메뉴 건너뛰기




Volumn 3, Issue 3, 2016, Pages 327-368

Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84988005290     PISSN: None     EISSN: 20491948     Source Type: Journal    
DOI: 10.1002/wat2.1125     Document Type: Review
Times cited : (184)

References (479)
  • 1
    • 33748054300 scopus 로고    scopus 로고
    • Global hydrological cycles and world water resources
    • Oki T, Kanae S. Global hydrological cycles and world water resources. Science 2006, 313:1068–1072. doi:10.1126/science.1128845.
    • (2006) Science , vol.313 , pp. 1068-1072
    • Oki, T.1    Kanae, S.2
  • 2
    • 84864418975 scopus 로고    scopus 로고
    • Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system
    • Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB. Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys 2012, 50:RG3002.
    • (2012) Rev Geophys , vol.50 , pp. RG3002
    • Katul, G.G.1    Oren, R.2    Manzoni, S.3    Higgins, C.4    Parlange, M.B.5
  • 3
    • 84893465107 scopus 로고    scopus 로고
    • Transpiration in the global water cycle
    • Schlesinger WH, Jasechko S. Transpiration in the global water cycle. Agr Forest Meteorol 2014, 189-190:115–117. doi:10.1016/j.agrformet.2014.01.011.
    • (2014) Agr Forest Meteorol , vol.189-190 , pp. 115-117
    • Schlesinger, W.H.1    Jasechko, S.2
  • 5
    • 0017854033 scopus 로고
    • Climate, soil, and vegetation 1. Introduction to water balance dynamics
    • Eagleson PS. Climate, soil, and vegetation 1. Introduction to water balance dynamics. Water Resour Res 1978, 14:705–712.
    • (1978) Water Resour Res , vol.14 , pp. 705-712
    • Eagleson, P.S.1
  • 6
    • 0012110271 scopus 로고    scopus 로고
    • Cambridge, UK, Cambridge University Press
    • Bonan GB. Ecological Climatology. Cambridge, UK: Cambridge University Press; 2008.
    • (2008) Ecological Climatology
    • Bonan, G.B.1
  • 7
    • 79551618193 scopus 로고    scopus 로고
    • Stomata: key players in the Earth system past and present
    • Berry JA, Beerling DJ, Franks PJ. Stomata: key players in the Earth system past and present. Curr Opin Plant Biol 2010, 13:232–239.
    • (2010) Curr Opin Plant Biol , vol.13 , pp. 232-239
    • Berry, J.A.1    Beerling, D.J.2    Franks, P.J.3
  • 10
    • 36148935922 scopus 로고    scopus 로고
    • Physical and chemical controls on the critical zone
    • Anderson SP, von Blanckenburg F, White AF. Physical and chemical controls on the critical zone. Elements 2007, 3:315–319.
    • (2007) Elements , vol.3 , pp. 315-319
    • Anderson, S.P.1    von Blanckenburg, F.2    White, A.F.3
  • 11
    • 84876150934 scopus 로고    scopus 로고
    • Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis
    • McMahon TA, Peel MC, Lowe L, Srikanthan R, McVicar TR. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol Earth Syst Sci 2013, 17:1331–1363. doi:10.5194/hess-17-1331-2013.
    • (2013) Hydrol Earth Syst Sci , vol.17 , pp. 1331-1363
    • McMahon, T.A.1    Peel, M.C.2    Lowe, L.3    Srikanthan, R.4    McVicar, T.R.5
  • 12
    • 1142265863 scopus 로고    scopus 로고
    • Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model
    • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S. Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model. J Hydrol 2004, 286:249–270.
    • (2004) J Hydrol , vol.286 , pp. 249-270
    • Gerten, D.1    Schaphoff, S.2    Haberlandt, U.3    Lucht, W.4    Sitch, S.5
  • 14
    • 0022825341 scopus 로고
    • A simple biosphere model (SiB) for use within general circulation models
    • Sellers PJ, Mintz Y, Sud YC, Dalcher A. A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci 1986, 43:505–531.
    • (1986) J Atmos Sci , vol.43 , pp. 505-531
    • Sellers, P.J.1    Mintz, Y.2    Sud, Y.C.3    Dalcher, A.4
  • 17
    • 84896706920 scopus 로고    scopus 로고
    • Ecohydrological effects of management on subalpine grasslands: from local to catchment scale
    • Fatichi S, Zeeman MJ, Fuhrer J, Burlando P. Ecohydrological effects of management on subalpine grasslands: from local to catchment scale. Water Resour Res 2014, 50:148–164. doi:10.1002/2013WR014535.
    • (2014) Water Resour Res , vol.50 , pp. 148-164
    • Fatichi, S.1    Zeeman, M.J.2    Fuhrer, J.3    Burlando, P.4
  • 18
    • 79957615912 scopus 로고    scopus 로고
    • Improvements to a MODIS global terrestrial evapotranspiration algorithm
    • Mu Q, Zhao M, Running SW. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 2011, 115:1781–1800.
    • (2011) Remote Sens Environ , vol.115 , pp. 1781-1800
    • Mu, Q.1    Zhao, M.2    Running, S.W.3
  • 19
    • 84950287834 scopus 로고    scopus 로고
    • Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references
    • Bornmann L, Mutz R. Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J Assoc Inform Sci Technol 2015, 66:2215–2222. doi:10.1002/asi.23329.
    • (2015) J Assoc Inform Sci Technol , vol.66 , pp. 2215-2222
    • Bornmann, L.1    Mutz, R.2
  • 20
    • 84877602457 scopus 로고    scopus 로고
    • Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future
    • Sack L, Scoffoni C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 2013, 198:983–1000. doi:10.1111/nph.12253.
    • (2013) New Phytol , vol.198 , pp. 983-1000
    • Sack, L.1    Scoffoni, C.2
  • 21
    • 0033986531 scopus 로고    scopus 로고
    • Ecohydrology: a hydrological perspective of climate-soil-vegetation dynamics
    • Rodriguez-Iturbe I. Ecohydrology: a hydrological perspective of climate-soil-vegetation dynamics. Water Resour Res 2000, 36:3–9.
    • (2000) Water Resour Res , vol.36 , pp. 3-9
    • Rodriguez-Iturbe, I.1
  • 22
    • 0035397970 scopus 로고    scopus 로고
    • Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress III. Vegetation water stress
    • Porporato A, Laio F, Ridolfi L, Rodriguez-Iturbe I. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress III. Vegetation water stress. Adv Water Resour 2001, 24:725–744.
    • (2001) Adv Water Resour , vol.24 , pp. 725-744
    • Porporato, A.1    Laio, F.2    Ridolfi, L.3    Rodriguez-Iturbe, I.4
  • 25
    • 11144349893 scopus 로고    scopus 로고
    • Hydrology and ecology meet-and the meeting is good
    • Bond B. Hydrology and ecology meet-and the meeting is good. Hydrol Process 2003, 2087:2089. doi:10.1002/hyp.5133.
    • (2003) Hydrol Process , vol.2087 , pp. 2089
    • Bond, B.1
  • 30
    • 31444437524 scopus 로고    scopus 로고
    • Vegetation-modulated landscape evolution: effects of vegetation on landscape processes, drainage density, and topography
    • Istanbulluoglu E, Bras RL. Vegetation-modulated landscape evolution: effects of vegetation on landscape processes, drainage density, and topography. J Geophys Res 2005, 110:F02012. doi:10.1029/2004JF000249.
    • (2005) J Geophys Res , vol.110 , pp. F02012
    • Istanbulluoglu, E.1    Bras, R.L.2
  • 31
    • 79960949654 scopus 로고    scopus 로고
    • Climate trends and global crop production since 1980
    • Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science 2011, 333:616–620. doi:10.1126/science.1204531.
    • (2011) Science , vol.333 , pp. 616-620
    • Lobell, D.B.1    Schlenker, W.2    Costa-Roberts, J.3
  • 32
    • 12144258630 scopus 로고    scopus 로고
    • A global dataset of Palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming
    • Dai A, Trenberth KE, Qian T. A global dataset of Palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 2004, 5:1117–1130.
    • (2004) J Hydrometeorol , vol.5 , pp. 1117-1130
    • Dai, A.1    Trenberth, K.E.2    Qian, T.3
  • 33
    • 84869045028 scopus 로고    scopus 로고
    • Little change in global drought over the past 60 years
    • Sheffield J, Wood EF, Roderick ML. Little change in global drought over the past 60 years. Nature 2012, 491:435–438. doi:10.1038/nature11575.
    • (2012) Nature , vol.491 , pp. 435-438
    • Sheffield, J.1    Wood, E.F.2    Roderick, M.L.3
  • 34
    • 84925400672 scopus 로고    scopus 로고
    • Responses of terrestrial aridity to global warming
    • Fu Q, Feng S. Responses of terrestrial aridity to global warming. J Geophys Res Atmos 2014, 119:7863–7875. doi:10.1002/2014JD021608.
    • (2014) J Geophys Res Atmos , vol.119 , pp. 7863-7875
    • Fu, Q.1    Feng, S.2
  • 36
    • 84949323247 scopus 로고    scopus 로고
    • Modeling terrestrial carbon and water dynamics across climatic gradients: does plant diversity matter?
    • Pappas C, Fatichi S, Burlando P. Modeling terrestrial carbon and water dynamics across climatic gradients: does plant diversity matter? New Phytol 2015. doi:10.1111/nph.13590.
    • (2015) New Phytol
    • Pappas, C.1    Fatichi, S.2    Burlando, P.3
  • 40
    • 80053345922 scopus 로고    scopus 로고
    • Catchment hydrological responses to forest harvest amount and spatial pattern
    • Abdelnour A, Stieglitz M, Pan F, McKane R. Catchment hydrological responses to forest harvest amount and spatial pattern. Water Resour Res 2011, 47:W09521. doi:10.1029/2010WR010165.
    • (2011) Water Resour Res , vol.47 , pp. W09521
    • Abdelnour, A.1    Stieglitz, M.2    Pan, F.3    McKane, R.4
  • 41
    • 20544440853 scopus 로고    scopus 로고
    • A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation
    • Brown AE, Zhang L, McMahon TA, Western AW, Vertessy RA. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol 2005, 310:28–61. doi:10.1016/j.jhydrol.2004.12.010.
    • (2005) J Hydrol , vol.310 , pp. 28-61
    • Brown, A.E.1    Zhang, L.2    McMahon, T.A.3    Western, A.W.4    Vertessy, R.A.5
  • 42
    • 80051592416 scopus 로고    scopus 로고
    • Decreased streamflow in semi-arid basins following drought-induced tree die-off: a counter-intuitive and indirect climate impact on hydrology
    • Guardiola-Claramonte M, Troch PA, Breshears DD, Huxman TE, Switanek MB, Durcik M, Cobb NS. Decreased streamflow in semi-arid basins following drought-induced tree die-off: a counter-intuitive and indirect climate impact on hydrology. J Hydrol 2011, 406:225–233.
    • (2011) J Hydrol , vol.406 , pp. 225-233
    • Guardiola-Claramonte, M.1    Troch, P.A.2    Breshears, D.D.3    Huxman, T.E.4    Switanek, M.B.5    Durcik, M.6    Cobb, N.S.7
  • 46
    • 77953653043 scopus 로고    scopus 로고
    • Simulation of snow accumulation and melt in needleleaf forest environments
    • Ellis CR, Pomeroy JW, Brown T, MacDonald J. Simulation of snow accumulation and melt in needleleaf forest environments. Hydrol Earth Syst Sci 2010, 14:925–940. doi:10.5194/hess-14-925-2010.
    • (2010) Hydrol Earth Syst Sci , vol.14 , pp. 925-940
    • Ellis, C.R.1    Pomeroy, J.W.2    Brown, T.3    MacDonald, J.4
  • 47
    • 84941746846 scopus 로고    scopus 로고
    • Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests
    • Broxton PD, Harpold AA, Biederman JA, Troch PA, Molotch NP, Brooks PD. Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests. Ecohydrology 2015, 8:1073–1094. doi:10.1002/eco.1565.
    • (2015) Ecohydrology , vol.8 , pp. 1073-1094
    • Broxton, P.D.1    Harpold, A.A.2    Biederman, J.A.3    Troch, P.A.4    Molotch, N.P.5    Brooks, P.D.6
  • 48
    • 69049115033 scopus 로고    scopus 로고
    • Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations
    • Bohrer G, Katul GG, Walko RL, Avissar R. Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Bound-Lay Meteorol 2009, 132:351–382. doi:10.1007/s10546-009-9404-4.
    • (2009) Bound-Lay Meteorol , vol.132 , pp. 351-382
    • Bohrer, G.1    Katul, G.G.2    Walko, R.L.3    Avissar, R.4
  • 49
    • 84876528240 scopus 로고    scopus 로고
    • Testing above- and below-canopy representations of turbulent fluxes in an energy balance snowmelt model
    • Mahat V, Tarboton DG, Molotch NP. Testing above- and below-canopy representations of turbulent fluxes in an energy balance snowmelt model. Water Resour Res 2013, 49:1107–1122. doi:10.1002/wrcr.20073.
    • (2013) Water Resour Res , vol.49 , pp. 1107-1122
    • Mahat, V.1    Tarboton, D.G.2    Molotch, N.P.3
  • 50
    • 84885000101 scopus 로고    scopus 로고
    • Lower forest density enhances snow retention in regions with warmer winters: a global framework developed from plot-scale observations and modelling
    • Lundquist JD, Dickerson-Lange SE, Lutz JA, Cristea NC. Lower forest density enhances snow retention in regions with warmer winters: a global framework developed from plot-scale observations and modelling. Water Resour Res 2013, 49:6356–6370. doi:10.1002/wrcr.20504.
    • (2013) Water Resour Res , vol.49 , pp. 6356-6370
    • Lundquist, J.D.1    Dickerson-Lange, S.E.2    Lutz, J.A.3    Cristea, N.C.4
  • 51
    • 21844468508 scopus 로고    scopus 로고
    • Major role of marine vegetation on the oceanic carbon cycle
    • Duarte CM, Middelburg JJ, Caraco N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2005, 2:1–8.
    • (2005) Biogeosciences , vol.2 , pp. 1-8
    • Duarte, C.M.1    Middelburg, J.J.2    Caraco, N.3
  • 52
    • 80052308923 scopus 로고    scopus 로고
    • A low resistance model for assessing the impact of vegetation on flood routing mechanics
    • Katul GG, Poggi D, Ridolfi L. A low resistance model for assessing the impact of vegetation on flood routing mechanics. Water Resour Res 2011, 47:W08533. doi:10.1029/2010WR010278.
    • (2011) Water Resour Res , vol.47 , pp. W08533
    • Katul, G.G.1    Poggi, D.2    Ridolfi, L.3
  • 53
    • 84868335494 scopus 로고    scopus 로고
    • Hydraulic resistance to overland flow on surfaces with partially submerged vegetation
    • Kim J, Ivanov VY, Katopodes ND. Hydraulic resistance to overland flow on surfaces with partially submerged vegetation. Water Resour Res 2012, 48:W10540. doi:10.1029/2012WR012047.
    • (2012) Water Resour Res , vol.48 , pp. W10540
    • Kim, J.1    Ivanov, V.Y.2    Katopodes, N.D.3
  • 54
    • 84954363743 scopus 로고    scopus 로고
    • The hydraulic description of vegetated river channels: the weaknesses of existing formulations and emerging alternatives
    • Marjoribanks TI, Hardy RJ, Lane SN. The hydraulic description of vegetated river channels: the weaknesses of existing formulations and emerging alternatives. WIREs Water 2014, 1:549–560. doi:10.1002/wat2.1044.
    • (2014) WIREs Water , vol.1 , pp. 549-560
    • Marjoribanks, T.I.1    Hardy, R.J.2    Lane, S.N.3
  • 55
    • 0033461820 scopus 로고    scopus 로고
    • On the spatial and temporal links between vegetation, climate, and soil moisture
    • Rodriquez-Iturbe I, D'Odorico P, Porporato A, Ridolfi L. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour Res 1999, 35:3709–3722.
    • (1999) Water Resour Res , vol.35 , pp. 3709-3722
    • Rodriquez-Iturbe, I.1    D'Odorico, P.2    Porporato, A.3    Ridolfi, L.4
  • 56
  • 57
    • 41149083370 scopus 로고    scopus 로고
    • The influence of climate on root depth: a carbon cost-benefit analysis
    • Guswa AJ. The influence of climate on root depth: a carbon cost-benefit analysis. Water Resour Res 2008, 44:W02427. doi:10.1029/2007WR006384.
    • (2008) Water Resour Res , vol.44 , pp. W02427
    • Guswa, A.J.1
  • 58
    • 79957460573 scopus 로고    scopus 로고
    • Spatial scale dependence of ecohydrologically mediated water balance partitioning: a synthesis framework for catchment ecohydrology
    • Thompson SE, Harman CJ, Troch PA, Brooks PD, Sivapalan M. Spatial scale dependence of ecohydrologically mediated water balance partitioning: a synthesis framework for catchment ecohydrology. Water Resour Res 2011, 47:W00J03. doi:10.1029/2010WR009998.
    • (2011) Water Resour Res , vol.47 , pp. W00J03
    • Thompson, S.E.1    Harman, C.J.2    Troch, P.A.3    Brooks, P.D.4    Sivapalan, M.5
  • 59
    • 84874197905 scopus 로고    scopus 로고
    • Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off
    • Manzoni S, Vico G, Katul GG, Palmroth S, Jackson RB, Porporato A. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off. New Phytol 2013, 198:169–178. doi:10.1111/nph.12126.
    • (2013) New Phytol , vol.198 , pp. 169-178
    • Manzoni, S.1    Vico, G.2    Katul, G.G.3    Palmroth, S.4    Jackson, R.B.5    Porporato, A.6
  • 60
    • 84904765733 scopus 로고    scopus 로고
    • Optimal plant water use strategies under stochastic rainfall
    • Manzoni S, Vico G, Katul GG, Palmroth S, Porporato A. Optimal plant water use strategies under stochastic rainfall. Water Resour Res 2014, 2014:5379–5394. doi:10.1002/2014WR015375.
    • (2014) Water Resour Res , vol.2014 , pp. 5379-5394
    • Manzoni, S.1    Vico, G.2    Katul, G.G.3    Palmroth, S.4    Porporato, A.5
  • 61
    • 0035205675 scopus 로고    scopus 로고
    • A review of forest gap models
    • Bugmann H. A review of forest gap models. Clim Change 2001, 51:259–305.
    • (2001) Clim Change , vol.51 , pp. 259-305
    • Bugmann, H.1
  • 63
    • 0038112100 scopus 로고    scopus 로고
    • The ascent of water
    • Tyree MT. The ascent of water. Nature 2003, 423:923.
    • (2003) Nature , vol.423 , pp. 923
    • Tyree, M.T.1
  • 66
    • 0002952365 scopus 로고
    • The ascent of sap in plants
    • Pickard WF. The ascent of sap in plants. Prog Biophys Mol Biol 1981, 37:181–229.
    • (1981) Prog Biophys Mol Biol , vol.37 , pp. 181-229
    • Pickard, W.F.1
  • 68
    • 84860321922 scopus 로고    scopus 로고
    • Analytic solutions and universal properties of sugar loading models in Münch phloem flow
    • Jensen KH, Berg-Sørensen K, Friis SMM, Bohr T. Analytic solutions and universal properties of sugar loading models in Münch phloem flow. J Theor Biol 2012, 304:286–296.
    • (2012) J Theor Biol , vol.304 , pp. 286-296
    • Jensen, K.H.1    Berg-Sørensen, K.2    Friis, S.M.M.3    Bohr, T.4
  • 70
    • 0004178982 scopus 로고    scopus 로고
    • Sunderland, MA, Sinauer Associates Inc
    • Taiz L, Zeiger E. Plant Physiology. Sunderland, MA: Sinauer Associates Inc; 2006.
    • (2006) Plant Physiology
    • Taiz, L.1    Zeiger, E.2
  • 71
    • 0012463208 scopus 로고
    • Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves
    • von Caemmerer S, Farquhar GD. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153:376–387.
    • (1981) Planta , vol.153 , pp. 376-387
    • von Caemmerer, S.1    Farquhar, G.D.2
  • 74
    • 67649852514 scopus 로고    scopus 로고
    • 2 effects on stomatal size and density over geologic time
    • 2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 2009, 106:10343–10347.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 10343-10347
    • Franks, P.J.1    Beerling, D.J.2
  • 75
    • 84879776351 scopus 로고    scopus 로고
    • Plant water use efficiency over geological time –evolution of leaf stomata configurations affecting plant gas exchange
    • Assouline S, Or D. Plant water use efficiency over geological time –evolution of leaf stomata configurations affecting plant gas exchange. PLoS One 2013, 8:e67757. doi:10.1371/journal.pone.0067757.
    • (2013) PLoS One , vol.8
    • Assouline, S.1    Or, D.2
  • 76
    • 7044241306 scopus 로고    scopus 로고
    • Hydraulic architecture of leaf blades: where is the main resistance? Plant
    • Cochard H, Nardini A, Coll L. Hydraulic architecture of leaf blades: where is the main resistance? Plant. Cell Environ 2004, 27:1257–1267. doi:10.1111/j.1365-3040.2004.01233.x.
    • (2004) Cell Environ , vol.27 , pp. 1257-1267
    • Cochard, H.1    Nardini, A.2    Coll, L.3
  • 78
    • 34547858155 scopus 로고    scopus 로고
    • Leaf maximum photosynthetic rate and venation are linked by hydraulics
    • Brodribb TJ, Field TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 2007, 144:1890–1898.
    • (2007) Plant Physiol , vol.144 , pp. 1890-1898
    • Brodribb, T.J.1    Field, T.S.2    Jordan, G.J.3
  • 79
    • 0041858071 scopus 로고    scopus 로고
    • The role of stomata in sensing and driving environmental change
    • Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature 2003, 424:901–908.
    • (2003) Nature , vol.424 , pp. 901-908
    • Hetherington, A.M.1    Woodward, F.I.2
  • 80
    • 0000561742 scopus 로고
    • The interpretation of the variances in leaf water potential and stomatal conductance found in canopies in the field
    • Jarvis PG. The interpretation of the variances in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond Ser B 1976, 273:593–610.
    • (1976) Philos Trans R Soc Lond Ser B , vol.273 , pp. 593-610
    • Jarvis, P.G.1
  • 81
    • 0029167199 scopus 로고
    • A reinterpretation of stomatal responses to humidity
    • Monteith JL. A reinterpretation of stomatal responses to humidity. Plant Cell Environ 1995, 18:357–364.
    • (1995) Plant Cell Environ , vol.18 , pp. 357-364
    • Monteith, J.L.1
  • 83
    • 84896543433 scopus 로고    scopus 로고
    • To open or to close: species-specific stomatal responses to simultaneously applied opposing environmental factors
    • Merilo E, Joesaar I, Brosché M, Kollist H. To open or to close: species-specific stomatal responses to simultaneously applied opposing environmental factors. New Phytol 2014, 202:499–508. doi:10.1111/nph.12667.
    • (2014) New Phytol , vol.202 , pp. 499-508
    • Merilo, E.1    Joesaar, I.2    Brosché, M.3    Kollist, H.4
  • 85
    • 33745244462 scopus 로고
    • The relationship of stomatal aperture and guard-cell turgor pressure in Vicia faba
    • Fischer RA. The relationship of stomatal aperture and guard-cell turgor pressure in Vicia faba. J Exp Bot 1973, 24:387–399.
    • (1973) J Exp Bot , vol.24 , pp. 387-399
    • Fischer, R.A.1
  • 86
    • 0142071749 scopus 로고    scopus 로고
    • A hydromechanical and biochemical model of stomatal conductance
    • Buckley TN, Mott KA, Farquhar GD. A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 2003, 26:1767–1785.
    • (2003) Plant Cell Environ , vol.26 , pp. 1767-1785
    • Buckley, T.N.1    Mott, K.A.2    Farquhar, G.D.3
  • 87
    • 32944477602 scopus 로고    scopus 로고
    • The control of stomata by water balance
    • Buckley TN. The control of stomata by water balance. New Phytol 2005, 169:275–292. doi:10.1111/j.1469-8137.2005.01543.x.
    • (2005) New Phytol , vol.169 , pp. 275-292
    • Buckley, T.N.1
  • 88
    • 0036007881 scopus 로고    scopus 로고
    • Hydraulic and chemical signalling in the control of stomatal conductance and transpiration
    • Comstock JP. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. J Exp Bot 2002, 53:195–200.
    • (2002) J Exp Bot , vol.53 , pp. 195-200
    • Comstock, J.P.1
  • 89
    • 0042510467 scopus 로고    scopus 로고
    • Stomatal closure during leaf dehydration, correlation with other leaf physiological traits
    • Brodribb TJ, Holbrook NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 2003, 132:2166–2173.
    • (2003) Plant Physiol , vol.132 , pp. 2166-2173
    • Brodribb, T.J.1    Holbrook, N.M.2
  • 90
    • 2542594735 scopus 로고    scopus 로고
    • Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms
    • Brodribb TJ, Holbrook NM. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol 2004, 162:663–670. doi:10.1111/j.1469-8137.2004.01060.x.
    • (2004) New Phytol , vol.162 , pp. 663-670
    • Brodribb, T.J.1    Holbrook, N.M.2
  • 91
    • 84859428157 scopus 로고    scopus 로고
    • Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control
    • Guyot G, Scoffoni C, Sack L. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Plant Cell Environ 2012, 35:857–871. doi:10.1111/j.1365-3040.2011.02458.x.
    • (2012) Plant Cell Environ , vol.35 , pp. 857-871
    • Guyot, G.1    Scoffoni, C.2    Sack, L.3
  • 93
    • 0001690757 scopus 로고
    • The biology of stomatal guard cells
    • Zeiger E. The biology of stomatal guard cells. Annu Rev Plant Physiol 1983, 34:441–475.
    • (1983) Annu Rev Plant Physiol , vol.34 , pp. 441-475
    • Zeiger, E.1
  • 94
    • 0031918673 scopus 로고    scopus 로고
    • The role of sucrose in guard cell osmoregulation
    • Talbott LD, Zeiger E. The role of sucrose in guard cell osmoregulation. J Exp Bot 1998, 49:329–337.
    • (1998) J Exp Bot , vol.49 , pp. 329-337
    • Talbott, L.D.1    Zeiger, E.2
  • 95
    • 25444459098 scopus 로고    scopus 로고
    • In the light of stomatal opening: new insights into the watergate
    • Roelfsema MRG, Hedrich R. In the light of stomatal opening: new insights into the watergate. New Phytol 2005, 167:665–691. doi:10.1111/j.1469-8137.2005.01460.x.
    • (2005) New Phytol , vol.167 , pp. 665-691
    • Roelfsema, M.R.G.1    Hedrich, R.2
  • 96
    • 0036181615 scopus 로고    scopus 로고
    • ABA-based chemical signalling: the co-ordination of responses to stress in plants
    • Wilkinson S, Davies WJ. ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 2002, 25:195–210.
    • (2002) Plant Cell Environ , vol.25 , pp. 195-210
    • Wilkinson, S.1    Davies, W.J.2
  • 97
    • 84879723837 scopus 로고    scopus 로고
    • Abscisic acid mediates a divergence in the drought response of two conifers
    • Brodribb TJ, McAdam SAM. Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiol 2013, 162:1370–1377.
    • (2013) Plant Physiol , vol.162 , pp. 1370-1377
    • Brodribb, T.J.1    McAdam, S.A.M.2
  • 98
    • 84870168686 scopus 로고    scopus 로고
    • Abscisic acid and stomatal closure: a hydraulic conductance conundrum?
    • Dodd IC. Abscisic acid and stomatal closure: a hydraulic conductance conundrum? New Phytol 2013, 197:6–8. doi:10.1111/nph.12052.
    • (2013) New Phytol , vol.197 , pp. 6-8
    • Dodd, I.C.1
  • 99
    • 0035109440 scopus 로고    scopus 로고
    • The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia Virginiana
    • Franks PJ, Farquhar GD. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia Virginiana. Plant Physiol 2001, 125:935–942.
    • (2001) Plant Physiol , vol.125 , pp. 935-942
    • Franks, P.J.1    Farquhar, G.D.2
  • 100
    • 79551633648 scopus 로고    scopus 로고
    • Passive origins of stomatal control in vascular plants
    • Brodribb TJ, McAdam SAM. Passive origins of stomatal control in vascular plants. Science 2011, 331:582–585. doi:10.1126/science.1197985.
    • (2011) Science , vol.331 , pp. 582-585
    • Brodribb, T.J.1    McAdam, S.A.M.2
  • 101
    • 0029136362 scopus 로고
    • Interpretation of an empirical model for stomatal conductance in terms of guard cell function
    • Dewar RC. Interpretation of an empirical model for stomatal conductance in terms of guard cell function. Plant Cell Environ 1995, 18:365–372.
    • (1995) Plant Cell Environ , vol.18 , pp. 365-372
    • Dewar, R.C.1
  • 102
    • 0036829923 scopus 로고    scopus 로고
    • The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function
    • Dewar RC. The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant Cell Environ 2002, 25:1383–1398.
    • (2002) Plant Cell Environ , vol.25 , pp. 1383-1398
    • Dewar, R.C.1
  • 103
    • 0036829383 scopus 로고    scopus 로고
    • A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate, and soil water stress
    • Gao Q, Xhao P, Zeng X, Cai X, Shen W. A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate, and soil water stress. Plant Cell Environ 2002, 25:1373–1381.
    • (2002) Plant Cell Environ , vol.25 , pp. 1373-1381
    • Gao, Q.1    Xhao, P.2    Zeng, X.3    Cai, X.4    Shen, W.5
  • 104
    • 8844220649 scopus 로고    scopus 로고
    • Stomatal control and hydraulic conductance, with special reference to tall trees
    • Franks PJ. Stomatal control and hydraulic conductance, with special reference to tall trees. Tree Physiol 2004, 24:865–878.
    • (2004) Tree Physiol , vol.24 , pp. 865-878
    • Franks, P.J.1
  • 105
    • 33845529942 scopus 로고    scopus 로고
    • Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance
    • Franks PJ, Drake PL, Froend RH. Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 2007, 30:19–30. doi:10.1111/j.1365-3040.2006.01600.x.
    • (2007) Plant Cell Environ , vol.30 , pp. 19-30
    • Franks, P.J.1    Drake, P.L.2    Froend, R.H.3
  • 106
    • 78650015842 scopus 로고    scopus 로고
    • A new, vapour-phase mechanism for stomatal responses to humidity and temperature
    • Peak D, Mott KA. A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant Cell Environ 2011, 34:162–178. doi:10.1111/j.1365-3040.2010.02234.x.
    • (2011) Plant Cell Environ , vol.34 , pp. 162-178
    • Peak, D.1    Mott, K.A.2
  • 107
    • 84870780847 scopus 로고    scopus 로고
    • A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution
    • de Boer HJ, Eppinga MB, Wassen MJ, Dekker SC. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nat Commun 2012, 3. doi:10.1038/ncomms2217.
    • (2012) Nat Commun , vol.3
    • de Boer, H.J.1    Eppinga, M.B.2    Wassen, M.J.3    Dekker, S.C.4
  • 108
    • 84876104839 scopus 로고    scopus 로고
    • Testing a vapour-phase model of stomatal responses to humidity
    • Mott KA, Peak D. Testing a vapour-phase model of stomatal responses to humidity. Plant Cell Environ 2013, 36:936–944.
    • (2013) Plant Cell Environ , vol.36 , pp. 936-944
    • Mott, K.A.1    Peak, D.2
  • 109
    • 0042850594 scopus 로고    scopus 로고
    • A coupled model of stomatal conductance, photosynthesis and transpiration
    • Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ 2003, 26:1097–1116.
    • (2003) Plant Cell Environ , vol.26 , pp. 1097-1116
    • Tuzet, A.1    Perrier, A.2    Leuning, R.3
  • 110
    • 77955235936 scopus 로고    scopus 로고
    • An overview of models of stomatal conductance at the leaf level
    • Damour G, Simonneau T, Cochard H, Urban L. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 2010, 33:1419–1438. doi:10.1111/j.1365-3040.2010.02181.x.
    • (2010) Plant Cell Environ , vol.33 , pp. 1419-1438
    • Damour, G.1    Simonneau, T.2    Cochard, H.3    Urban, L.4
  • 111
    • 84989051550 scopus 로고
    • Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants
    • Tardieu F, Davies WJ. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 1993, 16:341–349.
    • (1993) Plant Cell Environ , vol.16 , pp. 341-349
    • Tardieu, F.1    Davies, W.J.2
  • 112
    • 0031918674 scopus 로고    scopus 로고
    • Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours
    • Tardieu F, Simonneau T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 1998, 49:419–432.
    • (1998) J Exp Bot , vol.49 , pp. 419-432
    • Tardieu, F.1    Simonneau, T.2
  • 113
    • 84881310232 scopus 로고    scopus 로고
    • Modelling stomatal conductance in response to environmental factors
    • Buckley TN, Mott KA. Modelling stomatal conductance in response to environmental factors. Plant Cell Environ 2013, 36:1691–1699. doi:10.1111/pce.12140.
    • (2013) Plant Cell Environ , vol.36 , pp. 1691-1699
    • Buckley, T.N.1    Mott, K.A.2
  • 114
    • 0000036909 scopus 로고
    • A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions
    • Biggins J, ed., Netherlands, Martinus Nijho
    • Ball JT, Woodrow IE, Berry JA. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J, ed. Progress in Photosynthesis Research. Netherlands: Martinus Nijho; 1987, 221–224.
    • (1987) Progress in Photosynthesis Research , pp. 221-224
    • Ball, J.T.1    Woodrow, I.E.2    Berry, J.A.3
  • 115
    • 0000047690 scopus 로고
    • Modelling stomatal behaviour and photosynthesis of Eucalyptus Grandis
    • Leuning R. Modelling stomatal behaviour and photosynthesis of Eucalyptus Grandis. Aust J Plant Physiol 1990, 17:159–175.
    • (1990) Aust J Plant Physiol , vol.17 , pp. 159-175
    • Leuning, R.1
  • 116
    • 0029106892 scopus 로고
    • A critical appraisal of a combined stomatal- photosynthesis model for C3 plants
    • Leuning R. A critical appraisal of a combined stomatal- photosynthesis model for C3 plants. Plant Cell Environ 1995, 18:357–364.
    • (1995) Plant Cell Environ , vol.18 , pp. 357-364
    • Leuning, R.1
  • 118
    • 33847504748 scopus 로고
    • Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary-layer
    • Collatz GJ, Ball JT, Grivet C, Berry JA. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary-layer. Agr Forest Meteorol 1991, 54:107–136.
    • (1991) Agr Forest Meteorol , vol.54 , pp. 107-136
    • Collatz, G.J.1    Ball, J.T.2    Grivet, C.3    Berry, J.A.4
  • 119
    • 0000951907 scopus 로고
    • Coupled photosynthesis-stomatal conductance model for leaves of C4 plants
    • Collatz GJ, Ribas-Carbo M, Berry JA. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 1992, 19:519–538.
    • (1992) Aust J Plant Physiol , vol.19 , pp. 519-538
    • Collatz, G.J.1    Ribas-Carbo, M.2    Berry, J.A.3
  • 120
    • 0031859544 scopus 로고    scopus 로고
    • A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: model description and comparison with a multi-layered model
    • Wang YP, Leuning R. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: model description and comparison with a multi-layered model. Agr Forest Meteorol 1998, 91:89–111.
    • (1998) Agr Forest Meteorol , vol.91 , pp. 89-111
    • Wang, Y.P.1    Leuning, R.2
  • 126
    • 84887200699 scopus 로고    scopus 로고
    • Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture
    • Manzoni S, Vico G, Palmroth S, Porporato A, Katul G. Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture. Adv Water Resour 2013, 62:90–105.
    • (2013) Adv Water Resour , vol.62 , pp. 90-105
    • Manzoni, S.1    Vico, G.2    Palmroth, S.3    Porporato, A.4    Katul, G.5
  • 127
    • 84907589011 scopus 로고    scopus 로고
    • Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant–atmosphere continuum
    • Bonan GB, Williams M, Fisher RA, Oleson KW. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant–atmosphere continuum. Geosci Model Dev 2014, 7:2193–2222. doi:10.5194/gmd-7-2193-2014.
    • (2014) Geosci Model Dev , vol.7 , pp. 2193-2222
    • Bonan, G.B.1    Williams, M.2    Fisher, R.A.3    Oleson, K.W.4
  • 128
    • 79960847198 scopus 로고    scopus 로고
    • Towards an improved and more flexible representation of water stress in coupled photosynthesis–stomatal conductance models
    • Egea G, Verhoef A, Vidale PL. Towards an improved and more flexible representation of water stress in coupled photosynthesis–stomatal conductance models. Agr Forest Meteorol 2011, 151:1370–1384.
    • (2011) Agr Forest Meteorol , vol.151 , pp. 1370-1384
    • Egea, G.1    Verhoef, A.2    Vidale, P.L.3
  • 129
    • 84885182775 scopus 로고    scopus 로고
    • How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress
    • Zhou S, Duursma RA, Medlyn BE, Kelly JWG, Prentice IC. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agr Forest Meteorol 2013, 182-183:204–214.
    • (2013) Agr Forest Meteorol , vol.182-183 , pp. 204-214
    • Zhou, S.1    Duursma, R.A.2    Medlyn, B.E.3    Kelly, J.W.G.4    Prentice, I.C.5
  • 130
    • 79955523254 scopus 로고    scopus 로고
    • Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates
    • Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct Ecol 2011, 25:456–467. doi:10.1111/j.1365-2435.2010.01822.x.
    • (2011) Funct Ecol , vol.25 , pp. 456-467
    • Manzoni, S.1    Vico, G.2    Katul, G.3    Fay, P.A.4    Polley, W.5    Palmroth, S.6    Porporato, A.7
  • 132
    • 71049123673 scopus 로고    scopus 로고
    • Carbon flow in the rhizosphere: carbon trading at the soil-root interface
    • Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil 2009, 321:5–33. doi:10.1007/s11104-009-9925-0.
    • (2009) Plant and Soil , vol.321 , pp. 5-33
    • Jones, D.L.1    Nguyen, C.2    Finlay, R.D.3
  • 133
    • 67650997589 scopus 로고    scopus 로고
    • Rhizosphere: biophysics, bio-geochemistry and ecological relevance
    • Hinsinger P, Bengough AG, Vetterlein D, Young IM. Rhizosphere: biophysics, bio-geochemistry and ecological relevance. Plant and Soil 2009, 321:117–152. doi:10.1007/s11104-008-9885-9.
    • (2009) Plant and Soil , vol.321 , pp. 117-152
    • Hinsinger, P.1    Bengough, A.G.2    Vetterlein, D.3    Young, I.M.4
  • 135
    • 0030787529 scopus 로고    scopus 로고
    • A global budget for net root biomass, surface area, and nutrient contents
    • Jackson RB, Mooney HA, Schulze ED. A global budget for net root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 1997, 94:7362–7366.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 7362-7366
    • Jackson, R.B.1    Mooney, H.A.2    Schulze, E.D.3
  • 139
    • 84878350121 scopus 로고    scopus 로고
    • Changing directions: the atmosphere-plant-soil continuum
    • Goldsmith GR. Changing directions: the atmosphere-plant-soil continuum. New Phytol 2013, 2013:4–6. doi:10.1111/nph.12332.
    • (2013) New Phytol , vol.2013 , pp. 4-6
    • Goldsmith, G.R.1
  • 140
    • 84858745569 scopus 로고    scopus 로고
    • The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies
    • Neumann RB, Cardon ZG. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol 2012, 194:337–352. doi:10.1111/j.1469-8137.2012.04088.x.
    • (2012) New Phytol , vol.194 , pp. 337-352
    • Neumann, R.B.1    Cardon, Z.G.2
  • 141
    • 0002105931 scopus 로고
    • Relation of root distribution to water uptake and availability
    • Gardner WR. Relation of root distribution to water uptake and availability. Agron J 1964, 56:41–45.
    • (1964) Agron J , vol.56 , pp. 41-45
    • Gardner, W.R.1
  • 142
    • 0031860125 scopus 로고    scopus 로고
    • Limitation of plant water use by rhizosphere and xylem conductance: results from a model
    • Sperry JS, Adler FR, Campbell GS, Comstock JB. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 1998, 21:347–359.
    • (1998) Plant Cell Environ , vol.21 , pp. 347-359
    • Sperry, J.S.1    Adler, F.R.2    Campbell, G.S.3    Comstock, J.B.4
  • 143
    • 0034492268 scopus 로고    scopus 로고
    • Water uptake by plant roots: an integration of views
    • Steudle E. Water uptake by plant roots: an integration of views. Plant and Soil 2000, 226:45–56.
    • (2000) Plant and Soil , vol.226 , pp. 45-56
    • Steudle, E.1
  • 144
    • 0031888495 scopus 로고    scopus 로고
    • Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption - distribution of axial and radial conductances in maize
    • Doussan C, Vercambre G, Pages L. Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption - distribution of axial and radial conductances in maize. Ann Bot 1998, 81:225–232.
    • (1998) Ann Bot , vol.81 , pp. 225-232
    • Doussan, C.1    Vercambre, G.2    Pages, L.3
  • 145
    • 84865688958 scopus 로고    scopus 로고
    • A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach
    • Couvreur V, Vanderborght J, Javaux M. A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach. Hydrol Earth Syst Sci 2012, 16:2957–2971. doi:10.5194/hess-16-2957-2012.
    • (2012) Hydrol Earth Syst Sci , vol.16 , pp. 2957-2971
    • Couvreur, V.1    Vanderborght, J.2    Javaux, M.3
  • 146
    • 84887688464 scopus 로고    scopus 로고
    • Root water uptake: from 3D biophysical processes to macroscopic modeling approaches
    • Javaux M, Vanderborght J, Couvreur V, Vereecken H. Root water uptake: from 3D biophysical processes to macroscopic modeling approaches. Vadose Zone J 2013, 12:1–16. doi:10.2136/vzj2013.02.0042.
    • (2013) Vadose Zone J , vol.12 , pp. 1-16
    • Javaux, M.1    Vanderborght, J.2    Couvreur, V.3    Vereecken, H.4
  • 147
    • 84920258525 scopus 로고    scopus 로고
    • Role of aquaporin activity in regulating deep and shallow root hydraulic conductance during extreme drought
    • Johnson DM, Sherrard ME, Domec JC, Jackson RB. Role of aquaporin activity in regulating deep and shallow root hydraulic conductance during extreme drought. Trees 2014, 28:1323–1331. doi:10.1007/s00468-014-1036-8.
    • (2014) Trees , vol.28 , pp. 1323-1331
    • Johnson, D.M.1    Sherrard, M.E.2    Domec, J.C.3    Jackson, R.B.4
  • 148
    • 84938637177 scopus 로고    scopus 로고
    • Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield
    • Moshelion M, Halperin O, Wallach R, Oren R, Way DA. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant Cell Environ 2014, 38:1785–1793. doi:10.1111/pce.12410.
    • (2014) Plant Cell Environ , vol.38 , pp. 1785-1793
    • Moshelion, M.1    Halperin, O.2    Wallach, R.3    Oren, R.4    Way, D.A.5
  • 149
    • 0002976129 scopus 로고    scopus 로고
    • Dynamics of nutrient movement at the soil-root interface
    • New York, Marcel Dekker Inc
    • Jungk AO. Dynamics of nutrient movement at the soil-root interface. In: Plant Roots: The Hidden Half. New York: Marcel Dekker Inc.; 2002, 587–616.
    • (2002) Plant Roots: The Hidden Half , pp. 587-616
    • Jungk, A.O.1
  • 151
    • 84907727998 scopus 로고    scopus 로고
    • Plant nutrition: root transporters on the move
    • Zelazny E, Vert G. Plant nutrition: root transporters on the move. Plant Physiol 2014, 166:500–508. doi:10.1104/pp.114.244475.
    • (2014) Plant Physiol , vol.166 , pp. 500-508
    • Zelazny, E.1    Vert, G.2
  • 152
    • 84878794921 scopus 로고    scopus 로고
    • Temporal dynamics of soil moisture in a northern temperate mixed successional forest after a prescribed intermediate disturbance
    • He L, Ivanov VY, Bohrer G, Thomsen JE, Vogel CS, Moghaddam M. Temporal dynamics of soil moisture in a northern temperate mixed successional forest after a prescribed intermediate disturbance. Agr Forest Meteorol 2013, 180:22–33.
    • (2013) Agr Forest Meteorol , vol.180 , pp. 22-33
    • He, L.1    Ivanov, V.Y.2    Bohrer, G.3    Thomsen, J.E.4    Vogel, C.S.5    Moghaddam, M.6
  • 153
    • 77953690174 scopus 로고    scopus 로고
    • A dynamic root system growth model based on L-systems
    • Leitner D, Klepsch S, Bodner G, Schnepf A. A dynamic root system growth model based on L-systems. Plant and Soil 2010, 332:177–192.
    • (2010) Plant and Soil , vol.332 , pp. 177-192
    • Leitner, D.1    Klepsch, S.2    Bodner, G.3    Schnepf, A.4
  • 154
    • 0034794704 scopus 로고    scopus 로고
    • One-, two-, and three-dimensional root water uptake functions for transient modeling
    • Vrugt JA, vanWijk MT, Hopmans JW, Simunek J. One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour Res 2001, 37:2457–2470. doi:10.1029/2000WR000027.
    • (2001) Water Resour Res , vol.37 , pp. 2457-2470
    • Vrugt, J.A.1    vanWijk, M.T.2    Hopmans, J.W.3    Simunek, J.4
  • 155
    • 33746098161 scopus 로고    scopus 로고
    • Water uptake by plant roots: II—modelling of water transfer in the soil root system with explicit account of flow within the root system—comparison with experiments
    • Doussan C, Pierret A, Garrigues E, Pages L. Water uptake by plant roots: II—modelling of water transfer in the soil root system with explicit account of flow within the root system—comparison with experiments. Plant and Soil 2006, 283:99–117.
    • (2006) Plant and Soil , vol.283 , pp. 99-117
    • Doussan, C.1    Pierret, A.2    Garrigues, E.3    Pages, L.4
  • 156
    • 49949092513 scopus 로고    scopus 로고
    • Use of a three-dimensional detailed modeling approach for predicting root water uptake
    • Javaux M, Schroder T, Vanderborght J, Vereecken H. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 2008, 7:1079–1088.
    • (2008) Vadose Zone J , vol.7 , pp. 1079-1088
    • Javaux, M.1    Schroder, T.2    Vanderborght, J.3    Vereecken, H.4
  • 157
    • 77149146488 scopus 로고    scopus 로고
    • Implementing small scale processes at the soil-plant interface - the role of root architectures for calculating root water uptake profiles
    • Schneider CL, Attinger S, Delfs JO, Hildebrandt A. Implementing small scale processes at the soil-plant interface - the role of root architectures for calculating root water uptake profiles. Hydrol Earth Syst Sci 2010, 14:279–289. doi:10.5194/hess-14-279-2010.
    • (2010) Hydrol Earth Syst Sci , vol.14 , pp. 279-289
    • Schneider, C.L.1    Attinger, S.2    Delfs, J.O.3    Hildebrandt, A.4
  • 160
    • 84895070352 scopus 로고    scopus 로고
    • Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation
    • Postma JA, Schurr U, Fiorani F. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation. Biotechnol Adv 2014, 32:53–65.
    • (2014) Biotechnol Adv , vol.32 , pp. 53-65
    • Postma, J.A.1    Schurr, U.2    Fiorani, F.3
  • 161
    • 84911874214 scopus 로고    scopus 로고
    • Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations
    • Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD. Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations. New Phytol 2015, 205:59–78. doi:10.1111/nph.1303.
    • (2015) New Phytol , vol.205 , pp. 59-78
    • Warren, J.M.1    Hanson, P.J.2    Iversen, C.M.3    Kumar, J.4    Walker, A.P.5    Wullschleger, S.D.6
  • 162
    • 0016993565 scopus 로고
    • Simulation of field water uptake by plants using a soil water dependent root extraction function
    • Feddes RA, Kowalik P, Kolinska-Malinka K, Zaradny H. Simulation of field water uptake by plants using a soil water dependent root extraction function. J Hydrol 1976, 31:13–26.
    • (1976) J Hydrol , vol.31 , pp. 13-26
    • Feddes, R.A.1    Kowalik, P.2    Kolinska-Malinka, K.3    Zaradny, H.4
  • 164
    • 43049088813 scopus 로고    scopus 로고
    • Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks
    • Ivanov VY, Bras RL, Vivoni ER. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resour Res 2008, 44:W03429. doi:10.1029/2006WR005588.
    • (2008) Water Resour Res , vol.44 , pp. W03429
    • Ivanov, V.Y.1    Bras, R.L.2    Vivoni, E.R.3
  • 165
    • 84867720059 scopus 로고    scopus 로고
    • A mechanistic ecohydrological model to investigate complex interactions in cold and warm water-controlled environments. 1. Theoretical framework and plot-scale analysis
    • Fatichi S, Ivanov VY, Caporali E. A mechanistic ecohydrological model to investigate complex interactions in cold and warm water-controlled environments. 1. Theoretical framework and plot-scale analysis. J Adv Model Earth Syst 2012, 4:M05002.
    • (2012) J Adv Model Earth Syst , vol.4 , pp. M05002
    • Fatichi, S.1    Ivanov, V.Y.2    Caporali, E.3
  • 166
    • 3242795040 scopus 로고    scopus 로고
    • Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part I: upscaling from hourly to daily level
    • Daly E, Porporato A, Rodriguez-Iturbe I. Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part I: upscaling from hourly to daily level. J Hydrometeorol 2004, 5:546–558.
    • (2004) J Hydrometeorol , vol.5 , pp. 546-558
    • Daly, E.1    Porporato, A.2    Rodriguez-Iturbe, I.3
  • 167
    • 46549084954 scopus 로고    scopus 로고
    • ANAFORE: a stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees
    • Deckmyn G, Verbeeck H, de Beeck MO, Vansteenkiste D, Steppe K, Ceulemans R. ANAFORE: a stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecol Model 2008, 215:345–368.
    • (2008) Ecol Model , vol.215 , pp. 345-368
    • Deckmyn, G.1    Verbeeck, H.2    de Beeck, M.O.3    Vansteenkiste, D.4    Steppe, K.5    Ceulemans, R.6
  • 168
    • 0001213773 scopus 로고
    • Resistance to water flow in soil and plant. I. Soil resistance in relation to amounts of root: theoretical estimate
    • Newman EI. Resistance to water flow in soil and plant. I. Soil resistance in relation to amounts of root: theoretical estimate. J Appl Ecol 1969, 6:1–12.
    • (1969) J Appl Ecol , vol.6 , pp. 1-12
    • Newman, E.I.1
  • 170
    • 0030777785 scopus 로고    scopus 로고
    • The cohesion-tension theory of sap ascent: current controversies
    • Tyree MT. The cohesion-tension theory of sap ascent: current controversies. J Exp Bot 1997, 48:1753–1765.
    • (1997) J Exp Bot , vol.48 , pp. 1753-1765
    • Tyree, M.T.1
  • 172
    • 84891844820 scopus 로고    scopus 로고
    • Phloem transport: a review of mechanisms and controls
    • De Schepper V, De Swaef T, Bauweraerts I, Steppe K. Phloem transport: a review of mechanisms and controls. J Exp Bot 2013, 64:4839–4850. doi:10.1093/jxb/ert302.
    • (2013) J Exp Bot , vol.64 , pp. 4839-4850
    • De Schepper, V.1    De Swaef, T.2    Bauweraerts, I.3    Steppe, K.4
  • 173
    • 84893042296 scopus 로고    scopus 로고
    • Phloem transport in trees
    • Ryan MG, Asao S. Phloem transport in trees. Tree Physiol 2014, 34:1–4. doi:10.1093/treephys/tpt123.
    • (2014) Tree Physiol , vol.34 , pp. 1-4
    • Ryan, M.G.1    Asao, S.2
  • 174
    • 0033827101 scopus 로고    scopus 로고
    • Vulnerability to xylem cavitation and the distribution of Sonoran vegetation
    • Pockman WT, Sperry JS. Vulnerability to xylem cavitation and the distribution of Sonoran vegetation. Am J Bot 2000, 87:1287–1299.
    • (2000) Am J Bot , vol.87 , pp. 1287-1299
    • Pockman, W.T.1    Sperry, J.S.2
  • 175
    • 0036940426 scopus 로고    scopus 로고
    • Xylem hydraulic properties of roots and stems of nine mediterranean woody species
    • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J. Xylem hydraulic properties of roots and stems of nine mediterranean woody species. Oecologia 2002, 133:19–29.
    • (2002) Oecologia , vol.133 , pp. 19-29
    • Martínez-Vilalta, J.1    Prat, E.2    Oliveras, I.3    Piñol, J.4
  • 176
    • 30444440740 scopus 로고    scopus 로고
    • Interspecific variation in xylem vulnerability to cavitation among tropical tree and shrub species
    • Lopez OR, Kursar TA, Cochard H, Tyree MT. Interspecific variation in xylem vulnerability to cavitation among tropical tree and shrub species. Tree Physiol 2005, 25:1553–1562.
    • (2005) Tree Physiol , vol.25 , pp. 1553-1562
    • Lopez, O.R.1    Kursar, T.A.2    Cochard, H.3    Tyree, M.T.4
  • 177
    • 4143138791 scopus 로고    scopus 로고
    • Adaptive variation in the vulnerability of woody plants to xylem cavitation
    • Maherali H, Pockman WT, Jackson RB. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 2004, 85:2184–2199.
    • (2004) Ecology , vol.85 , pp. 2184-2199
    • Maherali, H.1    Pockman, W.T.2    Jackson, R.B.3
  • 178
    • 70349317264 scopus 로고    scopus 로고
    • Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance
    • Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KM, Woodruff DR. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 2009, 23:922–930. doi:10.1111/j.1365-2435.2009.01577.x.
    • (2009) Funct Ecol , vol.23 , pp. 922-930
    • Meinzer, F.C.1    Johnson, D.M.2    Lachenbruch, B.3    McCulloh, K.M.4    Woodruff, D.R.5
  • 179
    • 0035016485 scopus 로고    scopus 로고
    • Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees
    • Domec JC, Gartner BL. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 2001, 15:204–214.
    • (2001) Trees , vol.15 , pp. 204-214
    • Domec, J.C.1    Gartner, B.L.2
  • 180
    • 77954818513 scopus 로고    scopus 로고
    • Comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods
    • Steppe K, De Pauw DJW, Doody TM, Teskey RO. Comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agr Forest Meteorol 2010, 150:1046–1056.
    • (2010) Agr Forest Meteorol , vol.150 , pp. 1046-1056
    • Steppe, K.1    De Pauw, D.J.W.2    Doody, T.M.3    Teskey, R.O.4
  • 181
    • 29244471697 scopus 로고    scopus 로고
    • Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis
    • Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E. Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees Struct Funct 2006, 20:67–78.
    • (2006) Trees Struct Funct , vol.20 , pp. 67-78
    • Hölttä, T.1    Vesala, T.2    Sevanto, S.3    Perämäki, M.4    Nikinmaa, E.5
  • 182
    • 0037458344 scopus 로고    scopus 로고
    • Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport
    • Thompson MV, Holbrook NM. Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. J Theor Biol 2003, 220:419–455.
    • (2003) J Theor Biol , vol.220 , pp. 419-455
    • Thompson, M.V.1    Holbrook, N.M.2
  • 183
    • 59049087057 scopus 로고    scopus 로고
    • Differences in the way potassium chloride and sucrose solutions effect osmotic potential of significance to stomata aperture modulation
    • Cochrane TT, Cochrane TA. Differences in the way potassium chloride and sucrose solutions effect osmotic potential of significance to stomata aperture modulation. Plant Physiol Biochem 2009, 47:205–209.
    • (2009) Plant Physiol Biochem , vol.47 , pp. 205-209
    • Cochrane, T.T.1    Cochrane, T.A.2
  • 185
    • 84862997308 scopus 로고    scopus 로고
    • Size-dependent changes in biophysical control of tree growth: the role of turgor
    • Dordrecht, Netherlands, Springer
    • Woodruff DR, Meinzer FC. Size-dependent changes in biophysical control of tree growth: the role of turgor. In: Size- and Age-Related Changes in Tree Structure and Function. Dordrecht, Netherlands: Springer; 2011, 363–384.
    • (2011) Size- and Age-Related Changes in Tree Structure and Function , pp. 363-384
    • Woodruff, D.R.1    Meinzer, F.C.2
  • 186
    • 77957734212 scopus 로고    scopus 로고
    • The puzzle of phloem pressure
    • Turgeon R. The puzzle of phloem pressure. Plant Physiol 2010, 154:578–581.
    • (2010) Plant Physiol , vol.154 , pp. 578-581
    • Turgeon, R.1
  • 187
    • 84877591292 scopus 로고    scopus 로고
    • Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal
    • Mencuccini M, Hölttä T, Sevanto S, Nikinmaa E. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytol 2013, 198:1143–1154.
    • (2013) New Phytol , vol.198 , pp. 1143-1154
    • Mencuccini, M.1    Hölttä, T.2    Sevanto, S.3    Nikinmaa, E.4
  • 188
    • 67349151747 scopus 로고    scopus 로고
    • Linking phloem function to structure: analysis with a coupled xylem-phloem transport model
    • Hölttä T, Mencuccini M, Nikinmaa E. Linking phloem function to structure: analysis with a coupled xylem-phloem transport model. J Theor Biol 2009, 259:325–337.
    • (2009) J Theor Biol , vol.259 , pp. 325-337
    • Hölttä, T.1    Mencuccini, M.2    Nikinmaa, E.3
  • 189
    • 79952530008 scopus 로고    scopus 로고
    • Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation
    • Sevanto S, Hölttä T, Holbrook NM. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant Cell Environ 2011, 34:690–703. doi:10.1111/j.1365-3040.2011.02275.x.
    • (2011) Plant Cell Environ , vol.34 , pp. 690-703
    • Sevanto, S.1    Hölttä, T.2    Holbrook, N.M.3
  • 190
    • 0041848511 scopus 로고    scopus 로고
    • Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees
    • Meinzer FC, James SA, Goldstein G, Woodruff D. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant Cell Environ 2003, 2003:1147–1155.
    • (2003) Plant Cell Environ , vol.2003 , pp. 1147-1155
    • Meinzer, F.C.1    James, S.A.2    Goldstein, G.3    Woodruff, D.4
  • 192
    • 79952499916 scopus 로고    scopus 로고
    • Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance
    • Barnard DM, Meinzer FC, Lachenbruch B, McCulloh KA, Johnson DM, Woodruff DR. Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance. Plant Cell Environ 2011, 34:643–654.
    • (2011) Plant Cell Environ , vol.34 , pp. 643-654
    • Barnard, D.M.1    Meinzer, F.C.2    Lachenbruch, B.3    McCulloh, K.A.4    Johnson, D.M.5    Woodruff, D.R.6
  • 194
    • 33947575782 scopus 로고    scopus 로고
    • Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth douglas-fir trees
    • Cermák J, Kucera J, Bauerle WL, Phillips N, Hinckely TM. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth douglas-fir trees. Tree Physiol 2007, 27:181–198.
    • (2007) Tree Physiol , vol.27 , pp. 181-198
    • Cermák, J.1    Kucera, J.2    Bauerle, W.L.3    Phillips, N.4    Hinckely, T.M.5
  • 196
    • 0036895319 scopus 로고    scopus 로고
    • How do water transport and storage differ in coniferous earlywood and latewood?
    • Domec JC, Gartner BL. How do water transport and storage differ in coniferous earlywood and latewood? J Exp Bot 2002, 53:2369–2379.
    • (2002) J Exp Bot , vol.53 , pp. 2369-2379
    • Domec, J.C.1    Gartner, B.L.2
  • 197
    • 0037351704 scopus 로고    scopus 로고
    • Relationship between growth rates and xylem hydraulic characteristics in young, mature and old-growth ponderosa pine trees
    • Domec JC, Gartner BL. Relationship between growth rates and xylem hydraulic characteristics in young, mature and old-growth ponderosa pine trees. Plant Cell Environ 2003, 26:471–483.
    • (2003) Plant Cell Environ , vol.26 , pp. 471-483
    • Domec, J.C.1    Gartner, B.L.2
  • 199
    • 0034826699 scopus 로고    scopus 로고
    • Link between diurnal stem radius changes and tree water relations
    • Zweifel R, Item H, Häsler R. Link between diurnal stem radius changes and tree water relations. Tree Physiol 2001, 21:869–887.
    • (2001) Tree Physiol , vol.21 , pp. 869-887
    • Zweifel, R.1    Item, H.2    Häsler, R.3
  • 200
    • 33645746146 scopus 로고    scopus 로고
    • Intra-annual radial growth and water relations of trees: implications towards a growth mechanism
    • Zweifel R, Zimmermann L, Zeugin F, Newbery DM. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 2006, 57:1445–1459. doi:10.1093/jxb/erj125.
    • (2006) J Exp Bot , vol.57 , pp. 1445-1459
    • Zweifel, R.1    Zimmermann, L.2    Zeugin, F.3    Newbery, D.M.4
  • 201
    • 74449089739 scopus 로고    scopus 로고
    • Irrigation scheduling from stem diameter variations: a review
    • Fernández JE, Cuevas MV. Irrigation scheduling from stem diameter variations: a review. Agr Forest Meteorol 2010, 150:135–151.
    • (2010) Agr Forest Meteorol , vol.150 , pp. 135-151
    • Fernández, J.E.1    Cuevas, M.V.2
  • 202
    • 84870214751 scopus 로고    scopus 로고
    • Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient
    • King G, Fonti P, Nievergelt D, Buntgen U, Frank D. Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agr Forest Meteorol 2013, 2013:36–46.
    • (2013) Agr Forest Meteorol , vol.2013 , pp. 36-46
    • King, G.1    Fonti, P.2    Nievergelt, D.3    Buntgen, U.4    Frank, D.5
  • 203
    • 84887862617 scopus 로고    scopus 로고
    • V. Horna, and C. Leuschner. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits
    • Köcher P. V. Horna, and C. Leuschner. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiol 2013, 33:817–832. doi:10.1093/treephys/tpt055.
    • (2013) Tree Physiol , vol.33 , pp. 817-832
    • Köcher, P.1
  • 204
    • 0242500814 scopus 로고    scopus 로고
    • Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model
    • Katul GG, Leuning R, Oren R. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ 2003, 26:339–350.
    • (2003) Plant Cell Environ , vol.26 , pp. 339-350
    • Katul, G.G.1    Leuning, R.2    Oren, R.3
  • 205
    • 78249234185 scopus 로고    scopus 로고
    • Competition for light between individual trees lowers reference canopy stomatal conductance: results from a model
    • Loranty MM, Mackay DS, Ewers BE, Traver E, Kruger EL. Competition for light between individual trees lowers reference canopy stomatal conductance: results from a model. J Geophys Res Biogeosci 2010, 115:G04019. doi:10.1029/2010JG001377.
    • (2010) J Geophys Res Biogeosci , vol.115 , pp. G04019
    • Loranty, M.M.1    Mackay, D.S.2    Ewers, B.E.3    Traver, E.4    Kruger, E.L.5
  • 206
    • 84941993556 scopus 로고    scopus 로고
    • Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought
    • Mackay DS, Roberts DE, Ewers BE, Sperry JS, McDowell NG, Pockman WT. Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought. Water Resour Res 2015, 51:6156–6176. doi:10.1002/2015WR017244.
    • (2015) Water Resour Res , vol.51 , pp. 6156-6176
    • Mackay, D.S.1    Roberts, D.E.2    Ewers, B.E.3    Sperry, J.S.4    McDowell, N.G.5    Pockman, W.T.6
  • 207
    • 29944435702 scopus 로고    scopus 로고
    • Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: a new representation of tree hydrodynamics
    • Bohrer G, Mourad H, Laursen TA, Drewry D, Avissar R, Poggi D, Oren R, Katul GG. Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: a new representation of tree hydrodynamics. Water Resour Res 2005, 41:W11404. doi:10.1029/2005WR004181.
    • (2005) Water Resour Res , vol.41 , pp. W11404
    • Bohrer, G.1    Mourad, H.2    Laursen, T.A.3    Drewry, D.4    Avissar, R.5    Poggi, D.6    Oren, R.7    Katul, G.G.8
  • 208
    • 79952618140 scopus 로고    scopus 로고
    • A one-dimensional model of water flow in soil-plant systems based on plant architecture
    • Janott M, Gayler S, Gessler A, Javaux M, Klier C, Priesack E. A one-dimensional model of water flow in soil-plant systems based on plant architecture. Plant and Soil 2011, 341:233–256. doi:10.1007/s11104-010-0639-0.
    • (2011) Plant and Soil , vol.341 , pp. 233-256
    • Janott, M.1    Gayler, S.2    Gessler, A.3    Javaux, M.4    Klier, C.5    Priesack, E.6
  • 209
    • 84859467775 scopus 로고    scopus 로고
    • Individual tree branch-level simulation of light attenuation and water flow of three F. sylvatica L. trees
    • Bittner S, Legner N, Beese F, Priesack E. Individual tree branch-level simulation of light attenuation and water flow of three F. sylvatica L. trees. J Geophys Res 2012, 117:G01037. doi:10.1029/2011JG001780.
    • (2012) J Geophys Res , vol.117 , pp. G01037
    • Bittner, S.1    Legner, N.2    Beese, F.3    Priesack, E.4
  • 211
    • 30344462104 scopus 로고    scopus 로고
    • The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate
    • Chuang YL, Oren R, Bertozzi AL, Phillips N, Katul GG. The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate. Ecol Model 2006, 191:447–468.
    • (2006) Ecol Model , vol.191 , pp. 447-468
    • Chuang, Y.L.1    Oren, R.2    Bertozzi, A.L.3    Phillips, N.4    Katul, G.G.5
  • 212
    • 57249108251 scopus 로고    scopus 로고
    • Capacitive effect of cavitation in xylem conduits: results from a dynamic model
    • Hölttä T, Cochard H, Nikinmaa E, Mencuccini M. Capacitive effect of cavitation in xylem conduits: results from a dynamic model. Plant Cell Environ 2009, 32:10–21.
    • (2009) Plant Cell Environ , vol.32 , pp. 10-21
    • Hölttä, T.1    Cochard, H.2    Nikinmaa, E.3    Mencuccini, M.4
  • 213
    • 84910678701 scopus 로고    scopus 로고
    • Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown
    • Nikinmaa E, Sievänen R, Hölttä T. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown. Ann Bot 2014, 114:653–666.
    • (2014) Ann Bot , vol.114 , pp. 653-666
    • Nikinmaa, E.1    Sievänen, R.2    Hölttä, T.3
  • 214
    • 84925247980 scopus 로고    scopus 로고
    • CASSIA - a dynamic model for predicting intra-annual sink demand and interannual growth variation in scots pine
    • Schiestl-Aalto P, Kulmala L, Mäkinen H, Nikinmaa E, Mäkelä A. CASSIA - a dynamic model for predicting intra-annual sink demand and interannual growth variation in scots pine. New Phytol 2015, 206:647–659. doi:10.1111/nph.13275.
    • (2015) New Phytol , vol.206 , pp. 647-659
    • Schiestl-Aalto, P.1    Kulmala, L.2    Mäkinen, H.3    Nikinmaa, E.4    Mäkelä, A.5
  • 215
    • 33645468885 scopus 로고    scopus 로고
    • A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth
    • Steppe K, De Pauw DJW, Lemeur R, Vanrolleghem PA. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol 2005, 26:257–273.
    • (2005) Tree Physiol , vol.26 , pp. 257-273
    • Steppe, K.1    De Pauw, D.J.W.2    Lemeur, R.3    Vanrolleghem, P.A.4
  • 216
    • 38149119598 scopus 로고    scopus 로고
    • Identifiability analysis and improvement of a tree water flow and storage model
    • De Pauw DJW, Steppe K, De Baets B. Identifiability analysis and improvement of a tree water flow and storage model. Math Biosci 2008, 211:314–332.
    • (2008) Math Biosci , vol.211 , pp. 314-332
    • De Pauw, D.J.W.1    Steppe, K.2    De Baets, B.3
  • 217
    • 77952983378 scopus 로고    scopus 로고
    • Development and verification of a water and sugar transport model using measured stem diameter variations
    • De Schepper V, Steppe K. Development and verification of a water and sugar transport model using measured stem diameter variations. J Exp Bot 2010, 61:2083–2099. doi:10.1093/jxb/erq018.
    • (2010) J Exp Bot , vol.61 , pp. 2083-2099
    • De Schepper, V.1    Steppe, K.2
  • 218
    • 80054702591 scopus 로고    scopus 로고
    • Tree girdling responses simulated by a water and carbon transport model
    • De Schepper V, Steppe K. Tree girdling responses simulated by a water and carbon transport model. Ann Bot 2011, 108:1147–1154. doi:10.1093/aob/mcr068.
    • (2011) Ann Bot , vol.108 , pp. 1147-1154
    • De Schepper, V.1    Steppe, K.2
  • 219
    • 0036352205 scopus 로고    scopus 로고
    • Generalized Münch coupling between sugar and water fluxes for modelling carbon allocation as affected by water status
    • Daudet FA, Lacointe A, Gaudillere JP, Cruiziat P. Generalized Münch coupling between sugar and water fluxes for modelling carbon allocation as affected by water status. J Theor Biol 2002, 214:481–498. doi:10.1006/jtbi.2001.2473.
    • (2002) J Theor Biol , vol.214 , pp. 481-498
    • Daudet, F.A.1    Lacointe, A.2    Gaudillere, J.P.3    Cruiziat, P.4
  • 221
    • 0028813494 scopus 로고
    • Osmotic adjustment: effect of water stress on carbohydrates in leaves, stems and roots of apple
    • Wang Z, Quebedeaux B, Stutte GW. Osmotic adjustment: effect of water stress on carbohydrates in leaves, stems and roots of apple. Aust J Plant Physiol 1995, 22:747–754.
    • (1995) Aust J Plant Physiol , vol.22 , pp. 747-754
    • Wang, Z.1    Quebedeaux, B.2    Stutte, G.W.3
  • 222
    • 84859432863 scopus 로고    scopus 로고
    • The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis
    • Bartlett MK, Scoffoni C, Sack L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 2012, 15:393–405.
    • (2012) Ecol Lett , vol.15 , pp. 393-405
    • Bartlett, M.K.1    Scoffoni, C.2    Sack, L.3
  • 223
    • 27644525170 scopus 로고    scopus 로고
    • Growth of the plant cell wall
    • Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol 2005, 6:850–861. doi:10.1038/nrm1746.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 850-861
    • Cosgrove, D.J.1
  • 225
    • 0013776862 scopus 로고
    • An analysis of irreversible plant cell elongation
    • Lockhart JA. An analysis of irreversible plant cell elongation. J Theor Biol 1965, 8:264–275.
    • (1965) J Theor Biol , vol.8 , pp. 264-275
    • Lockhart, J.A.1
  • 226
    • 0023039778 scopus 로고
    • Biophysical control of plant cell growth
    • Cosgrove D. Biophysical control of plant cell growth. Annu Rev Plant Physiol 1986, 37:377–405.
    • (1986) Annu Rev Plant Physiol , vol.37 , pp. 377-405
    • Cosgrove, D.1
  • 227
    • 4644262454 scopus 로고    scopus 로고
    • Hydraulics of plant growth
    • Boyer JS, Silk WK. Hydraulics of plant growth. Funct Plant Biol 2004, 2004:761–773.
    • (2004) Funct Plant Biol , vol.2004 , pp. 761-773
    • Boyer, J.S.1    Silk, W.K.2
  • 228
    • 0000694408 scopus 로고
    • Plant responses to water stress
    • Hsiao TC. Plant responses to water stress. Annu Rev Plant Physiol 1973, 24:519–570.
    • (1973) Annu Rev Plant Physiol , vol.24 , pp. 519-570
    • Hsiao, T.C.1
  • 229
    • 79952833100 scopus 로고    scopus 로고
    • Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs
    • Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 2011, 62:1715–1729. doi:10.1093/jxb/erq438.
    • (2011) J Exp Bot , vol.62 , pp. 1715-1729
    • Muller, B.1    Pantin, F.2    Génard, M.3    Turc, O.4    Freixes, S.5    Piques, M.6    Gibon, Y.7
  • 230
    • 79957683059 scopus 로고    scopus 로고
    • Water deficit and growth. Co-ordinating processes without an orchestrator?
    • Tardieu F, Granier C, Muller B. Water deficit and growth. Co-ordinating processes without an orchestrator? Curr Opin Plant Biol 2011, 14:283–289.
    • (2011) Curr Opin Plant Biol , vol.14 , pp. 283-289
    • Tardieu, F.1    Granier, C.2    Muller, B.3
  • 231
    • 0033960077 scopus 로고    scopus 로고
    • Modelling plant respiration: some guiding principles
    • Cannell MGR, Thornley JHM. Modelling plant respiration: some guiding principles. Ann Bot 2000, 85:45–54.
    • (2000) Ann Bot , vol.85 , pp. 45-54
    • Cannell, M.G.R.1    Thornley, J.H.M.2
  • 232
    • 79952306080 scopus 로고    scopus 로고
    • Mechanisms linking drought, hydraulics, carbon metabolism, and mortality
    • McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and mortality. Plant Physiol 2011, 155:1051–1059.
    • (2011) Plant Physiol , vol.155 , pp. 1051-1059
    • McDowell, N.G.1
  • 233
    • 41649107261 scopus 로고    scopus 로고
    • Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment
    • Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc B 2008, 363:1839–1848. doi:10.1098/rstb.2007.0031.
    • (2008) Philos Trans R Soc B , vol.363 , pp. 1839-1848
    • Brando, P.M.1    Nepstad, D.C.2    Davidson, E.A.3    Trumbore, S.E.4    Ray, D.5    Camargo, P.6
  • 235
    • 34249867038 scopus 로고    scopus 로고
    • Soil moisture–atmosphere interactions during the 2003 European summer heat wave
    • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C. Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Climate 2007, 20:5081–5099.
    • (2007) J Climate , vol.20 , pp. 5081-5099
    • Fischer, E.M.1    Seneviratne, S.I.2    Vidale, P.L.3    Lüthi, D.4    Schär, C.5
  • 236
    • 59849109509 scopus 로고    scopus 로고
    • Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes
    • Lawlor DW, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 2009, 103:561–579. doi:10.1093/aob/mcn244.
    • (2009) Ann Bot , vol.103 , pp. 561-579
    • Lawlor, D.W.1    Tezara, W.2
  • 237
    • 84936802357 scopus 로고    scopus 로고
    • Global analysis of plasticity in turgor loss point, a key drought tolerance trait
    • Bartlett MK, Zhang Y, Kreidler N, Sun S, Ardy R, Cao K, Sack L. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol Lett 2014, 17:1580–1590. doi:10.1111/ele.12374.
    • (2014) Ecol Lett , vol.17 , pp. 1580-1590
    • Bartlett, M.K.1    Zhang, Y.2    Kreidler, N.3    Sun, S.4    Ardy, R.5    Cao, K.6    Sack, L.7
  • 238
    • 84884418747 scopus 로고    scopus 로고
    • Thirst beats hunger - declining hydration during drought prevents carbon starvation in Norway spruce saplings
    • Hartmann H, Ziegler W, Kolle O, Trumbore S. Thirst beats hunger - declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol 2013, 200:340–349. doi:10.1111/nph.12331.
    • (2013) New Phytol , vol.200 , pp. 340-349
    • Hartmann, H.1    Ziegler, W.2    Kolle, O.3    Trumbore, S.4
  • 240
    • 84884412065 scopus 로고    scopus 로고
    • Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine
    • Poyatos R, Aguadé D, Galiano L, Mencuccini M, Martínez-Vilalta J. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol 2013, 220:388–401. doi:10.1111/nph.12278.
    • (2013) New Phytol , vol.220 , pp. 388-401
    • Poyatos, R.1    Aguadé, D.2    Galiano, L.3    Mencuccini, M.4    Martínez-Vilalta, J.5
  • 243
    • 84939614323 scopus 로고    scopus 로고
    • Contrasting leaf phonological strategies optimize carbon gain under droughts of different duration
    • Manzoni S, Vico G, Thompson S, Beyer F, Weih M. Contrasting leaf phonological strategies optimize carbon gain under droughts of different duration. Adv Water Resour 2015, 84:37–51. doi:10.1016/j.advwatres.2015.08.001.
    • (2015) Adv Water Resour , vol.84 , pp. 37-51
    • Manzoni, S.1    Vico, G.2    Thompson, S.3    Beyer, F.4    Weih, M.5
  • 244
    • 43449128081 scopus 로고    scopus 로고
    • Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?
    • McDowell N, Pockman W, Allen C, Breshears DD, Cobb N, Kolb T, Sperry J, West A, Williams D, Yepez E. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 2008, 178:719–739. doi:10.1111/j.1469-8137D2008D02436.x.
    • (2008) New Phytol , vol.178 , pp. 719-739
    • McDowell, N.1    Pockman, W.2    Allen, C.3    Breshears, D.D.4    Cobb, N.5    Kolb, T.6    Sperry, J.7    West, A.8    Williams, D.9    Yepez, E.10
  • 246
    • 84897039950 scopus 로고    scopus 로고
    • How do trees die? A test of the hydraulic failure and carbon starvation hypotheses
    • Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 2014, 37:153–161. doi:10.1111/pce.1214.
    • (2014) Plant Cell Environ , vol.37 , pp. 153-161
    • Sevanto, S.1    McDowell, N.G.2    Dickman, L.T.3    Pangle, R.4    Pockman, W.T.5
  • 252
    • 84885883078 scopus 로고    scopus 로고
    • The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off
    • 266
    • Breshears DD, Adams HD, Eamus D, McDowell NG, Law DJ, Will RE, Williams AP, Zou CB. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front Plant Sci 2013, 4:266. doi:10.3389/fpls.2013.00266.
    • (2013) Front Plant Sci , vol.4
    • Breshears, D.D.1    Adams, H.D.2    Eamus, D.3    McDowell, N.G.4    Law, D.J.5    Will, R.E.6    Williams, A.P.7    Zou, C.B.8
  • 254
    • 84929860522 scopus 로고    scopus 로고
    • Drought-related tree mortality: addressing the gaps in understanding and prediction
    • Meir P, Mencuccini M, Dewar RC. Drought-related tree mortality: addressing the gaps in understanding and prediction. New Phytol 2015, 207:28–33.
    • (2015) New Phytol , vol.207 , pp. 28-33
    • Meir, P.1    Mencuccini, M.2    Dewar, R.C.3
  • 255
    • 84907901399 scopus 로고    scopus 로고
    • Impact of mountain pine beetle induced mortality on forest carbon and water fluxes
    • Reed DE, Ewers BE, Pendall E. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes. Environ Res Lett 2014, 9:105004. doi:10.1088/1748-9326/9/10/105004.
    • (2014) Environ Res Lett , vol.9 , pp. 105004
    • Reed, D.E.1    Ewers, B.E.2    Pendall, E.3
  • 257
    • 45849092625 scopus 로고    scopus 로고
    • Forests and climate change: forcings, feedbacks, and the climate benefits of forests
    • Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 2008, 320:1444–1449.
    • (2008) Science , vol.320 , pp. 1444-1449
    • Bonan, G.B.1
  • 258
    • 85097183513 scopus 로고    scopus 로고
    • Crop evapotranspiration-Guidelines for computing crop water requirements, volume 300 of FAO Irrigation and drainage paper. FAO – Food and Agriculture Organization of the United Nations
    • Allen RG, Pereira LS, Raes D, and Smith M. Crop evapotranspiration-Guidelines for computing crop water requirements, volume 300 of FAO Irrigation and drainage paper. FAO – Food and Agriculture Organization of the United Nations, 1998.
    • (1998)
    • Allen, R.G.1    Pereira, L.S.2    Raes, D.3    Smith, M.4
  • 259
    • 78649347108 scopus 로고    scopus 로고
    • Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway
    • Drewry DT, Kumar P, Long S, Bernacchi C, Liang XZ, Sivapalan M. Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. J Geophys Res 2010, 115(G04022):2010. doi:10.1029/2010JG001340.
    • (2010) J Geophys Res , vol.115 , Issue.G04022 , pp. 2010
    • Drewry, D.T.1    Kumar, P.2    Long, S.3    Bernacchi, C.4    Liang, X.Z.5    Sivapalan, M.6
  • 260
    • 33646557059 scopus 로고    scopus 로고
    • RHESSys: Regional Hydro-Ecologic Simulation System-an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling
    • Tague CL, Band LE. RHESSys: Regional Hydro-Ecologic Simulation System-an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact 2004, 8:1–42.
    • (2004) Earth Interact , vol.8 , pp. 1-42
    • Tague, C.L.1    Band, L.E.2
  • 261
    • 84894286295 scopus 로고    scopus 로고
    • An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern rocky mountains
    • Tague CL, McDowell NG, Allen CD. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern rocky mountains. PLoS One 2013, 8:e80286.
    • (2013) PLoS One , vol.8
    • Tague, C.L.1    McDowell, N.G.2    Allen, C.D.3
  • 262
    • 84897495917 scopus 로고    scopus 로고
    • An integrated modelling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed
    • Niu GY, Paniconi C, Troch PA, Scott RL, Durcik M, Zeng X, Huxman T, Goodrich DC. An integrated modelling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed. Ecohydrology 2014, 7:427–439. doi:10.1002/eco.1362.
    • (2014) Ecohydrology , vol.7 , pp. 427-439
    • Niu, G.Y.1    Paniconi, C.2    Troch, P.A.3    Scott, R.L.4    Durcik, M.5    Zeng, X.6    Huxman, T.7    Goodrich, D.C.8
  • 263
    • 84879910503 scopus 로고    scopus 로고
    • Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model
    • Shen C, Niu J, Phanikumar MS. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model. Water Resour Res 2013, 49:2552–2572. doi:10.1002/wrcr.20189.
    • (2013) Water Resour Res , vol.49 , pp. 2552-2572
    • Shen, C.1    Niu, J.2    Phanikumar, M.S.3
  • 265
    • 84879934774 scopus 로고    scopus 로고
    • Modeling the ecohydrological role of aspect-controlled radiation on tree–grass–shrub coexistence in a semiarid climate
    • Zhou X, Istanbulluoglu E, Vivoni ER. Modeling the ecohydrological role of aspect-controlled radiation on tree–grass–shrub coexistence in a semiarid climate. Water Resour Res 2013, 49:2872–2895.
    • (2013) Water Resour Res , vol.49 , pp. 2872-2895
    • Zhou, X.1    Istanbulluoglu, E.2    Vivoni, E.R.3
  • 266
    • 0036761205 scopus 로고    scopus 로고
    • Tree-grass competition in space and time: insights from a simple cellular automata model based on ecohydrological dynamics
    • van Wijk MT, Rodriguez-Iturbe I. Tree-grass competition in space and time: insights from a simple cellular automata model based on ecohydrological dynamics. Water Resour Res 2002, 38:18.1–18.15.
    • (2002) Water Resour Res , vol.38 , pp. 18.1-18.15
    • van Wijk, M.T.1    Rodriguez-Iturbe, I.2
  • 267
    • 0035419192 scopus 로고    scopus 로고
    • 2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales
    • 2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol Model 2001, 142:155–184.
    • (2001) Ecol Model , vol.142 , pp. 155-184
    • Baldocchi, D.D.1    Wilson, K.B.2
  • 269
    • 28244436746 scopus 로고    scopus 로고
    • Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water-limited ecosystems
    • Montaldo N, Rondena R, Albertson JD, Mancini M. Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water-limited ecosystems. Water Resour Res 2005, 41(W10416):2005. doi:10.1029/2005WR004094.
    • (2005) Water Resour Res , vol.41 , Issue.W10416 , pp. 2005
    • Montaldo, N.1    Rondena, R.2    Albertson, J.D.3    Mancini, M.4
  • 270
    • 0000750937 scopus 로고    scopus 로고
    • Long-term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration
    • Vertessy RA, Hatton TJ, Benyon RG, Dawes WR. Long-term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration. Tree Physiol 1996, 16:221–232.
    • (1996) Tree Physiol , vol.16 , pp. 221-232
    • Vertessy, R.A.1    Hatton, T.J.2    Benyon, R.G.3    Dawes, W.R.4
  • 272
    • 2342533257 scopus 로고    scopus 로고
    • CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support
    • Battaglia M, Sands P, White D, Mummery D. CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. For Ecol Manage 2004, 193:251–282.
    • (2004) For Ecol Manage , vol.193 , pp. 251-282
    • Battaglia, M.1    Sands, P.2    White, D.3    Mummery, D.4
  • 274
    • 17644374804 scopus 로고    scopus 로고
    • Modelling carbon and water cycles in a beech forest Part I: model description and uncertainty analysis on modelled NEE
    • Dufrêne E, Davi H, François C, le Maire G, Le Dantec V, Granier A. Modelling carbon and water cycles in a beech forest Part I: model description and uncertainty analysis on modelled NEE. Ecol Model 2005, 185:407–436.
    • (2005) Ecol Model , vol.185 , pp. 407-436
    • Dufrêne, E.1    Davi, H.2    François, C.3    le Maire, G.4    Le Dantec, V.5    Granier, A.6
  • 275
    • 0037983993 scopus 로고    scopus 로고
    • 2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis
    • 2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Glob Chang Biol 2003, 9:697–717. doi:10.1046/j.1365-2486.2003.00628.
    • (2003) Glob Chang Biol , vol.9 , pp. 697-717
    • Ogée, J.1    Brunet, Y.2    Loustau, D.3    Berbigier, P.4    Delzon, S.5
  • 276
    • 66949128674 scopus 로고    scopus 로고
    • Development of a distributed biosphere hydrological model and its evaluation with the southern great plains experiments (SGP97 and SGP99)
    • Wang L, Koike T, Yang K, Jackson TJ, Bindlish R, Yang D. Development of a distributed biosphere hydrological model and its evaluation with the southern great plains experiments (SGP97 and SGP99). J Geophys Res 2009, 114(D08107):2014. doi:10.1029/2008JD010800.
    • (2009) J Geophys Res , vol.114 , Issue.D08107 , pp. 2014
    • Wang, L.1    Koike, T.2    Yang, K.3    Jackson, T.J.4    Bindlish, R.5    Yang, D.6
  • 277
    • 61749084635 scopus 로고    scopus 로고
    • A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): model description and test in a boreal ecosystem in Eastern North America
    • Govind A, Chen JM, Margolis H, Ju W, Sonnentag O, Giasson MA. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): model description and test in a boreal ecosystem in Eastern North America. J Hydrol 2009, 367:200–216.
    • (2009) J Hydrol , vol.367 , pp. 200-216
    • Govind, A.1    Chen, J.M.2    Margolis, H.3    Ju, W.4    Sonnentag, O.5    Giasson, M.A.6
  • 278
    • 34247647193 scopus 로고
    • Capillary conduction of liquids through porous mediums
    • Richards LA. Capillary conduction of liquids through porous mediums. Physics 1931, 1:318–333.
    • (1931) Physics , vol.1 , pp. 318-333
    • Richards, L.A.1
  • 279
    • 0025585761 scopus 로고
    • A general mass-conservative numerical solution for the unsaturated flow equation
    • Celia MA, Bouloutas ET, Zarba RL. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 1990, 26:1483–1496.
    • (1990) Water Resour Res , vol.26 , pp. 1483-1496
    • Celia, M.A.1    Bouloutas, E.T.2    Zarba, R.L.3
  • 280
    • 44949129747 scopus 로고    scopus 로고
    • Modeling nonequilibrium flow and transport processes using HYDRUS
    • Simunek J, van Genuchten MT. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J 2008, 7:782–797.
    • (2008) Vadose Zone J , vol.7 , pp. 782-797
    • Simunek, J.1    van Genuchten, M.T.2
  • 281
    • 0028666563 scopus 로고
    • A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems
    • Paniconi C, Putti M. A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems. Water Resour Res 1994, 30:3357–3374.
    • (1994) Water Resour Res , vol.30 , pp. 3357-3374
    • Paniconi, C.1    Putti, M.2
  • 282
    • 77954650039 scopus 로고    scopus 로고
    • The ecohydrology of roots in rocks
    • Schwinning S. The ecohydrology of roots in rocks. Ecohydrology 2010, 3:238–245. doi:10.1002/eco.134.
    • (2010) Ecohydrology , vol.3 , pp. 238-245
    • Schwinning, S.1
  • 283
    • 85097172895 scopus 로고    scopus 로고
    • Technical description of version 4.0 of the Community Land Model (CLM). Technical Report NCAR/TN-478+STR, Natl. Cent. for Atmos. Res., Boulder, Colorado
    • Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton PE. Technical description of version 4.0 of the Community Land Model (CLM). Technical Report NCAR/TN-478+STR, Natl. Cent. for Atmos. Res., Boulder, Colorado, 2010.
    • (2010)
    • Oleson, K.W.1    Lawrence, D.M.2    Bonan, G.B.3    Flanner, M.G.4    Kluzek, E.5    Lawrence, P.J.6    Levis, S.7    Swenson, S.C.8    Thornton, P.E.9
  • 285
    • 84908316601 scopus 로고    scopus 로고
    • The need for a common basis for defining light-use efficiency: implications for productivity estimation
    • Gitelson AA, Gamon JA. The need for a common basis for defining light-use efficiency: implications for productivity estimation. Remote Sens Environ 2015, 156:196–201. doi:10.1016/j.rse.2014.09.017.
    • (2015) Remote Sens Environ , vol.156 , pp. 196-201
    • Gitelson, A.A.1    Gamon, J.A.2
  • 286
    • 0034639965 scopus 로고    scopus 로고
    • An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency
    • Anderson MC, Norman JM, Meyers TP, Diak GR. An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency. Agr Forest Meteorol 2000, 101:265–289.
    • (2000) Agr Forest Meteorol , vol.101 , pp. 265-289
    • Anderson, M.C.1    Norman, J.M.2    Meyers, T.P.3    Diak, G.R.4
  • 287
    • 84856587597 scopus 로고    scopus 로고
    • Evaluation of ecohydrologic model parsimony at local and regional scales in a semiarid grassland ecosystem
    • Istanbulluoglu E, Wang T, Wedin DA. Evaluation of ecohydrologic model parsimony at local and regional scales in a semiarid grassland ecosystem. Ecohydrology 2011, 5:121–142. doi:10.1002/eco.211.
    • (2011) Ecohydrology , vol.5 , pp. 121-142
    • Istanbulluoglu, E.1    Wang, T.2    Wedin, D.A.3
  • 288
    • 0036628263 scopus 로고    scopus 로고
    • Modelling vegetation as a dynamic component in soil-vegetation-atmosphere- transfer schemes and hydrological models
    • 3-1–3-26
    • Arora VK. Modelling vegetation as a dynamic component in soil-vegetation-atmosphere- transfer schemes and hydrological models. Rev Geophys 2002, 40:3-1–3-26. doi:10.1029/2001RG000103.
    • (2002) Rev Geophys , vol.40
    • Arora, V.K.1
  • 289
    • 0030619093 scopus 로고    scopus 로고
    • A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0)
    • Friend AD, Stevens AK, Knox RG, Cannell MGR. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol Model 1997, 95:249–287.
    • (1997) Ecol Model , vol.95 , pp. 249-287
    • Friend, A.D.1    Stevens, A.K.2    Knox, R.G.3    Cannell, M.G.R.4
  • 290
    • 57849097048 scopus 로고    scopus 로고
    • The fundamental role of reserves and hydraulic constraints in predicting LAI and carbon allocation in forests
    • Davi H, Barbaroux C, François C, Dufrêne E. The fundamental role of reserves and hydraulic constraints in predicting LAI and carbon allocation in forests. Agr Forest Meteorol 2009, 149:349–361.
    • (2009) Agr Forest Meteorol , vol.149 , pp. 349-361
    • Davi, H.1    Barbaroux, C.2    François, C.3    Dufrêne, E.4
  • 291
    • 84860427189 scopus 로고    scopus 로고
    • Carbon dynamics in trees: feast or famine?
    • Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: feast or famine? Tree Physiol 2012, 32:764–775. doi:10.1093/treephys/tpr143.
    • (2012) Tree Physiol , vol.32 , pp. 764-775
    • Sala, A.1    Woodruff, D.R.2    Meinzer, F.C.3
  • 292
    • 84895061991 scopus 로고    scopus 로고
    • Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling
    • Fatichi S, Leuzinger S, Körner C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 2014, 201:1086–1095. doi:10.1111/nph.12614.
    • (2014) New Phytol , vol.201 , pp. 1086-1095
    • Fatichi, S.1    Leuzinger, S.2    Körner, C.3
  • 293
    • 67349218428 scopus 로고    scopus 로고
    • Soil carbon and nitrogen mineralization: theory and models across scales
    • Manzoni S, Porporato A. Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 2009, 41:1355–1379. doi:10.1016/j.soilbio.2009.02.031.
    • (2009) Soil Biol Biochem , vol.41 , pp. 1355-1379
    • Manzoni, S.1    Porporato, A.2
  • 294
    • 24344499030 scopus 로고
    • Dynamics of C, N, P and S in grassland soils - a model
    • Parton WJ, Stewart JWB, Cole CV. Dynamics of C, N, P and S in grassland soils - a model. Biogeochemistry 1988, 5:109–131.
    • (1988) Biogeochemistry , vol.5 , pp. 109-131
    • Parton, W.J.1    Stewart, J.W.B.2    Cole, C.V.3
  • 296
    • 0036181080 scopus 로고    scopus 로고
    • Modelling C and N dynamics in forest soils with a modified version of the CENTURY model
    • Kirschbaum MUF, Paul KI. Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biol Biochem 2002, 34:341–354.
    • (2002) Soil Biol Biochem , vol.34 , pp. 341-354
    • Kirschbaum, M.U.F.1    Paul, K.I.2
  • 297
    • 47549107724 scopus 로고    scopus 로고
    • Terrestrial nitrogen cycle simulation with a dynamic global vegetation model
    • Xu-Ri, Prentice IC. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Glob Change Biol 2008, 14:1745–1764. doi:10.1111/j.1365-2486.2008.01625.x.
    • (2008) Glob Change Biol , vol.14 , pp. 1745-1764
    • Xu-Ri, P.I.C.1
  • 298
    • 84993990254 scopus 로고    scopus 로고
    • Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates
    • Zaehle S, Friend A. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochem Cycles 2010, 24:GB1005. doi:10.1029/2009GB003521.
    • (2010) Global Biogeochem Cycles , vol.24 , pp. GB1005
    • Zaehle, S.1    Friend, A.2
  • 299
    • 84931749078 scopus 로고    scopus 로고
    • Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment
    • Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 2011, 14:493–502. doi:10.1111/j.1461-0248.2011.01611.x.
    • (2011) Ecol Lett , vol.14 , pp. 493-502
    • Orwin, K.H.1    Kirschbaum, M.U.F.2    St John, M.G.3    Dickie, I.A.4
  • 300
    • 84875767757 scopus 로고    scopus 로고
    • Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses
    • Wang G, Post WM, Mayes MA. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol Appl 2013, 23:255–272.
    • (2013) Ecol Appl , vol.23 , pp. 255-272
    • Wang, G.1    Post, W.M.2    Mayes, M.A.3
  • 301
    • 77952004559 scopus 로고    scopus 로고
    • Soil-carbon response to warming dependent on microbial physiology
    • Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 2010, 3:336–340.
    • (2010) Nat Geosci , vol.3 , pp. 336-340
    • Allison, S.D.1    Wallenstein, M.D.2    Bradford, M.A.3
  • 302
    • 84887221497 scopus 로고    scopus 로고
    • Global soil carbon projections are improved by modelling microbial processes
    • Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Change 2013, 3:909–912.
    • (2013) Nat Clim Change , vol.3 , pp. 909-912
    • Wieder, W.R.1    Bonan, G.B.2    Allison, S.D.3
  • 303
    • 84861410094 scopus 로고    scopus 로고
    • Responses of soil microbial communities to water stress: results from a meta-analysis
    • Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 2012, 93:930–938.
    • (2012) Ecology , vol.93 , pp. 930-938
    • Manzoni, S.1    Schimel, J.P.2    Porporato, A.3
  • 304
    • 84900798888 scopus 로고    scopus 로고
    • Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity
    • Li J, Wang G, Allison SD, Mayes MA, Luo Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry 2014, 119:67–84. doi:10.1007/s10533-013-9948-8.
    • (2014) Biogeochemistry , vol.119 , pp. 67-84
    • Li, J.1    Wang, G.2    Allison, S.D.3    Mayes, M.A.4    Luo, Y.5
  • 305
    • 77649215982 scopus 로고    scopus 로고
    • Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter
    • Manzoni S, Trofymow JA, Jackson RB, Porporato A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 2010, 80:89–106.
    • (2010) Ecol Monogr , vol.80 , pp. 89-106
    • Manzoni, S.1    Trofymow, J.A.2    Jackson, R.B.3    Porporato, A.4
  • 306
    • 84879165492 scopus 로고    scopus 로고
    • Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling
    • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 2013, 16:930–939. doi:10.1111/ele.12113.
    • (2013) Ecol Lett , vol.16 , pp. 930-939
    • Sinsabaugh, R.L.1    Manzoni, S.2    Moorhead, D.L.3    Richter, A.4
  • 307
    • 33845451528 scopus 로고    scopus 로고
    • SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling—model description
    • Wu L, McGechan MB, McRoberts N, Baddeley JA, Watson CA. SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling—model description. Ecol Model 2007, 200:343–359.
    • (2007) Ecol Model , vol.200 , pp. 343-359
    • Wu, L.1    McGechan, M.B.2    McRoberts, N.3    Baddeley, J.A.4    Watson, C.A.5
  • 310
    • 0002634682 scopus 로고
    • The photosynthesis-nitrogen relationship in wild plants
    • Givnish TJ, ed., Cambridge UK, Cambridge University Press
    • Field HA, Mooney C. The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ, ed. On the Economy of Plant Form and Function. Cambridge UK: Cambridge University Press; 1986, 25–55.
    • (1986) On the Economy of Plant Form and Function , pp. 25-55
    • Field, H.A.1    Mooney, C.2
  • 311
    • 0024476132 scopus 로고
    • Photosynthesis and nitrogen relationship in leaves of C3 plants
    • Evans JR. Photosynthesis and nitrogen relationship in leaves of C3 plants. Oecologia 1989, 78:9–19.
    • (1989) Oecologia , vol.78 , pp. 9-19
    • Evans, J.R.1
  • 312
    • 61449173014 scopus 로고    scopus 로고
    • and C. Wirth. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models
    • Kattge J, Knorr W, Raddatz T. and C. Wirth. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Chang Biol 2009, 15:976–991. doi:10.1111/j.1365-2486.2008.01744.x.
    • (2009) Glob Chang Biol , vol.15 , pp. 976-991
    • Kattge, J.1    Knorr, W.2    Raddatz, T.3
  • 313
    • 84920997255 scopus 로고    scopus 로고
    • A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types
    • Niinemets U, Keenan TF, Hallik L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 2015, 205:973–993. doi:10.1111/nph.13096.
    • (2015) New Phytol , vol.205 , pp. 973-993
    • Niinemets, U.1    Keenan, T.F.2    Hallik, L.3
  • 315
    • 85027950683 scopus 로고    scopus 로고
    • The role of local scale heterogeneities in terrestrial ecosystem modeling
    • Pappas C, Fatichi S, Rimkus S, Burlando P, Huber MO. The role of local scale heterogeneities in terrestrial ecosystem modeling. J Geophys Res Biogeosci 2015, 120:341–360. doi:10.1002/2014JG002735.
    • (2015) J Geophys Res Biogeosci , vol.120 , pp. 341-360
    • Pappas, C.1    Fatichi, S.2    Rimkus, S.3    Burlando, P.4    Huber, M.O.5
  • 316
    • 0025491101 scopus 로고
    • Rapid calculation of terrain parameters for radiation modelling from digital elevation data
    • Dozier J, Frew J. Rapid calculation of terrain parameters for radiation modelling from digital elevation data. IEEE Trans Geosci Remote Sens 1990, 28:963–969.
    • (1990) IEEE Trans Geosci Remote Sens , vol.28 , pp. 963-969
    • Dozier, J.1    Frew, J.2
  • 317
    • 34347246361 scopus 로고    scopus 로고
    • Application of three-dimensional solar radiative transfer to mountains
    • Chen Y, Hall A, Liou KN. Application of three-dimensional solar radiative transfer to mountains. J Geophys Res 2006, 111:D21111. doi:10.1029/2006JD007163.
    • (2006) J Geophys Res , vol.111 , pp. D21111
    • Chen, Y.1    Hall, A.2    Liou, K.N.3
  • 318
    • 33746055732 scopus 로고    scopus 로고
    • Impact of watershed geomorphic characteristics on the energy and water budgets
    • Bertoldi G, Rigon R, Over TM. Impact of watershed geomorphic characteristics on the energy and water budgets. J Hydrometeorol 2006, 7:389–403.
    • (2006) J Hydrometeorol , vol.7 , pp. 389-403
    • Bertoldi, G.1    Rigon, R.2    Over, T.M.3
  • 320
    • 43049098973 scopus 로고    scopus 로고
    • Vegetation-hydrology dynamics in complex terrain of semiarid areas: 2. Energy-water controls of vegetation spatiotemporal dynamics and topographic niches of favorability
    • Ivanov VY, Bras RL, Vivoni ER. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 2. Energy-water controls of vegetation spatiotemporal dynamics and topographic niches of favorability. Water Resour Res 2008, 44:W03430. doi:10.1029/2006WR005595.
    • (2008) Water Resour Res , vol.44 , pp. W03430
    • Ivanov, V.Y.1    Bras, R.L.2    Vivoni, E.R.3
  • 321
    • 84867723238 scopus 로고    scopus 로고
    • A mechanistic ecohydrological model to investigate complex interactions in cold and warm water-controlled environments. 2. Spatiotemporal analyses
    • Fatichi S, Ivanov VY, Caporali E. A mechanistic ecohydrological model to investigate complex interactions in cold and warm water-controlled environments. 2. Spatiotemporal analyses. J Adv Model Earth Syst 2012, 4:M05003.
    • (2012) J Adv Model Earth Syst , vol.4 , pp. M05003
    • Fatichi, S.1    Ivanov, V.Y.2    Caporali, E.3
  • 322
    • 0035393988 scopus 로고    scopus 로고
    • Forest ecosystem processes at the watershed scale: hydrological and ecological controls of nitrogen export
    • Band LE, Tague CL, Groffman P, Belt K. Forest ecosystem processes at the watershed scale: hydrological and ecological controls of nitrogen export. Hydrol Process 2001, 15:2013–2028. doi:10.1002/hyp.253.
    • (2001) Hydrol Process , vol.15 , pp. 2013-2028
    • Band, L.E.1    Tague, C.L.2    Groffman, P.3    Belt, K.4
  • 323
    • 85027953656 scopus 로고    scopus 로고
    • Effects of lateral nitrate flux and instream processes on dissolved inorganic nitrogen export in a forested catchment: a model sensitivity analysis
    • Lin L, Webster JR, Hwang T, Band LE. Effects of lateral nitrate flux and instream processes on dissolved inorganic nitrogen export in a forested catchment: a model sensitivity analysis. Water Resour Res 2015, 51:2680–2695. doi:10.1002/2014WR015962.
    • (2015) Water Resour Res , vol.51 , pp. 2680-2695
    • Lin, L.1    Webster, J.R.2    Hwang, T.3    Band, L.E.4
  • 324
    • 84907368553 scopus 로고    scopus 로고
    • Climate change and ecotone boundaries: insights from a cellular automata ecohydrology model in a mediterranean catchment with topography controlled vegetation pattern
    • Caracciolo D, Noto LV, Istanbulluoglu E, Fatichi S, Zhou X. Climate change and ecotone boundaries: insights from a cellular automata ecohydrology model in a mediterranean catchment with topography controlled vegetation pattern. Adv Water Resour 2014, 73:159–175.
    • (2014) Adv Water Resour , vol.73 , pp. 159-175
    • Caracciolo, D.1    Noto, L.V.2    Istanbulluoglu, E.3    Fatichi, S.4    Zhou, X.5
  • 325
    • 67649209518 scopus 로고    scopus 로고
    • Mathematical models of vegetation pattern formation in ecohydrology
    • Borgogno F, D'Odorico P, Laio F, Ridolfi L. Mathematical models of vegetation pattern formation in ecohydrology. Rev Geophys 2009, 47:RG1005. doi:10.1029/2007RG000256.
    • (2009) Rev Geophys , vol.47 , pp. RG1005
    • Borgogno, F.1    D'Odorico, P.2    Laio, F.3    Ridolfi, L.4
  • 327
    • 34249109135 scopus 로고    scopus 로고
    • Modeling banded vegetation patterns in semiarid regions: interdependence between biomass growth rate and relevant hydrological processes
    • Ursino M. Modeling banded vegetation patterns in semiarid regions: interdependence between biomass growth rate and relevant hydrological processes. Water Resour Res 2007, 43:W04412. doi:10.1029/2006WR005292.
    • (2007) Water Resour Res , vol.43 , pp. W04412
    • Ursino, M.1
  • 328
    • 35748939350 scopus 로고    scopus 로고
    • Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions
    • Saco PM, Willgoose GR, Hancock GR. Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrol Earth Syst Sci 2007, 11:1717–1730.
    • (2007) Hydrol Earth Syst Sci , vol.11 , pp. 1717-1730
    • Saco, P.M.1    Willgoose, G.R.2    Hancock, G.R.3
  • 329
    • 59649101107 scopus 로고    scopus 로고
    • A model for soil-vegetation-atmosphere interactions in water-limited ecosystems
    • Baudena M, D'Andrea F, Provenzale A. A model for soil-vegetation-atmosphere interactions in water-limited ecosystems. Water Resour Res 2008, 44:W12429. doi:10.1029/2008WR007172.
    • (2008) Water Resour Res , vol.44 , pp. W12429
    • Baudena, M.1    D'Andrea, F.2    Provenzale, A.3
  • 330
    • 57149096051 scopus 로고    scopus 로고
    • Role of biomass spread in vegetation pattern formation within arid ecosystems
    • Thompson S, Katul G, McMahon SM. Role of biomass spread in vegetation pattern formation within arid ecosystems. Water Resour Res 2008, 44:W10421. doi:10.1029/2008WR006916.
    • (2008) Water Resour Res , vol.44 , pp. W10421
    • Thompson, S.1    Katul, G.2    McMahon, S.M.3
  • 332
    • 84879040521 scopus 로고    scopus 로고
    • A mechanistic description of the formation and evolution of vegetation patterns
    • Foti R, Ramírez JA. A mechanistic description of the formation and evolution of vegetation patterns. Hydrol Earth Syst Sci 2013, 17:63–84. doi:10.5194/hess-17-63-2013.
    • (2013) Hydrol Earth Syst Sci , vol.17 , pp. 63-84
    • Foti, R.1    Ramírez, J.A.2
  • 333
    • 0024255197 scopus 로고
    • A general model of forest ecosystem processes for regional applications, I: hydrologic balance, canopy gas exchange, and primary production processes
    • Running SW, Coughlan JC. A general model of forest ecosystem processes for regional applications, I: hydrologic balance, canopy gas exchange, and primary production processes. Ecol Model 1988, 42:125–154.
    • (1988) Ecol Model , vol.42 , pp. 125-154
    • Running, S.W.1    Coughlan, J.C.2
  • 335
    • 0027878745 scopus 로고
    • A simulation model for the transient effects of climate change on forest landscapes
    • Prentice IC, Sykes MT, Cramer W. A simulation model for the transient effects of climate change on forest landscapes. Ecol Modell 1993, 65:51–70.
    • (1993) Ecol Modell , vol.65 , pp. 51-70
    • Prentice, I.C.1    Sykes, M.T.2    Cramer, W.3
  • 337
    • 0000232264 scopus 로고    scopus 로고
    • TURC: a diagnostic model of continental gross primary productivity and net primary productivity
    • Ruimy A, Dedieu G, Saugier B. TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem Cycles 1996, 10:269–285.
    • (1996) Global Biogeochem Cycles , vol.10 , pp. 269-285
    • Ruimy, A.1    Dedieu, G.2    Saugier, B.3
  • 338
    • 0028976637 scopus 로고
    • Land-atmosphere interactions for climate system models-coupling biophysical, biogeochemical, and ecosystem dynamical processes
    • Bonan GB. Land-atmosphere interactions for climate system models-coupling biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sens Environ 1995, 51:57–73.
    • (1995) Remote Sens Environ , vol.51 , pp. 57-73
    • Bonan, G.B.1
  • 339
    • 0037797459 scopus 로고    scopus 로고
    • A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics
    • Bonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Chang Biol 2003, 9:1543–1566. doi:10.1046/j.1529-8817.2003.00681.x.
    • (2003) Glob Chang Biol , vol.9 , pp. 1543-1566
    • Bonan, G.B.1    Levis, S.2    Sitch, S.3    Vertenstein, M.4    Oleson, K.W.5
  • 340
    • 48949103628 scopus 로고    scopus 로고
    • Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs)
    • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao L, Betts R, Cias P, Cox P, Friedlingstein P. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob Chang Biol 2008, 14:2015–2039. doi:10.1111/j.1365-2486.2008.01626.x.
    • (2008) Glob Chang Biol , vol.14 , pp. 2015-2039
    • Sitch, S.1    Huntingford, C.2    Gedney, N.3    Levy, P.E.4    Lomas, M.5    Piao, L.6    Betts, R.7    Cias, P.8    Cox, P.9    Friedlingstein, P.10
  • 341
    • 84874402233 scopus 로고    scopus 로고
    • Development and application of Earth System Models
    • Prinn RG. Development and application of Earth System Models. Proc Natl Acad Sci USA 2012, 110:3673–3680. doi:10.1073/pnas.1107470109.
    • (2012) Proc Natl Acad Sci USA , vol.110 , pp. 3673-3680
    • Prinn, R.G.1
  • 342
    • 84902489221 scopus 로고    scopus 로고
    • Emergent constraints on climate carbon cycle feedbacks in the CMIP5 Earth system models
    • Wenzel S, Cox PM, Eyring V, Friedlingstein P. Emergent constraints on climate carbon cycle feedbacks in the CMIP5 Earth system models. J Geophys Res Biogeosci 2014, 119:794–807. doi:10.1002/2013JG00259.
    • (2014) J Geophys Res Biogeosci , vol.119 , pp. 794-807
    • Wenzel, S.1    Cox, P.M.2    Eyring, V.3    Friedlingstein, P.4
  • 343
    • 85097188179 scopus 로고
    • Biosphere-atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. Technical Report NCAR/TN-387+STR, Natl. Cent. for Atmos. Res., Boulder, Colorado
    • Dickinson RE, Henderson-Sellers A, Kennedy PJ. Biosphere-atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. Technical Report NCAR/TN-387+STR, Natl. Cent. for Atmos. Res., Boulder, Colorado, 1993.
    • (1993)
    • Dickinson, R.E.1    Henderson-Sellers, A.2    Kennedy, P.J.3
  • 346
    • 79956285562 scopus 로고    scopus 로고
    • Modeling vegetation and land use in models of the Earth System
    • Levis S. Modeling vegetation and land use in models of the Earth System. WIREs Clim Change 2010, 1:840–856. doi:10.1002/wcc.83.
    • (2010) WIREs Clim Change , vol.1 , pp. 840-856
    • Levis, S.1
  • 347
    • 83855165028 scopus 로고    scopus 로고
    • Toward dynamic global vegetation models for simulating vegetation-climate interactions and feedbacks: recent developments, limitations, and future challenges
    • Quillet A, Peng C, Garneau M. Toward dynamic global vegetation models for simulating vegetation-climate interactions and feedbacks: recent developments, limitations, and future challenges. Environ Rev 2010, 18:333–353. doi:10.1139/A10-016.
    • (2010) Environ Rev , vol.18 , pp. 333-353
    • Quillet, A.1    Peng, C.2    Garneau, M.3
  • 348
    • 79961221510 scopus 로고    scopus 로고
    • Forest productivity under climate change: a checklist for evaluating model studies
    • Medlyn BE, Duursma RA, Zeppel MJB. Forest productivity under climate change: a checklist for evaluating model studies. WIREs Clim Change 2011, 2:332–355. doi:10.1002/wcc.108.
    • (2011) WIREs Clim Change , vol.2 , pp. 332-355
    • Medlyn, B.E.1    Duursma, R.A.2    Zeppel, M.J.B.3
  • 349
    • 33845222615 scopus 로고    scopus 로고
    • Soil-plant nitrogen cycling modulated carbon exchanges in a western temperate conifer forest in Canada
    • Arain MA, Yuan F, Black TA. Soil-plant nitrogen cycling modulated carbon exchanges in a western temperate conifer forest in Canada. Agr Forest Meteorol 2006, 140:171–192.
    • (2006) Agr Forest Meteorol , vol.140 , pp. 171-192
    • Arain, M.A.1    Yuan, F.2    Black, T.A.3
  • 351
    • 79959850680 scopus 로고    scopus 로고
    • The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements
    • Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res 2011, 116:D12109. doi:10.1029/2010JD015139.
    • (2011) J Geophys Res , vol.116 , pp. D12109
    • Niu, G.Y.1    Yang, Z.L.2    Mitchell, K.E.3    Chen, F.4    Ek, M.B.5    Barlage, M.6    Kumar, A.7    Manning, K.8    Niyogi, D.9    Rosero, E.10
  • 354
    • 85097152066 scopus 로고    scopus 로고
    • The Community Land Model's Dynamic Global Vegetation Model (CLMDGVM) Technical description and user's guide. Tech. note, NCAR/TN-459+IA, Natl. Cent. for Atmos. Res., Boulder, CO
    • Levis S, Bonan GB, Vertenstein M, Oleson KW. The Community Land Model's Dynamic Global Vegetation Model (CLMDGVM): Technical description and user's guide. Tech. note, NCAR/TN-459+IA, Natl. Cent. for Atmos. Res., Boulder, CO, 2004.
    • (2004)
    • Levis, S.1    Bonan, G.B.2    Vertenstein, M.3    Oleson, K.W.4
  • 357
    • 77950615681 scopus 로고    scopus 로고
    • Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change
    • Yang X, Wittig V, Jain AK, Post W. Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change. Global Biogeochem Cycles 2009, 23:GB4029. doi:10.1029/2009GB003474.
    • (2009) Global Biogeochem Cycles , vol.23 , pp. GB4029
    • Yang, X.1    Wittig, V.2    Jain, A.K.3    Post, W.4
  • 358
    • 76449105799 scopus 로고    scopus 로고
    • Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007
    • Tian H, Chen G, Liu M, Zhang C, Sun G, Lu C, Xu X, Ren W, Pan S, Chappelka A. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007. For Ecol Manage 2010, 259:1311–1327.
    • (2010) For Ecol Manage , vol.259 , pp. 1311-1327
    • Tian, H.1    Chen, G.2    Liu, M.3    Zhang, C.4    Sun, G.5    Lu, C.6    Xu, X.7    Ren, W.8    Pan, S.9    Chappelka, A.10
  • 360
    • 67649532624 scopus 로고    scopus 로고
    • Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem demography model version 2
    • Medvigy D, Wofsy SD, Munger JW, Hollinger DY, Moorcroft PR. Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem demography model version 2. J Geophys Res 2009, 114:G01002. doi:10.1029/2008JG000812.
    • (2009) J Geophys Res , vol.114 , pp. G01002
    • Medvigy, D.1    Wofsy, S.D.2    Munger, J.W.3    Hollinger, D.Y.4    Moorcroft, P.R.5
  • 362
    • 85097203285 scopus 로고    scopus 로고
    • Description of the TRIFFID Dynamic Global Vegetation Model. Technical Note 24, Hadley Centre
    • Cox PM. Description of the TRIFFID Dynamic Global Vegetation Model. Technical Note 24, Hadley Centre, 2001.
    • (2001)
    • Cox, P.M.1
  • 363
    • 84866532787 scopus 로고    scopus 로고
    • Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling
    • Goll DS, Brovkin V, Parida BR, Reick CH, Kattge J, Reich PB, van Bodegom PM, Niinemets U. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 2012, 9:3547–3569. doi:10.5194/bg-9-3547-2012.
    • (2012) Biogeosciences , vol.9 , pp. 3547-3569
    • Goll, D.S.1    Brovkin, V.2    Parida, B.R.3    Reick, C.H.4    Kattge, J.5    Reich, P.B.6    van Bodegom, P.M.7    Niinemets, U.8
  • 364
    • 33845497176 scopus 로고    scopus 로고
    • SEIB-DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach
    • Sato H, Itoh A, Kohyama T. SEIB-DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol Model 2007, 200:279–307.
    • (2007) Ecol Model , vol.200 , pp. 279-307
    • Sato, H.1    Itoh, A.2    Kohyama, T.3
  • 365
    • 4344650280 scopus 로고    scopus 로고
    • Vegetation dynamics - simulating responses to climatic change
    • Woodward FI, Lomas MR. Vegetation dynamics - simulating responses to climatic change. Biol Rev 2004, 2004:643–670.
    • (2004) Biol Rev , vol.2004 , pp. 643-670
    • Woodward, F.I.1    Lomas, M.R.2
  • 366
    • 0035176885 scopus 로고    scopus 로고
    • Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space
    • Smith B, Prentice IC, Sykes MT. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 2001, 10:621–637.
    • (2001) Glob Ecol Biogeogr , vol.10 , pp. 621-637
    • Smith, B.1    Prentice, I.C.2    Sykes, M.T.3
  • 367
    • 84876413018 scopus 로고    scopus 로고
    • Next-generation dynamic global vegetation models: learning from community ecology
    • Scheiter S, Langan L, Higgins SI. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol 2013, 198:957–969.
    • (2013) New Phytol , vol.198 , pp. 957-969
    • Scheiter, S.1    Langan, L.2    Higgins, S.I.3
  • 368
    • 84863628850 scopus 로고    scopus 로고
    • Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling
    • Keenan TF, Davidson E, Moffat A, Munger W, Richardson AD. Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Glob Chang Biol 2012, 18:2555–2569. doi:10.1111/j.1365-2486.2012.02684.x.
    • (2012) Glob Chang Biol , vol.18 , pp. 2555-2569
    • Keenan, T.F.1    Davidson, E.2    Moffat, A.3    Munger, W.4    Richardson, A.D.5
  • 370
    • 84891925123 scopus 로고    scopus 로고
    • The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial bio-geography and biogeochemistry based on plant functional trade-offs
    • 1058
    • Pavlick R, Drewry DT, Bohn K, Reu B, Kleidon A. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial bio-geography and biogeochemistry based on plant functional trade-offs. Biogeosciences 2013, 10:4137–4177. doi:10.5194/bg-10-4137-2013 1058.
    • (2013) Biogeosciences , vol.10 , pp. 4137-4177
    • Pavlick, R.1    Drewry, D.T.2    Bohn, K.3    Reu, B.4    Kleidon, A.5
  • 371
    • 84880083174 scopus 로고    scopus 로고
    • Sensitivity analysis of a process-based ecosystem model: pinpointing parameterization and structural issues
    • Pappas C, Fatichi S, Leuzinger S, Wolf A, Burlando P. Sensitivity analysis of a process-based ecosystem model: pinpointing parameterization and structural issues. J Geophys Res Biogeosci 2013, 118:505–528. doi:10.1002/jgrg.20035.
    • (2013) J Geophys Res Biogeosci , vol.118 , pp. 505-528
    • Pappas, C.1    Fatichi, S.2    Leuzinger, S.3    Wolf, A.4    Burlando, P.5
  • 372
    • 34249713263 scopus 로고    scopus 로고
    • A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production
    • Wang YP, Houlton BZ, Field CB. A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochem Cycles 2007, 21:GB1018. doi:10.1029/2006GB002797.
    • (2007) Global Biogeochem Cycles , vol.21 , pp. GB1018
    • Wang, Y.P.1    Houlton, B.Z.2    Field, C.B.3
  • 373
    • 84897425864 scopus 로고    scopus 로고
    • The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP
    • Yang X, Thornton PE, Ricciuto DM, Post WM. The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP. Biogeosciences 2014, 11:1667–1681. doi:10.5194/bg-11-1667-2014.
    • (2014) Biogeosciences , vol.11 , pp. 1667-1681
    • Yang, X.1    Thornton, P.E.2    Ricciuto, D.M.3    Post, W.M.4
  • 374
    • 80053257081 scopus 로고    scopus 로고
    • Carbon-nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks
    • Zaehle S, Dalmonech D. Carbon-nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Curr Opin Environ Sustain 2011, 3:311–320. doi:10.1016/j.cosust.2011.08.008.
    • (2011) Curr Opin Environ Sustain , vol.3 , pp. 311-320
    • Zaehle, S.1    Dalmonech, D.2
  • 377
    • 66349084438 scopus 로고    scopus 로고
    • A general quantitative theory of forest structure and dynamics
    • West GB, Enquist BJ, Brown JH. A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci USA 2009, 106:7040–7045. doi:10.1073/pnas.0812294106.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 7040-7045
    • West, G.B.1    Enquist, B.J.2    Brown, J.H.3
  • 378
    • 0035202916 scopus 로고    scopus 로고
    • A method for scaling vegetation dynamics: the ecosystem demography model (ED)
    • Moorcroft PR, Hurtt GC, Pacala SW. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 2001, 71:557–585.
    • (2001) Ecol Monogr , vol.71 , pp. 557-585
    • Moorcroft, P.R.1    Hurtt, G.C.2    Pacala, S.W.3
  • 379
    • 55949085255 scopus 로고    scopus 로고
    • Predicting and understanding forest dynamics using a simple tractable model
    • Purves DW, Lichstein JW, Strigul N, Pacala SW. Predicting and understanding forest dynamics using a simple tractable model. Proc Natl Acad Sci USA 2008, 105:17018–17022.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 17018-17022
    • Purves, D.W.1    Lichstein, J.W.2    Strigul, N.3    Pacala, S.W.4
  • 380
    • 55949097851 scopus 로고    scopus 로고
    • Scaling from trees to forests: tractable macroscopic equations for forest dynamics
    • Strigul N, Pristinski D, Purves D, Dushoff J, Pacala S. Scaling from trees to forests: tractable macroscopic equations for forest dynamics. Ecol Monogr 2008, 78:523–545.
    • (2008) Ecol Monogr , vol.78 , pp. 523-545
    • Strigul, N.1    Pristinski, D.2    Purves, D.3    Dushoff, J.4    Pacala, S.5
  • 382
    • 82755174181 scopus 로고    scopus 로고
    • Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America
    • Medvigy D, Moorcroft PR. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America. Philos Trans R Soc Lond Ser B 2012, 367:222–235. doi:10.1098/rstb.2011.0253.
    • (2012) Philos Trans R Soc Lond Ser B , vol.367 , pp. 222-235
    • Medvigy, D.1    Moorcroft, P.R.2
  • 383
    • 84907808462 scopus 로고    scopus 로고
    • A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems
    • Dietze MC, Matthes JH. A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecol Lett 2014, 2014:1418–1426. doi:10.1111/ele.12345.
    • (2014) Ecol Lett , vol.2014 , pp. 1418-1426
    • Dietze, M.C.1    Matthes, J.H.2
  • 384
    • 81055144376 scopus 로고    scopus 로고
    • Mechanistic causes of tree drought mortality: recent results, unresolved questions and future research needs
    • Zeppel MJB, Adams HD, Anderegg WRL. Mechanistic causes of tree drought mortality: recent results, unresolved questions and future research needs. New Phytol 2011, 192:800–803. doi:10.1111/j.1469-8137.2011.03960.x.
    • (2011) New Phytol , vol.192 , pp. 800-803
    • Zeppel, M.J.B.1    Adams, H.D.2    Anderegg, W.R.L.3
  • 385
    • 71049115939 scopus 로고    scopus 로고
    • A generic model of thinning and stand density effects on forest growth, mortality and net increment
    • Franklin O, Aoki K, Seidl R. A generic model of thinning and stand density effects on forest growth, mortality and net increment. Ann For Sci 2009, 66:815–815. doi:10.1051/forest/2009073.
    • (2009) Ann For Sci , vol.66 , pp. 815
    • Franklin, O.1    Aoki, K.2    Seidl, R.3
  • 386
    • 84864366158 scopus 로고    scopus 로고
    • Tree mortality in dynamic vegetation models -a key feature for accurately simulating forest properties
    • Manusch C, Bugmann H, Heiri C, Wolf A. Tree mortality in dynamic vegetation models -a key feature for accurately simulating forest properties. Ecol Model 2012, 243:101–111.
    • (2012) Ecol Model , vol.243 , pp. 101-111
    • Manusch, C.1    Bugmann, H.2    Heiri, C.3    Wolf, A.4
  • 390
    • 41649104268 scopus 로고    scopus 로고
    • Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point
    • Nepstad DC, Stickler CM, Soares-Filho B, Merry F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc B 2008, 363:1737–1746.
    • (2008) Philos Trans R Soc B , vol.363 , pp. 1737-1746
    • Nepstad, D.C.1    Stickler, C.M.2    Soares-Filho, B.3    Merry, F.4
  • 392
    • 77955136046 scopus 로고    scopus 로고
    • Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake
    • Markewitz D, Devine S, Davidson EA, Brando P, Nepstad DC. Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytol 2010, 187:592–607. doi:10.1111/j.1469-8137.2010.03391.x.
    • (2010) New Phytol , vol.187 , pp. 592-607
    • Markewitz, D.1    Devine, S.2    Davidson, E.A.3    Brando, P.4    Nepstad, D.C.5
  • 393
    • 84870884013 scopus 로고    scopus 로고
    • Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest
    • Ivanov VY, Hutyra LR, Wofsy SC, Munger JW, Saleska SR, de Oliveira RC Jr, de Camargo PB. Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resour Res 2012, 48:W12507. doi:10.1029/2012WR011972.
    • (2012) Water Resour Res , vol.48 , pp. W12507
    • Ivanov, V.Y.1    Hutyra, L.R.2    Wofsy, S.C.3    Munger, J.W.4    Saleska, S.R.5    de Oliveira, R.C.6    de Camargo, P.B.7
  • 398
    • 79958122322 scopus 로고    scopus 로고
    • Precipitation variability over the forest to non-forest transition in southwestern Amazonia
    • Knox R, Bisht G, Wang J, Bras RL. Precipitation variability over the forest to non-forest transition in southwestern Amazonia. J Climate 2011, 24:2368–2377.
    • (2011) J Climate , vol.24 , pp. 2368-2377
    • Knox, R.1    Bisht, G.2    Wang, J.3    Bras, R.L.4
  • 399
    • 79959609909 scopus 로고    scopus 로고
    • Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil
    • Butt N, de Oliveira PA, Costa MH. Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J Geophys Res 2011, 116:D11120. doi:10.1029/2010JD015174.
    • (2011) J Geophys Res , vol.116 , pp. D11120
    • Butt, N.1    de Oliveira, P.A.2    Costa, M.H.3
  • 400
    • 84919841003 scopus 로고    scopus 로고
    • Strong control of surface roughness variations on the simulated dry season regional atmospheric response to contemporary deforestation in Rondônia, Brazil
    • Khanna J, Medvigy D. Strong control of surface roughness variations on the simulated dry season regional atmospheric response to contemporary deforestation in Rondônia, Brazil. J Geophys Res Atmos 2014, 119:13067–13078. doi:10.1002/2014JD022278.
    • (2014) J Geophys Res Atmos , vol.119 , pp. 13067-13078
    • Khanna, J.1    Medvigy, D.2
  • 402
    • 84857959604 scopus 로고    scopus 로고
    • Shrub expansion and climate feedbacks in Arctic tundra
    • Loranty MM, Goetz SJ. Shrub expansion and climate feedbacks in Arctic tundra. Environ Res Lett 2012, 7:011005. doi:10.1088/1748-9326/7/1/011005.
    • (2012) Environ Res Lett , vol.7 , pp. 011005
    • Loranty, M.M.1    Goetz, S.J.2
  • 405
    • 33846638726 scopus 로고    scopus 로고
    • 2]: mechanisms and environmental interactions
    • 2]: mechanisms and environmental interactions. Plant Cell Environ 2007, 30:258–270. doi:10.1111/j.1365-3040.2007.01641.x.
    • (2007) Plant Cell Environ , vol.30 , pp. 258-270
    • Ainsworth, E.A.1    Rogers, A.2
  • 407
    • 33749993520 scopus 로고    scopus 로고
    • 2 responses: an issue of definition, time and resource supply
    • 2 responses: an issue of definition, time and resource supply. New Phytol 2006, 172:393–411. doi:10.1111/j.1469-8137.2006.01886.x.
    • (2006) New Phytol , vol.172 , pp. 393-411
    • Körner, C.1
  • 408
    • 79954913125 scopus 로고    scopus 로고
    • Do global change experiments overestimate impacts on terrestrial ecosystems?
    • Leuzinger S, Luo Y, Beier C, Dieleman W, Vicca S, Körner C. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 2011, 26:236–241. doi:10.1016/j.tree.2011.02.011.
    • (2011) Trends Ecol Evol , vol.26 , pp. 236-241
    • Leuzinger, S.1    Luo, Y.2    Beier, C.3    Dieleman, W.4    Vicca, S.5    Körner, C.6
  • 409
    • 32844454498 scopus 로고    scopus 로고
    • Detection of a direct carbon dioxide effect in continental river runoff records
    • Gedney N, Cox PM, Bletts RA, Boucher O, Huntingford C, Stott PA. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 2006, 439:835–838.
    • (2006) Nature , vol.439 , pp. 835-838
    • Gedney, N.1    Cox, P.M.2    Bletts, R.A.3    Boucher, O.4    Huntingford, C.5    Stott, P.A.6
  • 414
    • 78650853593 scopus 로고    scopus 로고
    • 2 enrichment (FACE) experiments
    • 2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 2011, 42:181–203. doi:10.1146/annurev-ecolsys-102209-144647.
    • (2011) Annu Rev Ecol Evol Syst , vol.42 , pp. 181-203
    • Norby, R.J.1    Zak, D.R.2
  • 416
    • 77952391849 scopus 로고    scopus 로고
    • Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability
    • Medvigy D, Wofsy SC, Munger JW, Moorcroft PR. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proc Natl Acad Sci USA 2010, 107:8275–8280. doi:10.1073/pnas.0912032107.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 8275-8280
    • Medvigy, D.1    Wofsy, S.C.2    Munger, J.W.3    Moorcroft, P.R.4
  • 417
    • 84945468356 scopus 로고    scopus 로고
    • Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes
    • Paschalis A, Fatichi S, Katul GG, Ivanov VY. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. J Geophys Res Biogeosci 2015, 120. doi:10.1002/2015JG003002.
    • (2015) J Geophys Res Biogeosci , vol.120
    • Paschalis, A.1    Fatichi, S.2    Katul, G.G.3    Ivanov, V.Y.4
  • 418
    • 21244498475 scopus 로고    scopus 로고
    • Patterns of vascular plant diversity at continental to global scales
    • Mutke J, Barthlott W. Patterns of vascular plant diversity at continental to global scales. Biol Skrifter 2005, 55:521–531.
    • (2005) Biol Skrifter , vol.55 , pp. 521-531
    • Mutke, J.1    Barthlott, W.2
  • 419
    • 0036626710 scopus 로고    scopus 로고
    • Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models
    • Pages 5-1–5-23
    • Bonan GB, Levis S, Kergoat L, Oleson KW. Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Global Biogeochem Cycles 2002, 16:Pages 5-1–5-23. doi:10.1029/2000GB001360.
    • (2002) Global Biogeochem Cycles , vol.16
    • Bonan, G.B.1    Levis, S.2    Kergoat, L.3    Oleson, K.W.4
  • 421
    • 84931009262 scopus 로고    scopus 로고
    • Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model
    • Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Peñuelas J, Thonicke K. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Chang Biol 2015, 21:2711–2725. doi:10.1111/gcb.12870.
    • (2015) Glob Chang Biol , vol.21 , pp. 2711-2725
    • Sakschewski, B.1    von Bloh, W.2    Boit, A.3    Rammig, A.4    Kattge, J.5    Poorter, L.6    Peñuelas, J.7    Thonicke, K.8
  • 422
    • 84937524756 scopus 로고    scopus 로고
    • Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an Earth System Model
    • Verheijen LM, Aerts R, Brovkin V, Cavender-Bares J, Cornelissen JHC, Kattge J, van Bodegom PM. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an Earth System Model. Glob Chang Biol 2015, 21:3074–3086. doi:10.1111/gcb.12871.
    • (2015) Glob Chang Biol , vol.21 , pp. 3074-3086
    • Verheijen, L.M.1    Aerts, R.2    Brovkin, V.3    Cavender-Bares, J.4    Cornelissen, J.H.C.5    Kattge, J.6    van Bodegom, P.M.7
  • 425
    • 84872899080 scopus 로고    scopus 로고
    • Biological constraints on water transport in the soil–plant–atmosphere system
    • Manzoni S, Vico G, Porporato A, Katul G. Biological constraints on water transport in the soil–plant–atmosphere system. Adv Water Resour 2013, 51:292–304.
    • (2013) Adv Water Resour , vol.51 , pp. 292-304
    • Manzoni, S.1    Vico, G.2    Porporato, A.3    Katul, G.4
  • 426
    • 0031444677 scopus 로고    scopus 로고
    • From tropics to tundra: global convergence in plant functioning
    • Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 1997, 94:13730–13734.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 13730-13734
    • Reich, P.B.1    Walters, M.B.2    Ellsworth, D.S.3
  • 427
    • 84894042419 scopus 로고    scopus 로고
    • The world-wide 'fast–slow' plant economics spectrum: a traits manifesto
    • Reich PB. The world-wide 'fast–slow' plant economics spectrum: a traits manifesto. J Ecol 2014, 102:275–301. doi:10.1111/1365-2745.12211.
    • (2014) J Ecol , vol.102 , pp. 275-301
    • Reich, P.B.1
  • 429
    • 33748520570 scopus 로고    scopus 로고
    • Soil water characteristic estimates by texture and organic matter for hydrologic solutions
    • Saxton KE, Rawls WJ. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 2006, 70:1569–1578. doi:10.2136/sssaj2005.0117.
    • (2006) Soil Sci Soc Am J , vol.70 , pp. 1569-1578
    • Saxton, K.E.1    Rawls, W.J.2
  • 430
    • 83155182088 scopus 로고    scopus 로고
    • Using bimodal lognormal functions to describe soil hydraulic properties
    • Romano N, Nasta P, Severino G, Hopmans JW. Using bimodal lognormal functions to describe soil hydraulic properties. Soil Sci Soc Am J 2011, 75:468–480. doi:10.2136/sssaj2010.0084.
    • (2011) Soil Sci Soc Am J , vol.75 , pp. 468-480
    • Romano, N.1    Nasta, P.2    Severino, G.3    Hopmans, J.W.4
  • 431
    • 84885434878 scopus 로고    scopus 로고
    • The distribution of soil phosphorus for global biogeochemical modeling
    • Yang X, Post WM, Thornton PE, Jain A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 2013, 10:2525–2537. doi:10.5194/bg-10-2525-2013.
    • (2013) Biogeosciences , vol.10 , pp. 2525-2537
    • Yang, X.1    Post, W.M.2    Thornton, P.E.3    Jain, A.4
  • 432
  • 436
    • 0037995440 scopus 로고    scopus 로고
    • Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future
    • Baldocchi DD. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 2003, 9:479–492.
    • (2003) Glob Chang Biol , vol.9 , pp. 479-492
    • Baldocchi, D.D.1
  • 437
    • 38949125092 scopus 로고    scopus 로고
    • Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems
    • Baldocchi DD. Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Austral J Bot 2008, 56:1–26.
    • (2008) Austral J Bot , vol.56 , pp. 1-26
    • Baldocchi, D.D.1
  • 441
    • 85027937752 scopus 로고    scopus 로고
    • Abiotic and biotic controls of soil moisture spatio-temporal variability and the occurrence of hysteresis
    • Fatichi S, Katul GG, Ivanov VY, Pappas C, Paschalis A, Consolo A, Kim J, Burlando P. Abiotic and biotic controls of soil moisture spatio-temporal variability and the occurrence of hysteresis. Water Resour Res 2015, 51:3505–3524. doi:10.1002/2014WR016102.
    • (2015) Water Resour Res , vol.51 , pp. 3505-3524
    • Fatichi, S.1    Katul, G.G.2    Ivanov, V.Y.3    Pappas, C.4    Paschalis, A.5    Consolo, A.6    Kim, J.7    Burlando, P.8
  • 445
  • 446
    • 0037197996 scopus 로고    scopus 로고
    • Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter
    • Liu C, Zhang X, Zhang Y. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agr Forest Meteorol 2002, 111:109–120.
    • (2002) Agr Forest Meteorol , vol.111 , pp. 109-120
    • Liu, C.1    Zhang, X.2    Zhang, Y.3
  • 448
    • 33748779306 scopus 로고    scopus 로고
    • Intraspecific density dependence is required to maintain species diversity in spatio-temporal forest simulations with reproduction
    • Lischke H, Löffler TJ. Intraspecific density dependence is required to maintain species diversity in spatio-temporal forest simulations with reproduction. Ecol Model 2006, 198:341–361. doi:10.1016/j.ecolmodel.2006.05.005.
    • (2006) Ecol Model , vol.198 , pp. 341-361
    • Lischke, H.1    Löffler, T.J.2
  • 449
    • 35548955108 scopus 로고    scopus 로고
    • Mortality of large trees and lianas following experimental drought in an Amazon forest
    • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 2007, 88:2259–2269.
    • (2007) Ecology , vol.88 , pp. 2259-2269
    • Nepstad, D.C.1    Tohver, I.M.2    Ray, D.3    Moutinho, P.4    Cardinot, G.5
  • 466
    • 84880098060 scopus 로고    scopus 로고
    • A novel algorithm to assess gross primary production for terrestrial ecosystems from MODIS imagery
    • Yang Y, Shang S, Guan H, Jiang L. A novel algorithm to assess gross primary production for terrestrial ecosystems from MODIS imagery. J Geophys Res 2013, 118:590–605. doi:10.1002/jgrg.20056.
    • (2013) J Geophys Res , vol.118 , pp. 590-605
    • Yang, Y.1    Shang, S.2    Guan, H.3    Jiang, L.4
  • 467
    • 84903762295 scopus 로고    scopus 로고
    • Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species
    • Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol Appl 2014, 24:1651–1669.
    • (2014) Ecol Appl , vol.24 , pp. 1651-1669
    • Serbin, S.P.1    Singh, A.2    McNeil, B.E.3    Kingdon, C.C.4    Townsend, P.A.5
  • 472
    • 84874191982 scopus 로고    scopus 로고
    • Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability
    • Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 2013, 494:341–344. doi:10.1038/nature11882.
    • (2013) Nature , vol.494 , pp. 341-344
    • Cox, P.M.1    Pearson, D.2    Booth, B.B.3    Friedlingstein, P.4    Huntingford, C.5    Jones, C.D.6    Luke, C.M.7
  • 475
    • 84884368080 scopus 로고    scopus 로고
    • Improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling
    • McDowell NG, Ryan MG, Zeppel MJB, Tissue DT. Improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling. New Phytol 2013, 200:289–293.
    • (2013) New Phytol , vol.200 , pp. 289-293
    • McDowell, N.G.1    Ryan, M.G.2    Zeppel, M.J.B.3    Tissue, D.T.4
  • 476
    • 84884401103 scopus 로고    scopus 로고
    • Our limited ability to predict vegetation dynamics under water stress
    • Xu C, McDowell NG, Sevanto S, Fisher RA. Our limited ability to predict vegetation dynamics under water stress. New Phytol 2013, 200:298–300.
    • (2013) New Phytol , vol.200 , pp. 298-300
    • Xu, C.1    McDowell, N.G.2    Sevanto, S.3    Fisher, R.A.4
  • 477
    • 84899035160 scopus 로고    scopus 로고
    • Interannual variability of evapotranspiration and vegetation productivity
    • Fatichi S, Ivanov VY. Interannual variability of evapotranspiration and vegetation productivity. Water Resour Res 2014, 50:3275–3294. doi:10.1002/2013WR015044.
    • (2014) Water Resour Res , vol.50 , pp. 3275-3294
    • Fatichi, S.1    Ivanov, V.Y.2
  • 479
    • 84881318401 scopus 로고    scopus 로고
    • On improving the communication between models and data
    • Dietze MC, LeBauer D, Kooper R. On improving the communication between models and data. Plant Cell Environ 2013, 36:1575–1585.
    • (2013) Plant Cell Environ , vol.36 , pp. 1575-1585
    • Dietze, M.C.1    LeBauer, D.2    Kooper, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.