-
1
-
-
0026386859
-
Ciclopirox olamine: a hydroxypyridone antifungal agent
-
[1] Abrams, B.B., Hanel, H., Hoehler, T., Ciclopirox olamine: a hydroxypyridone antifungal agent. Clin. Dermatol. 9 (1991), 471–477.
-
(1991)
Clin. Dermatol.
, vol.9
, pp. 471-477
-
-
Abrams, B.B.1
Hanel, H.2
Hoehler, T.3
-
2
-
-
0034855798
-
Ciclopirox: an overview
-
[2] Gupta, A.K., Ciclopirox: an overview. Int. J. Dermatol. 40 (2001), 305–310.
-
(2001)
Int. J. Dermatol.
, vol.40
, pp. 305-310
-
-
Gupta, A.K.1
-
3
-
-
0038517026
-
The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae
-
[3] Leem, S.H., Park, J.E., Kim, I.S., Chae, J.Y., Sugino, A., Sunwoo, Y., The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol. Cells 15 (2003), 55–61.
-
(2003)
Mol. Cells
, vol.15
, pp. 55-61
-
-
Leem, S.H.1
Park, J.E.2
Kim, I.S.3
Chae, J.Y.4
Sugino, A.5
Sunwoo, Y.6
-
4
-
-
0038779227
-
Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors
-
[4] Niewerth, M., Kunze, D., Seibold, M., Schaller, M., Korting, H.C., Hube, B., Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob. Agents Chemother. 47 (2003), 1805–1817.
-
(2003)
Antimicrob. Agents Chemother.
, vol.47
, pp. 1805-1817
-
-
Niewerth, M.1
Kunze, D.2
Seibold, M.3
Schaller, M.4
Korting, H.C.5
Hube, B.6
-
5
-
-
70449466605
-
Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells
-
[5] Eberhard, Y., McDermott, S.P., Wang, X., Gronda, M., Venugopal, A., Wood, T.E., et al. Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood 114 (2009), 3064–3073.
-
(2009)
Blood
, vol.114
, pp. 3064-3073
-
-
Eberhard, Y.1
McDermott, S.P.2
Wang, X.3
Gronda, M.4
Venugopal, A.5
Wood, T.E.6
-
6
-
-
84897399513
-
Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies
-
[6] Minden, M.D., Hogge, D.E., Weir, S.J., Kasper, J., Webster, D.A., Patton, L., et al. Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies. Am. J. Hematol. 89 (2014), 363–368.
-
(2014)
Am. J. Hematol.
, vol.89
, pp. 363-368
-
-
Minden, M.D.1
Hogge, D.E.2
Weir, S.J.3
Kasper, J.4
Webster, D.A.5
Patton, L.6
-
7
-
-
78049512724
-
The antitumor activity of the fungicide ciclopirox
-
[7] Zhou, H., Shen, T., Luo, Y., Liu, L., Chen, W., Xu, B., et al. The antitumor activity of the fungicide ciclopirox. Int. J. Cancer 127 (2010), 2467–2477.
-
(2010)
Int. J. Cancer
, vol.127
, pp. 2467-2477
-
-
Zhou, H.1
Shen, T.2
Luo, Y.3
Liu, L.4
Chen, W.5
Xu, B.6
-
8
-
-
80755142841
-
Targeting the Wnt/beta-catenin pathway with the antifungal agent ciclopirox olamine in a murine myeloma model
-
[8] Kim, Y., Schmidt, M., Endo, T., Lu, D., Carson, D., Schmidt-Wolf, I.G., Targeting the Wnt/beta-catenin pathway with the antifungal agent ciclopirox olamine in a murine myeloma model. In Vivo 25 (2011), 887–893.
-
(2011)
In Vivo
, vol.25
, pp. 887-893
-
-
Kim, Y.1
Schmidt, M.2
Endo, T.3
Lu, D.4
Carson, D.5
Schmidt-Wolf, I.G.6
-
9
-
-
84920952690
-
Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway
-
[9] Zhou, H., Shen, T., Shang, C., Luo, Y., Liu, L., Yan, J., et al. Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway. Oncotarget 5 (2014), 10140–10150.
-
(2014)
Oncotarget
, vol.5
, pp. 10140-10150
-
-
Zhou, H.1
Shen, T.2
Shang, C.3
Luo, Y.4
Liu, L.5
Yan, J.6
-
10
-
-
0036681259
-
The antifungal drug ciclopirox inhibits deoxyhypusine and proline hydroxylation, endothelial cell growth and angiogenesis in vitro
-
[10] Clement, P.M., Hanauske-Abel, H.M., Wolff, E.C., Kleinman, H.K., Park, M.H., The antifungal drug ciclopirox inhibits deoxyhypusine and proline hydroxylation, endothelial cell growth and angiogenesis in vitro. Int. J. Cancer 100 (2002), 491–498.
-
(2002)
Int. J. Cancer
, vol.100
, pp. 491-498
-
-
Clement, P.M.1
Hanauske-Abel, H.M.2
Wolff, E.C.3
Kleinman, H.K.4
Park, M.H.5
-
11
-
-
0037390915
-
The antimycotic ciclopirox olamine induces HIF-1alpha stability, VEGF expression, and angiogenesis
-
[11] Linden, T., Katschinski, D.M., Eckhardt, K., Scheid, A., Pagel, H., Wenger, R.H., The antimycotic ciclopirox olamine induces HIF-1alpha stability, VEGF expression, and angiogenesis. Faseb J. 17 (2003), 761–763.
-
(2003)
Faseb J.
, vol.17
, pp. 761-763
-
-
Linden, T.1
Katschinski, D.M.2
Eckhardt, K.3
Scheid, A.4
Pagel, H.5
Wenger, R.H.6
-
12
-
-
79955633342
-
The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway
-
[12] Luo, Y., Zhou, H., Liu, L., Shen, T., Chen, W., Xu, B., et al. The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway. Oncogene 30 (2011), 2098–2107.
-
(2011)
Oncogene
, vol.30
, pp. 2098-2107
-
-
Luo, Y.1
Zhou, H.2
Liu, L.3
Shen, T.4
Chen, W.5
Xu, B.6
-
13
-
-
84883551479
-
Novel mTOR inhibitory activity of ciclopirox enhances parthenolide antileukemia activity
-
e794.
-
[13] Sen, S., Hassane, D.C., Corbett, C., Becker, M.W., Jordan, C.T., Guzman, M.L., Novel mTOR inhibitory activity of ciclopirox enhances parthenolide antileukemia activity. Exp. Hematol. 41 (2013), 799–807, e794.
-
(2013)
Exp. Hematol.
, vol.41
, pp. 799-807
-
-
Sen, S.1
Hassane, D.C.2
Corbett, C.3
Becker, M.W.4
Jordan, C.T.5
Guzman, M.L.6
-
14
-
-
84859778293
-
MTOR signaling in growth control and disease
-
[14] Laplante, M., Sabatini, D.M., MTOR signaling in growth control and disease. Cell 149 (2012), 274–293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
15
-
-
84883787742
-
MTOR kinase inhibitors as potential cancer therapeutic drugs
-
[15] Sun, S.Y., MTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Lett. 340 (2013), 1–8.
-
(2013)
Cancer Lett.
, vol.340
, pp. 1-8
-
-
Sun, S.Y.1
-
16
-
-
79953709986
-
Targeting the mTOR kinase domain: the second generation of mTOR inhibitors
-
[16] Zhang, Y.J., Duan, Y., Zheng, X.F., Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov. Today 16 (2011), 325–331.
-
(2011)
Drug Discov. Today
, vol.16
, pp. 325-331
-
-
Zhang, Y.J.1
Duan, Y.2
Zheng, X.F.3
-
17
-
-
84862908818
-
AMPK and mTOR in cellular energy homeostasis and drug targets
-
[17] Inoki, K., Kim, J., Guan, K.L., AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52 (2012), 381–400.
-
(2012)
Annu. Rev. Pharmacol. Toxicol.
, vol.52
, pp. 381-400
-
-
Inoki, K.1
Kim, J.2
Guan, K.L.3
-
18
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
[18] Sarbassov, D.D., Guertin, D.A., Ali, S.M., Sabatini, D.M., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307 (2005), 1098–1101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
19
-
-
58649092475
-
MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)
-
[19] Garcia-Martinez, J.M., Alessi, D.R., MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J. 416 (2008), 375–385.
-
(2008)
Biochem. J.
, vol.416
, pp. 375-385
-
-
Garcia-Martinez, J.M.1
Alessi, D.R.2
-
20
-
-
79955486858
-
MTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways
-
[20] Gulhati, P., Bowen, K.A., Liu, J., Stevens, P.D., Rychahou, P.G., Chen, M., et al. MTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 71 (2011), 3246–3256.
-
(2011)
Cancer Res.
, vol.71
, pp. 3246-3256
-
-
Gulhati, P.1
Bowen, K.A.2
Liu, J.3
Stevens, P.D.4
Rychahou, P.G.5
Chen, M.6
-
21
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
[21] Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M.A., Hall, A., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6 (2004), 1122–1128.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Ruegg, M.A.5
Hall, A.6
-
22
-
-
50649123206
-
Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins
-
[22] Liu, L., Chen, L., Chung, J., Huang, S., Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27 (2008), 4998–5010.
-
(2008)
Oncogene
, vol.27
, pp. 4998-5010
-
-
Liu, L.1
Chen, L.2
Chung, J.3
Huang, S.4
-
23
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
[23] Sarbassov, D.D., Ali, S.M., Kim, D.H., Guertin, D.A., Latek, R.R., Erdjument-Bromage, H., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14 (2004), 1296–1302.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
-
24
-
-
0041802820
-
Targeting mTOR signaling for cancer therapy
-
[24] Huang, S., Houghton, P.J., Targeting mTOR signaling for cancer therapy. Curr. Opin. Pharmacol. 3 (2003), 371–377.
-
(2003)
Curr. Opin. Pharmacol.
, vol.3
, pp. 371-377
-
-
Huang, S.1
Houghton, P.J.2
-
25
-
-
80655126355
-
MTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling
-
[25] Rodrik-Outmezguine, V.S., Chandarlapaty, S., Pagano, N.C., Poulikakos, P.I., Scaltriti, M., Moskatel, E., et al. MTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 1 (2011), 248–259.
-
(2011)
Cancer Discov.
, vol.1
, pp. 248-259
-
-
Rodrik-Outmezguine, V.S.1
Chandarlapaty, S.2
Pagano, N.C.3
Poulikakos, P.I.4
Scaltriti, M.5
Moskatel, E.6
-
26
-
-
84930579368
-
Clinical efficacy of mTOR inhibitors in solid tumors: a systematic review
-
[26] Huang, Z., Wu, Y., Zhou, X., Qian, J., Zhu, W., Shu, Y., et al. Clinical efficacy of mTOR inhibitors in solid tumors: a systematic review. Future Oncol. 11 (2015), 1687–1699.
-
(2015)
Future Oncol.
, vol.11
, pp. 1687-1699
-
-
Huang, Z.1
Wu, Y.2
Zhou, X.3
Qian, J.4
Zhu, W.5
Shu, Y.6
-
27
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
[27] Inoki, K., Zhu, T., Guan, K.L., TSC2 mediates cellular energy response to control cell growth and survival. Cell 115 (2003), 577–590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
28
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
[28] Woods, A., Johnstone, S.R., Dickerson, K., Leiper, F.C., Fryer, L.G., Neumann, D., et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13 (2003), 2004–2008.
-
(2003)
Curr. Biol.
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
Leiper, F.C.4
Fryer, L.G.5
Neumann, D.6
-
29
-
-
84919621076
-
AMPK–sensing energy while talking to other signaling pathways
-
[29] Hardie, D.G., AMPK–sensing energy while talking to other signaling pathways. Cell Metab. 20 (2014), 939–952.
-
(2014)
Cell Metab.
, vol.20
, pp. 939-952
-
-
Hardie, D.G.1
-
30
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
[30] Tee, A.R., Manning, B.D., Roux, P.P., Cantley, L.C., Blenis, J., Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13 (2003), 1259–1268.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
31
-
-
0038433304
-
Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
-
[31] Garami, A., Zwartkruis, F.J., Nobukuni, T., Joaquin, M., Roccio, M., Stocker, H., et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11 (2003), 1457–1466.
-
(2003)
Mol. Cell
, vol.11
, pp. 1457-1466
-
-
Garami, A.1
Zwartkruis, F.J.2
Nobukuni, T.3
Joaquin, M.4
Roccio, M.5
Stocker, H.6
-
32
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
[32] Inoki, K., Li, Y., Xu, T., Guan, K.L., Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17 (2003), 1829–1834.
-
(2003)
Genes Dev.
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
33
-
-
0038141979
-
Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
-
[33] Zhang, Y., Gao, X., Saucedo, L.J., Ru, B., Edgar, B.A., Pan, D., Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5 (2003), 578–581.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 578-581
-
-
Zhang, Y.1
Gao, X.2
Saucedo, L.J.3
Ru, B.4
Edgar, B.A.5
Pan, D.6
-
34
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
[34] Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30 (2008), 214–226.
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
-
35
-
-
33847651745
-
Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells
-
[35] Urano, J., Sato, T., Matsuo, T., Otsubo, Y., Yamamoto, M., Tamanoi, F., Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 3514–3519.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 3514-3519
-
-
Urano, J.1
Sato, T.2
Matsuo, T.3
Otsubo, Y.4
Yamamoto, M.5
Tamanoi, F.6
-
36
-
-
33746033831
-
Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions
-
[36] Yin, W., Cheepala, S., Roberts, J.N., Syson-Chan, K., DiGiovanni, J., Clifford, J.L., Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions. Mol. Cancer, 5, 2006, 15.
-
(2006)
Mol. Cancer
, vol.5
, pp. 15
-
-
Yin, W.1
Cheepala, S.2
Roberts, J.N.3
Syson-Chan, K.4
DiGiovanni, J.5
Clifford, J.L.6
-
37
-
-
40749116561
-
Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP
-
[37] Kim, Y.D., Park, K.G., Lee, Y.S., Park, Y.Y., Kim, D.K., Nedumaran, B., et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57 (2008), 306–314.
-
(2008)
Diabetes
, vol.57
, pp. 306-314
-
-
Kim, Y.D.1
Park, K.G.2
Lee, Y.S.3
Park, Y.Y.4
Kim, D.K.5
Nedumaran, B.6
-
38
-
-
33750858427
-
Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways
-
[38] Liu, L., Li, F., Cardelli, J.A., Martin, K.A., Blenis, J., Huang, S., Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene 25 (2006), 7029–7040.
-
(2006)
Oncogene
, vol.25
, pp. 7029-7040
-
-
Liu, L.1
Li, F.2
Cardelli, J.A.3
Martin, K.A.4
Blenis, J.5
Huang, S.6
-
39
-
-
33744829237
-
CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling
-
[39] Wan, X., Shen, N., Mendoza, A., Khanna, C., Helman, L.J., CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia 8 (2006), 394–401.
-
(2006)
Neoplasia
, vol.8
, pp. 394-401
-
-
Wan, X.1
Shen, N.2
Mendoza, A.3
Khanna, C.4
Helman, L.J.5
-
40
-
-
0032485937
-
Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability
-
[40] Hashemolhosseini, S., Nagamine, Y., Morley, S.J., Desrivieres, S., Mercep, L., Ferrari, S., Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J. Biol. Chem. 273 (1998), 14424–14429.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 14424-14429
-
-
Hashemolhosseini, S.1
Nagamine, Y.2
Morley, S.J.3
Desrivieres, S.4
Mercep, L.5
Ferrari, S.6
-
41
-
-
4043050174
-
G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells
-
[41] Gao, N., Flynn, D.C., Zhang, Z., Zhong, X.S., Walker, V., Liu, K.J., et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol. 287 (2004), C281–291.
-
(2004)
Am. J. Physiol. Cell Physiol.
, vol.287
, pp. C281-291
-
-
Gao, N.1
Flynn, D.C.2
Zhang, Z.3
Zhong, X.S.4
Walker, V.5
Liu, K.J.6
-
42
-
-
18844409151
-
Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax: Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity
-
[42] Tirado, O.M., Mateo-Lozano, S., Notario, V., Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax: Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity. Oncogene 24 (2005), 3348–3357.
-
(2005)
Oncogene
, vol.24
, pp. 3348-3357
-
-
Tirado, O.M.1
Mateo-Lozano, S.2
Notario, V.3
-
43
-
-
17444440115
-
Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone
-
[43] Stromberg, T., Dimberg, A., Hammarberg, A., Carlson, K., Osterborg, A., Nilsson, K., et al. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood 103 (2004), 3138–3147.
-
(2004)
Blood
, vol.103
, pp. 3138-3147
-
-
Stromberg, T.1
Dimberg, A.2
Hammarberg, A.3
Carlson, K.4
Osterborg, A.5
Nilsson, K.6
-
44
-
-
79954613601
-
Mammalian target of rapamycin regulates expression of beta-catenin in hepatocellular carcinoma
-
[44] Feng, Z., Fan, X., Jiao, Y., Ban, K., Mammalian target of rapamycin regulates expression of beta-catenin in hepatocellular carcinoma. Hum. Pathol. 42 (2011), 659–668.
-
(2011)
Hum. Pathol.
, vol.42
, pp. 659-668
-
-
Feng, Z.1
Fan, X.2
Jiao, Y.3
Ban, K.4
-
45
-
-
84859127106
-
Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression
-
[45] Luo, Y., Liu, L., Rogers, D., Su, W., Odaka, Y., Zhou, H., et al. Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression. Neoplasia 14 (2012), 228–237.
-
(2012)
Neoplasia
, vol.14
, pp. 228-237
-
-
Luo, Y.1
Liu, L.2
Rogers, D.3
Su, W.4
Odaka, Y.5
Zhou, H.6
-
46
-
-
4344610451
-
Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity
-
[46] Huang, S., Shu, L., Easton, J., Harwood, F.C., Germain, G.S., Ichijo, H., et al. Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity. J. Biol. Chem. 279 (2004), 36490–36496.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 36490-36496
-
-
Huang, S.1
Shu, L.2
Easton, J.3
Harwood, F.C.4
Germain, G.S.5
Ichijo, H.6
-
47
-
-
55849109650
-
Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma
-
[47] Schneider, A., Younis, R.H., Gutkind, J.S., Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma. Neoplasia 10 (2008), 1295–1302.
-
(2008)
Neoplasia
, vol.10
, pp. 1295-1302
-
-
Schneider, A.1
Younis, R.H.2
Gutkind, J.S.3
-
48
-
-
2942555355
-
Activation of HIF-1alpha mRNA by hypoxia and iron chelator in isolated rat carotid body
-
[48] Roy, A., Volgin, D.V., Baby, S.M., Mokashi, A., Kubin, L., Lahiri, S., Activation of HIF-1alpha mRNA by hypoxia and iron chelator in isolated rat carotid body. Neurosci. Lett. 363 (2004), 229–232.
-
(2004)
Neurosci. Lett.
, vol.363
, pp. 229-232
-
-
Roy, A.1
Volgin, D.V.2
Baby, S.M.3
Mokashi, A.4
Kubin, L.5
Lahiri, S.6
-
49
-
-
84877687558
-
Protein phosphatase 2A and DNA-dependent protein kinase are involved in mediating rapamycin-induced Akt phosphorylation
-
[49] Li, Y., Wang, X., Yue, P., Tao, H., Ramalingam, S.S., Owonikoko, T.K., et al. Protein phosphatase 2A and DNA-dependent protein kinase are involved in mediating rapamycin-induced Akt phosphorylation. J. Biol. Chem. 288 (2013), 13215–13224.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 13215-13224
-
-
Li, Y.1
Wang, X.2
Yue, P.3
Tao, H.4
Ramalingam, S.S.5
Owonikoko, T.K.6
-
50
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
[50] Sarbassov, D.D., Ali, S.M., Sengupta, S., Sheen, J.H., Hsu, P.P., Bagley, A.F., et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22 (2006), 159–168.
-
(2006)
Mol. Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.H.4
Hsu, P.P.5
Bagley, A.F.6
-
51
-
-
27644534999
-
Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade
-
[51] Shi, Y., Yan, H., Frost, P., Gera, J., Lichtenstein, A., Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol. Cancer Ther. 4 (2005), 1533–1540.
-
(2005)
Mol. Cancer Ther.
, vol.4
, pp. 1533-1540
-
-
Shi, Y.1
Yan, H.2
Frost, P.3
Gera, J.4
Lichtenstein, A.5
-
52
-
-
23844438209
-
Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition
-
[52] Sun, S.Y., Rosenberg, L.M., Wang, X., Zhou, Z., Yue, P., Fu, H., et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65 (2005), 7052–7058.
-
(2005)
Cancer Res.
, vol.65
, pp. 7052-7058
-
-
Sun, S.Y.1
Rosenberg, L.M.2
Wang, X.3
Zhou, Z.4
Yue, P.5
Fu, H.6
-
53
-
-
32944457518
-
MTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt
-
[53] O'Reilly, K.E., Rojo, F., She, Q.B., Solit, D., Mills, G.B., Smith, D., et al. MTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66 (2006), 1500–1508.
-
(2006)
Cancer Res.
, vol.66
, pp. 1500-1508
-
-
O'Reilly, K.E.1
Rojo, F.2
She, Q.B.3
Solit, D.4
Mills, G.B.5
Smith, D.6
-
54
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
[54] Hsu, P.P., Kang, S.A., Rameseder, J., Zhang, Y., Ottina, K.A., Lim, D., et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332 (2011), 1317–1322.
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
Zhang, Y.4
Ottina, K.A.5
Lim, D.6
-
55
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
[55] Yu, Y., Yoon, S.O., Poulogiannis, G., Yang, Q., Ma, X.M., Villen, J., et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332 (2011), 1322–1326.
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.O.2
Poulogiannis, G.3
Yang, Q.4
Ma, X.M.5
Villen, J.6
|