메뉴 건너뛰기




Volumn 94, Issue , 2016, Pages 70-87

An efficient regularized K-nearest neighbor based weighted twin support vector regression

Author keywords

K nearest neighbor; Machine learning; Newton method; Smoothing techniques; Support vector machines; Twin support vector machines

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; MOTION COMPENSATION; NEWTON-RAPHSON METHOD; REGRESSION ANALYSIS; SAMPLING; SUPPORT VECTOR MACHINES; VECTORS;

EID: 84953426174     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2015.11.011     Document Type: Article
Times cited : (64)

References (48)
  • 1
    • 84966275544 scopus 로고
    • Minimization of functions having Lipschitz-continuous first partial derivatives
    • L. Armijo Minimization of functions having Lipschitz-continuous first partial derivatives Pac. J. Math. 16 1966 1 3
    • (1966) Pac. J. Math. , vol.16 , pp. 1-3
    • Armijo, L.1
  • 2
    • 84897629590 scopus 로고    scopus 로고
    • Training Lagrangian twin support vector regression via unconstrained convex minimization
    • S. Balasundaram, and D. Gupta Training Lagrangian twin support vector regression via unconstrained convex minimization Knowl. Based Syst. 59 2014 85 96
    • (2014) Knowl. Based Syst. , vol.59 , pp. 85-96
    • Balasundaram, S.1    Gupta, D.2
  • 3
    • 84878019198 scopus 로고    scopus 로고
    • On Lagrangian twin support vector regression
    • S. Balasundaram, and M. Tanveer On Lagrangian twin support vector regression Neural Comput. Appl. 22 1 2013 257 267
    • (2013) Neural Comput. Appl. , vol.22 , Issue.1 , pp. 257-267
    • Balasundaram, S.1    Tanveer, M.2
  • 6
    • 0029206129 scopus 로고
    • Smoothing methods for convex inequalities and linear complementarity problems
    • C. Chen, and O.L. Mangasarian Smoothing methods for convex inequalities and linear complementarity problems Math. Program. 71 1 1995 51 69
    • (1995) Math. Program. , vol.71 , Issue.1 , pp. 51-69
    • Chen, C.1    Mangasarian, O.L.2
  • 7
    • 84867703105 scopus 로고    scopus 로고
    • A flexible support vector machine for regression
    • X. Chen, J. Yang, and J. Liang A flexible support vector machine for regression Neural Comput. Appl. 21 8 2012 2005 2013
    • (2012) Neural Comput. Appl. , vol.21 , Issue.8 , pp. 2005-2013
    • Chen, X.1    Yang, J.2    Liang, J.3
  • 9
    • 84897070004 scopus 로고    scopus 로고
    • Ensemblesvm: A library for ensemble learning using support vector machines
    • M. Claesen, F.D. Smet, J.A.K. Suykens, and B.D. Moor Ensemblesvm: a library for ensemble learning using support vector machines J. Mach. Learn. Res. 15 1 2014 141 145
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 141-145
    • Claesen, M.1    Smet, F.D.2    Suykens, J.A.K.3    Moor, B.D.4
  • 10
    • 84858159769 scopus 로고    scopus 로고
    • Smooth twin support vector regression
    • X. Chen, J. Yang, J. Liang, and Q. Ye Smooth twin support vector regression Neural Comput. Appl. 21 3 2012 505 513
    • (2012) Neural Comput. Appl. , vol.21 , Issue.3 , pp. 505-513
    • Chen, X.1    Yang, J.2    Liang, J.3    Ye, Q.4
  • 11
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V.N. Vapnik Support vector networks Mach. Learn. 20 1995 273 297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple datasets
    • J. Demsar Statistical comparisons of classifiers over multiple datasets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 14
    • 0242288821 scopus 로고    scopus 로고
    • Finite Newton method for Lagrangian support vector machine classification
    • G. Fung, and O.L. Mangasarian Finite Newton method for Lagrangian support vector machine classification Neurocomputing 55 1-2 2003 39 55
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 39-55
    • Fung, G.1    Mangasarian, O.L.2
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machine
    • I. Guyon, J. Weston, S. Barnhill, and V.N. Vapnik Gene selection for cancer classification using support vector machine Mach. Learn. 46 2002 389 422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.N.4
  • 17
    • 84908066092 scopus 로고    scopus 로고
    • On weighted support vector regression
    • X. Han, and L. Clemmensen On weighted support vector regression Qual. Reliab. Eng. Int. 30 6 2014 891 903
    • (2014) Qual. Reliab. Eng. Int. , vol.30 , Issue.6 , pp. 891-903
    • Han, X.1    Clemmensen, L.2
  • 18
    • 0021371266 scopus 로고
    • Generalized Hessian matrix and second order optimality conditions for problems with CL1 data
    • J.B. Hiriart-Urruty, J.J. Strodiot, and V.H. Nguyen Generalized Hessian matrix and second order optimality conditions for problems with CL1 data Appl. Math. Optim. 11 1984 43 56
    • (1984) Appl. Math. Optim. , vol.11 , pp. 43-56
    • Hiriart-Urruty, J.B.1    Strodiot, J.J.2    Nguyen, V.H.3
  • 21
    • 48649097170 scopus 로고    scopus 로고
    • Application of smoothing technique on twin support vector machines
    • M.A. Kumar, and M. Gopal Application of smoothing technique on twin support vector machines PatternRecognit. Lett. 29 13 2008 1842 1848
    • (2008) PatternRecognit. Lett. , vol.29 , Issue.13 , pp. 1842-1848
    • Kumar, M.A.1    Gopal, M.2
  • 22
    • 19944407892 scopus 로고    scopus 로고
    • Ï-SSVR: A smooth support vector machine for Ï-insensitive regression
    • Y.J. Lee, W.F. Hsieh, and C.M. Huang Ï-SSVR: a smooth support vector machine for Ï-insensitive regression IEEE Trans. Knowl. Data Eng. 17 5 2005 678 685
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.5 , pp. 678-685
    • Lee, Y.J.1    Hsieh, W.F.2    Huang, C.M.3
  • 24
    • 0035479871 scopus 로고    scopus 로고
    • SSVM: A smooth support vector machine for classification
    • Y.J. Lee, and O.L. Mangasarian SSVM: a smooth support vector machine for classification Comput. Optim. Appl. 20 1 2001 5 22
    • (2001) Comput. Optim. Appl. , vol.20 , Issue.1 , pp. 5-22
    • Lee, Y.J.1    Mangasarian, O.L.2
  • 25
    • 84884281654 scopus 로고    scopus 로고
    • A fast prototype reduction method based on template reduction and visualization-induced self-organizing map for nearest neighbor algorithm
    • I. Li, J. Chen, and J. Wu A fast prototype reduction method based on template reduction and visualization-induced self-organizing map for nearest neighbor algorithm Appl. Intell. 39 2013 564 582
    • (2013) Appl. Intell. , vol.39 , pp. 564-582
    • Li, I.1    Chen, J.2    Wu, J.3
  • 27
    • 33644830072 scopus 로고    scopus 로고
    • Multisurface proximal support vector classification via generalized eigenvalues
    • O.L. Mangasarian, and E.W. Wild Multisurface proximal support vector classification via generalized eigenvalues IEEE Trans. Pattern Anal. Mach. Intell. 28 1 2006 69 74
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.1 , pp. 69-74
    • Mangasarian, O.L.1    Wild, E.W.2
  • 32
    • 76849100708 scopus 로고    scopus 로고
    • TSVR: An efficient twin support vector machine for regression
    • X. Peng TSVR: an efficient twin support vector machine for regression Neural Netw. 23 3 2010 365 372
    • (2010) Neural Netw. , vol.23 , Issue.3 , pp. 365-372
    • Peng, X.1
  • 33
    • 78649962833 scopus 로고    scopus 로고
    • Primal twin support vector regression and its sparse approximation
    • X. Peng Primal twin support vector regression and its sparse approximation Neurocomputing 73 2010 2846 2858
    • (2010) Neurocomputing , vol.73 , pp. 2846-2858
    • Peng, X.1
  • 34
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Scholkopf, C.J.C. Burges, A. Smola, MIT Press Cambridge, MA
    • J. Platt Fast training of support vector machines using sequential minimal optimization B. Scholkopf, C.J.C. Burges, A. Smola, Advances in Kernel Methods-Support Vector Learning 1999 MIT Press Cambridge, MA 185 208
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 35
    • 84955072674 scopus 로고    scopus 로고
    • One norm linear programming support vector regression
    • M. Tanveer, M. Mangal, I. Ahmad, and Y.H. Shao One norm linear programming support vector regression Neurocomputing 2015 http://dx.doi.org/10.1016/j.neucom.2015.09.024
    • (2015) Neurocomputing
    • Tanveer, M.1    Mangal, M.2    Ahmad, I.3    Shao, Y.H.4
  • 36
    • 84900803418 scopus 로고    scopus 로고
    • An efficient weighted Lagrangian twin support vector machine for imbalance data classification
    • Y.H. Shao, W.J. Chen, J.J. Zhang, Z. Wang, and N.Y. Deng An efficient weighted Lagrangian twin support vector machine for imbalance data classification Pattern Recognit. 47 9 2014 3158 3167
    • (2014) Pattern Recognit. , vol.47 , Issue.9 , pp. 3158-3167
    • Shao, Y.H.1    Chen, W.J.2    Zhang, J.J.3    Wang, Z.4    Deng, N.Y.5
  • 37
    • 84870062149 scopus 로고    scopus 로고
    • A regularization for the projection twin support vector machine
    • Y.H. Shao, Z. Wang, W.J. Chen, and N.Y. Deng A regularization for the projection twin support vector machine Knowl. Based Syst. 37 2013 203 210
    • (2013) Knowl. Based Syst. , vol.37 , pp. 203-210
    • Shao, Y.H.1    Wang, Z.2    Chen, W.J.3    Deng, N.Y.4
  • 40
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Process. Lett. 9 1999 293 300
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 41
    • 84922834665 scopus 로고    scopus 로고
    • Robust and sparse linear programming twin support vector machines
    • M. Tanveer Robust and sparse linear programming twin support vector machines Cogn. Comput. 7 2015 137 149
    • (2015) Cogn. Comput. , vol.7 , pp. 137-149
    • Tanveer, M.1
  • 42
    • 84942295832 scopus 로고    scopus 로고
    • Application of smoothing techniques for linear programming twin support vector machines
    • M. Tanveer Application of smoothing techniques for linear programming twin support vector machines Knowl. Inf. Syst. 45 1 2015 191 214 http://dx.doi.org/10.1007/s10115-014-0786-3
    • (2015) Knowl. Inf. Syst. , vol.45 , Issue.1 , pp. 191-214
    • Tanveer, M.1
  • 43
    • 84926259382 scopus 로고    scopus 로고
    • A comparison on multi-class classification methods based on least squares twin support vector machine
    • D. Tomar, and S. Agarwal A comparison on multi-class classification methods based on least squares twin support vector machine Knowl. Based Syst. 81 2015 131 147
    • (2015) Knowl. Based Syst. , vol.81 , pp. 131-147
    • Tomar, D.1    Agarwal, S.2
  • 45
    • 84904180159 scopus 로고    scopus 로고
    • K-nearest neighbor-based weighted twin support vector regression
    • Y. Xu, and L. Wang K-nearest neighbor-based weighted twin support vector regression Appl. Intell. 41 1 2014 299 309
    • (2014) Appl. Intell. , vol.41 , Issue.1 , pp. 299-309
    • Xu, Y.1    Wang, L.2
  • 46
    • 84861589024 scopus 로고    scopus 로고
    • A weighted twin support vector regression
    • Y. Xu, and L. Wang A weighted twin support vector regression Knowl. Based Syst. 33 2012 92 101
    • (2012) Knowl. Based Syst. , vol.33 , pp. 92-101
    • Xu, Y.1    Wang, L.2
  • 47
    • 85027921005 scopus 로고    scopus 로고
    • KNN-based weighted rough ν-twin support vector machine
    • Y. Xu, J. Yu, and Y. Zhang KNN-based weighted rough ν-twin support vector machine Knowl. Based Syst. 71 2014 303 313
    • (2014) Knowl. Based Syst. , vol.71 , pp. 303-313
    • Xu, Y.1    Yu, J.2    Zhang, Y.3
  • 48
    • 84857646348 scopus 로고    scopus 로고
    • Training twin support vector regression via linear programming
    • P. Zhong, Y. Xu, and Y. Zhao Training twin support vector regression via linear programming Neural Comput. Appl. 21 2 2012 399 407
    • (2012) Neural Comput. Appl. , vol.21 , Issue.2 , pp. 399-407
    • Zhong, P.1    Xu, Y.2    Zhao, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.