol.128 , pp. 296-302
    • Yu, Q.1    Miche, Y.2    Séverin, E.3    Lendasse, A.4
  • 13
    • 84906938183 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with kernels for nonstationary time series prediction
    • X. Wang, and M. Han Online sequential extreme learning machine with kernels for nonstationary time series prediction Neurocomputing 145 2014 90 97
    • (2014) Neurocomputing , vol.145 , pp. 90-97
    • Wang, X.1    Han, M.2
  • 14
    • 84896908699 scopus 로고    scopus 로고
    • Mobility prediction in mobile ad hoc networks using extreme learning machines
    • L. Ghouti, T.R. Sheltami, and K.S. Alutaibi Mobility prediction in mobile ad hoc networks using extreme learning machines Procedia Comput. Sci. 19 2013 305 312
    • (2013) Procedia Comput. Sci. , vol.19 , pp. 305-312
    • Ghouti, L.1    Sheltami, T.R.2    Alutaibi, K.S.3
  • 15
    • 84893651255 scopus 로고    scopus 로고
    • Fast prediction of protein-protein interaction sites based on extreme learning machines
    • D.D. Wang, R. Wang, and H. Yan Fast prediction of protein-protein interaction sites based on extreme learning machines Neurocomputing 128 2014 258 266
    • (2014) Neurocomputing , vol.128 , pp. 258-266
    • Wang, D.D.1    Wang, R.2    Yan, H.3
  • 16
    • 84893147895 scopus 로고    scopus 로고
    • Extreme learning machine towards dynamic model hypothesis in fish ethology research
    • R. Nian, B. He, B. Zheng, M.V. Heeswijk, Q. Yu, Y. Miche, and et al. Extreme learning machine towards dynamic model hypothesis in fish ethology research Neurocomputing 128 2014 273 284
    • (2014) Neurocomputing , vol.128 , pp. 273-284
    • Nian, R.1    He, B.2    Zheng, B.3    Heeswijk, M.V.4    Yu, Q.5    Miche, Y.6
  • 17
    • 84907483639 scopus 로고    scopus 로고
    • Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
    • P.K. Wong, K.I. Wong, C.M. Vong, and C.S. Cheung Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search Renew. Energ. 74 2015 640 647
    • (2015) Renew. Energ. , vol.74 , pp. 640-647
    • Wong, P.K.1    Wong, K.I.2    Vong, C.M.3    Cheung, C.S.4
  • 18
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.B. Huang, Q.Y. Zhu, and C.K. Siew Extreme learning machine: theory and applications Neurocomputing 70 2006 489 501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 19
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate on-line sequential learning algorithm for feedforward networks, IEEE transactions on neural
    • N.Y. Liang, G.B. Huang, H.J. Rong, P. Saratchandran, and N. Sundararajan A fast and accurate on-line sequential learning algorithm for feedforward networks, IEEE transactions on neural Networks 17 2006 1411 1423
    • (2006) Networks , vol.17 , pp. 1411-1423
    • Liang, N.Y.1    Huang, G.B.2    Rong, H.J.3    Saratchandran, P.4    Sundararajan, N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.