-
1
-
-
84966275544
-
Minimization of functions having Lipschitz-continuous first partial derivatives
-
L. Armijo Minimization of functions having Lipschitz-continuous first partial derivatives Pac. J. Math. 16 1966 1 3
-
(1966)
Pac. J. Math.
, vol.16
, pp. 1-3
-
-
Armijo, L.1
-
2
-
-
84897629590
-
Training Lagrangian twin support vector regression via unconstrained convex minimization
-
S. Balasundaram, and D. Gupta Training Lagrangian twin support vector regression via unconstrained convex minimization Knowl. Based Syst. 59 2014 85 96
-
(2014)
Knowl. Based Syst.
, vol.59
, pp. 85-96
-
-
Balasundaram, S.1
Gupta, D.2
-
3
-
-
84878019198
-
On Lagrangian twin support vector regression
-
S. Balasundaram, and M. Tanveer On Lagrangian twin support vector regression Neural Comput. Appl. 22 1 2013 257 267
-
(2013)
Neural Comput. Appl.
, vol.22
, Issue.1
, pp. 257-267
-
-
Balasundaram, S.1
Tanveer, M.2
-
6
-
-
0029206129
-
Smoothing methods for convex inequalities and linear complementarity problems
-
C. Chen, and O.L. Mangasarian Smoothing methods for convex inequalities and linear complementarity problems Math. Program. 71 1 1995 51 69
-
(1995)
Math. Program.
, vol.71
, Issue.1
, pp. 51-69
-
-
Chen, C.1
Mangasarian, O.L.2
-
7
-
-
84867703105
-
A flexible support vector machine for regression
-
X. Chen, J. Yang, and J. Liang A flexible support vector machine for regression Neural Comput. Appl. 21 8 2012 2005 2013
-
(2012)
Neural Comput. Appl.
, vol.21
, Issue.8
, pp. 2005-2013
-
-
Chen, X.1
Yang, J.2
Liang, J.3
-
8
-
-
84874508003
-
Spatial and anatomical regularization of SVM: A general framework for neuroimaging data
-
R. Cuingnet, J.A. Glaunes, M. Chupin, H. Benali, and O. Colliot Spatial and anatomical regularization of SVM: a general framework for neuroimaging data IEEE Trans. Pattern Anal. Mach. Intell. 35 3 2013 682 696
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.3
, pp. 682-696
-
-
Cuingnet, R.1
Glaunes, J.A.2
Chupin, M.3
Benali, H.4
Colliot, O.5
-
9
-
-
84897070004
-
Ensemblesvm: A library for ensemble learning using support vector machines
-
M. Claesen, F.D. Smet, J.A.K. Suykens, and B.D. Moor Ensemblesvm: a library for ensemble learning using support vector machines J. Mach. Learn. Res. 15 1 2014 141 145
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 141-145
-
-
Claesen, M.1
Smet, F.D.2
Suykens, J.A.K.3
Moor, B.D.4
-
10
-
-
84858159769
-
Smooth twin support vector regression
-
X. Chen, J. Yang, J. Liang, and Q. Ye Smooth twin support vector regression Neural Comput. Appl. 21 3 2012 505 513
-
(2012)
Neural Comput. Appl.
, vol.21
, Issue.3
, pp. 505-513
-
-
Chen, X.1
Yang, J.2
Liang, J.3
Ye, Q.4
-
11
-
-
34249753618
-
Support vector networks
-
C. Cortes, and V.N. Vapnik Support vector networks Mach. Learn. 20 1995 273 297
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
13
-
-
29644438050
-
Statistical comparisons of classifiers over multiple datasets
-
J. Demsar Statistical comparisons of classifiers over multiple datasets J. Mach. Learn. Res. 7 2006 1 30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
14
-
-
0242288821
-
Finite Newton method for Lagrangian support vector machine classification
-
G. Fung, and O.L. Mangasarian Finite Newton method for Lagrangian support vector machine classification Neurocomputing 55 1-2 2003 39 55
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 39-55
-
-
Fung, G.1
Mangasarian, O.L.2
-
16
-
-
0036161259
-
Gene selection for cancer classification using support vector machine
-
I. Guyon, J. Weston, S. Barnhill, and V.N. Vapnik Gene selection for cancer classification using support vector machine Mach. Learn. 46 2002 389 422
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.N.4
-
17
-
-
84908066092
-
On weighted support vector regression
-
X. Han, and L. Clemmensen On weighted support vector regression Qual. Reliab. Eng. Int. 30 6 2014 891 903
-
(2014)
Qual. Reliab. Eng. Int.
, vol.30
, Issue.6
, pp. 891-903
-
-
Han, X.1
Clemmensen, L.2
-
18
-
-
0021371266
-
Generalized Hessian matrix and second order optimality conditions for problems with CL1 data
-
J.B. Hiriart-Urruty, J.J. Strodiot, and V.H. Nguyen Generalized Hessian matrix and second order optimality conditions for problems with CL1 data Appl. Math. Optim. 11 1984 43 56
-
(1984)
Appl. Math. Optim.
, vol.11
, pp. 43-56
-
-
Hiriart-Urruty, J.B.1
Strodiot, J.J.2
Nguyen, V.H.3
-
21
-
-
48649097170
-
Application of smoothing technique on twin support vector machines
-
M.A. Kumar, and M. Gopal Application of smoothing technique on twin support vector machines PatternRecognit. Lett. 29 13 2008 1842 1848
-
(2008)
PatternRecognit. Lett.
, vol.29
, Issue.13
, pp. 1842-1848
-
-
Kumar, M.A.1
Gopal, M.2
-
22
-
-
19944407892
-
Ï-SSVR: A smooth support vector machine for Ï-insensitive regression
-
Y.J. Lee, W.F. Hsieh, and C.M. Huang Ï-SSVR: a smooth support vector machine for Ï-insensitive regression IEEE Trans. Knowl. Data Eng. 17 5 2005 678 685
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.5
, pp. 678-685
-
-
Lee, Y.J.1
Hsieh, W.F.2
Huang, C.M.3
-
24
-
-
0035479871
-
SSVM: A smooth support vector machine for classification
-
Y.J. Lee, and O.L. Mangasarian SSVM: a smooth support vector machine for classification Comput. Optim. Appl. 20 1 2001 5 22
-
(2001)
Comput. Optim. Appl.
, vol.20
, Issue.1
, pp. 5-22
-
-
Lee, Y.J.1
Mangasarian, O.L.2
-
25
-
-
84884281654
-
A fast prototype reduction method based on template reduction and visualization-induced self-organizing map for nearest neighbor algorithm
-
I. Li, J. Chen, and J. Wu A fast prototype reduction method based on template reduction and visualization-induced self-organizing map for nearest neighbor algorithm Appl. Intell. 39 2013 564 582
-
(2013)
Appl. Intell.
, vol.39
, pp. 564-582
-
-
Li, I.1
Chen, J.2
Wu, J.3
-
27
-
-
33644830072
-
Multisurface proximal support vector classification via generalized eigenvalues
-
O.L. Mangasarian, and E.W. Wild Multisurface proximal support vector classification via generalized eigenvalues IEEE Trans. Pattern Anal. Mach. Intell. 28 1 2006 69 74
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.1
, pp. 69-74
-
-
Mangasarian, O.L.1
Wild, E.W.2
-
28
-
-
0031375732
-
Nonlinear prediction of chaotic time series using support vector machines
-
S. Mukherjee, E. Osuna, and F. Girosi Nonlinear prediction of chaotic time series using support vector machines NNSP'97: Neural Networks for Signal Processing VII: in Proceedings of IEEE Signal Processing Society Workshop, Amelia Island, FL, USA 1997 511 520
-
(1997)
NNSP'97: Neural Networks for Signal Processing VII: In Proceedings of IEEE Signal Processing Society Workshop, Amelia Island, FL, USA
, pp. 511-520
-
-
Mukherjee, S.1
Osuna, E.2
Girosi, F.3
-
29
-
-
0003219590
-
Using support vector machines for time series prediction
-
B. Schlkopf, C.J.C. Burges, A. Smola, MIT Press Cambridge, MA
-
K.R. Muller, A.J. Smola, G. Ratsch, B. Schlkopf, and J. Kohlmorgen Using support vector machines for time series prediction B. Schlkopf, C.J.C. Burges, A. Smola, Advances in Kernel Methods - Support Vector Learning 1999 MIT Press Cambridge, MA 243 254
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 243-254
-
-
Muller, K.R.1
Smola, A.J.2
Ratsch, G.3
Schlkopf, B.4
Kohlmorgen, J.5
-
32
-
-
76849100708
-
TSVR: An efficient twin support vector machine for regression
-
X. Peng TSVR: an efficient twin support vector machine for regression Neural Netw. 23 3 2010 365 372
-
(2010)
Neural Netw.
, vol.23
, Issue.3
, pp. 365-372
-
-
Peng, X.1
-
33
-
-
78649962833
-
Primal twin support vector regression and its sparse approximation
-
X. Peng Primal twin support vector regression and its sparse approximation Neurocomputing 73 2010 2846 2858
-
(2010)
Neurocomputing
, vol.73
, pp. 2846-2858
-
-
Peng, X.1
-
34
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Scholkopf, C.J.C. Burges, A. Smola, MIT Press Cambridge, MA
-
J. Platt Fast training of support vector machines using sequential minimal optimization B. Scholkopf, C.J.C. Burges, A. Smola, Advances in Kernel Methods-Support Vector Learning 1999 MIT Press Cambridge, MA 185 208
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
35
-
-
84955072674
-
One norm linear programming support vector regression
-
M. Tanveer, M. Mangal, I. Ahmad, and Y.H. Shao One norm linear programming support vector regression Neurocomputing 2015 http://dx.doi.org/10.1016/j.neucom.2015.09.024
-
(2015)
Neurocomputing
-
-
Tanveer, M.1
Mangal, M.2
Ahmad, I.3
Shao, Y.H.4
-
36
-
-
84900803418
-
An efficient weighted Lagrangian twin support vector machine for imbalance data classification
-
Y.H. Shao, W.J. Chen, J.J. Zhang, Z. Wang, and N.Y. Deng An efficient weighted Lagrangian twin support vector machine for imbalance data classification Pattern Recognit. 47 9 2014 3158 3167
-
(2014)
Pattern Recognit.
, vol.47
, Issue.9
, pp. 3158-3167
-
-
Shao, Y.H.1
Chen, W.J.2
Zhang, J.J.3
Wang, Z.4
Deng, N.Y.5
-
37
-
-
84870062149
-
A regularization for the projection twin support vector machine
-
Y.H. Shao, Z. Wang, W.J. Chen, and N.Y. Deng A regularization for the projection twin support vector machine Knowl. Based Syst. 37 2013 203 210
-
(2013)
Knowl. Based Syst.
, vol.37
, pp. 203-210
-
-
Shao, Y.H.1
Wang, Z.2
Chen, W.J.3
Deng, N.Y.4
-
38
-
-
79957988400
-
Improvements on twin support vector machines
-
Y.H. Shao, C.H. Zhang, X.B. Wang, and N.Y. Deng Improvements on twin support vector machines IEEE Trans. Neural Netw. 22 6 2011 962 968
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.6
, pp. 962-968
-
-
Shao, Y.H.1
Zhang, C.H.2
Wang, X.B.3
Deng, N.Y.4
-
39
-
-
84879845371
-
An Ï-twin support vector machine for regression
-
Y.H. Shao, C.H. Zhang, Z.M. Yang, L. Jing, and N.Y. Deng An Ï-twin support vector machine for regression Neural Comput. Appl. 23 2012 175 185
-
(2012)
Neural Comput. Appl.
, vol.23
, pp. 175-185
-
-
Shao, Y.H.1
Zhang, C.H.2
Yang, Z.M.3
Jing, L.4
Deng, N.Y.5
-
40
-
-
0032638628
-
Least squares support vector machine classifiers
-
J.A.K. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Process. Lett. 9 1999 293 300
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
41
-
-
84922834665
-
Robust and sparse linear programming twin support vector machines
-
M. Tanveer Robust and sparse linear programming twin support vector machines Cogn. Comput. 7 2015 137 149
-
(2015)
Cogn. Comput.
, vol.7
, pp. 137-149
-
-
Tanveer, M.1
-
42
-
-
84942295832
-
Application of smoothing techniques for linear programming twin support vector machines
-
M. Tanveer Application of smoothing techniques for linear programming twin support vector machines Knowl. Inf. Syst. 45 1 2015 191 214 http://dx.doi.org/10.1007/s10115-014-0786-3
-
(2015)
Knowl. Inf. Syst.
, vol.45
, Issue.1
, pp. 191-214
-
-
Tanveer, M.1
-
43
-
-
84926259382
-
A comparison on multi-class classification methods based on least squares twin support vector machine
-
D. Tomar, and S. Agarwal A comparison on multi-class classification methods based on least squares twin support vector machine Knowl. Based Syst. 81 2015 131 147
-
(2015)
Knowl. Based Syst.
, vol.81
, pp. 131-147
-
-
Tomar, D.1
Agarwal, S.2
-
45
-
-
84904180159
-
K-nearest neighbor-based weighted twin support vector regression
-
Y. Xu, and L. Wang K-nearest neighbor-based weighted twin support vector regression Appl. Intell. 41 1 2014 299 309
-
(2014)
Appl. Intell.
, vol.41
, Issue.1
, pp. 299-309
-
-
Xu, Y.1
Wang, L.2
-
46
-
-
84861589024
-
A weighted twin support vector regression
-
Y. Xu, and L. Wang A weighted twin support vector regression Knowl. Based Syst. 33 2012 92 101
-
(2012)
Knowl. Based Syst.
, vol.33
, pp. 92-101
-
-
Xu, Y.1
Wang, L.2
-
47
-
-
85027921005
-
KNN-based weighted rough ν-twin support vector machine
-
Y. Xu, J. Yu, and Y. Zhang KNN-based weighted rough ν-twin support vector machine Knowl. Based Syst. 71 2014 303 313
-
(2014)
Knowl. Based Syst.
, vol.71
, pp. 303-313
-
-
Xu, Y.1
Yu, J.2
Zhang, Y.3
-
48
-
-
84857646348
-
Training twin support vector regression via linear programming
-
P. Zhong, Y. Xu, and Y. Zhao Training twin support vector regression via linear programming Neural Comput. Appl. 21 2 2012 399 407
-
(2012)
Neural Comput. Appl.
, vol.21
, Issue.2
, pp. 399-407
-
-
Zhong, P.1
Xu, Y.2
Zhao, Y.3
|