메뉴 건너뛰기




Volumn 116, Issue , 2016, Pages 39-50

Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK

Author keywords

AMPK; Ciclopirox; mTOR; Raptor; TSC2

Indexed keywords

ADENOSINE TRIPHOSPHATE; CICLOPIROXOLAMINE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; INITIATION FACTOR 4E BINDING PROTEIN 1; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; S6 KINASE; SOMATOMEDIN C RECEPTOR; SOMATOMEDIN RECEPTOR; TUBERIN; ANTINEOPLASTIC AGENT; CICLOPIROX; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MULTIPROTEIN COMPLEX; PYRIDONE DERIVATIVE; RECOMBINANT PROTEIN; TARGET OF RAPAMYCIN KINASE; TUMOR PROTEIN;

EID: 84983749117     PISSN: 00062952     EISSN: 18732968     Source Type: Journal    
DOI: 10.1016/j.bcp.2016.07.005     Document Type: Article
Times cited : (25)

References (55)
  • 1
    • 0026386859 scopus 로고
    • Ciclopirox olamine: a hydroxypyridone antifungal agent
    • [1] Abrams, B.B., Hanel, H., Hoehler, T., Ciclopirox olamine: a hydroxypyridone antifungal agent. Clin. Dermatol. 9 (1991), 471–477.
    • (1991) Clin. Dermatol. , vol.9 , pp. 471-477
    • Abrams, B.B.1    Hanel, H.2    Hoehler, T.3
  • 2
    • 0034855798 scopus 로고    scopus 로고
    • Ciclopirox: an overview
    • [2] Gupta, A.K., Ciclopirox: an overview. Int. J. Dermatol. 40 (2001), 305–310.
    • (2001) Int. J. Dermatol. , vol.40 , pp. 305-310
    • Gupta, A.K.1
  • 3
    • 0038517026 scopus 로고    scopus 로고
    • The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae
    • [3] Leem, S.H., Park, J.E., Kim, I.S., Chae, J.Y., Sugino, A., Sunwoo, Y., The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol. Cells 15 (2003), 55–61.
    • (2003) Mol. Cells , vol.15 , pp. 55-61
    • Leem, S.H.1    Park, J.E.2    Kim, I.S.3    Chae, J.Y.4    Sugino, A.5    Sunwoo, Y.6
  • 4
    • 0038779227 scopus 로고    scopus 로고
    • Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors
    • [4] Niewerth, M., Kunze, D., Seibold, M., Schaller, M., Korting, H.C., Hube, B., Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob. Agents Chemother. 47 (2003), 1805–1817.
    • (2003) Antimicrob. Agents Chemother. , vol.47 , pp. 1805-1817
    • Niewerth, M.1    Kunze, D.2    Seibold, M.3    Schaller, M.4    Korting, H.C.5    Hube, B.6
  • 5
    • 70449466605 scopus 로고    scopus 로고
    • Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells
    • [5] Eberhard, Y., McDermott, S.P., Wang, X., Gronda, M., Venugopal, A., Wood, T.E., et al. Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood 114 (2009), 3064–3073.
    • (2009) Blood , vol.114 , pp. 3064-3073
    • Eberhard, Y.1    McDermott, S.P.2    Wang, X.3    Gronda, M.4    Venugopal, A.5    Wood, T.E.6
  • 6
    • 84897399513 scopus 로고    scopus 로고
    • Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies
    • [6] Minden, M.D., Hogge, D.E., Weir, S.J., Kasper, J., Webster, D.A., Patton, L., et al. Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies. Am. J. Hematol. 89 (2014), 363–368.
    • (2014) Am. J. Hematol. , vol.89 , pp. 363-368
    • Minden, M.D.1    Hogge, D.E.2    Weir, S.J.3    Kasper, J.4    Webster, D.A.5    Patton, L.6
  • 7
    • 78049512724 scopus 로고    scopus 로고
    • The antitumor activity of the fungicide ciclopirox
    • [7] Zhou, H., Shen, T., Luo, Y., Liu, L., Chen, W., Xu, B., et al. The antitumor activity of the fungicide ciclopirox. Int. J. Cancer 127 (2010), 2467–2477.
    • (2010) Int. J. Cancer , vol.127 , pp. 2467-2477
    • Zhou, H.1    Shen, T.2    Luo, Y.3    Liu, L.4    Chen, W.5    Xu, B.6
  • 8
    • 80755142841 scopus 로고    scopus 로고
    • Targeting the Wnt/beta-catenin pathway with the antifungal agent ciclopirox olamine in a murine myeloma model
    • [8] Kim, Y., Schmidt, M., Endo, T., Lu, D., Carson, D., Schmidt-Wolf, I.G., Targeting the Wnt/beta-catenin pathway with the antifungal agent ciclopirox olamine in a murine myeloma model. In Vivo 25 (2011), 887–893.
    • (2011) In Vivo , vol.25 , pp. 887-893
    • Kim, Y.1    Schmidt, M.2    Endo, T.3    Lu, D.4    Carson, D.5    Schmidt-Wolf, I.G.6
  • 9
    • 84920952690 scopus 로고    scopus 로고
    • Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway
    • [9] Zhou, H., Shen, T., Shang, C., Luo, Y., Liu, L., Yan, J., et al. Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway. Oncotarget 5 (2014), 10140–10150.
    • (2014) Oncotarget , vol.5 , pp. 10140-10150
    • Zhou, H.1    Shen, T.2    Shang, C.3    Luo, Y.4    Liu, L.5    Yan, J.6
  • 10
    • 0036681259 scopus 로고    scopus 로고
    • The antifungal drug ciclopirox inhibits deoxyhypusine and proline hydroxylation, endothelial cell growth and angiogenesis in vitro
    • [10] Clement, P.M., Hanauske-Abel, H.M., Wolff, E.C., Kleinman, H.K., Park, M.H., The antifungal drug ciclopirox inhibits deoxyhypusine and proline hydroxylation, endothelial cell growth and angiogenesis in vitro. Int. J. Cancer 100 (2002), 491–498.
    • (2002) Int. J. Cancer , vol.100 , pp. 491-498
    • Clement, P.M.1    Hanauske-Abel, H.M.2    Wolff, E.C.3    Kleinman, H.K.4    Park, M.H.5
  • 11
    • 0037390915 scopus 로고    scopus 로고
    • The antimycotic ciclopirox olamine induces HIF-1alpha stability, VEGF expression, and angiogenesis
    • [11] Linden, T., Katschinski, D.M., Eckhardt, K., Scheid, A., Pagel, H., Wenger, R.H., The antimycotic ciclopirox olamine induces HIF-1alpha stability, VEGF expression, and angiogenesis. Faseb J. 17 (2003), 761–763.
    • (2003) Faseb J. , vol.17 , pp. 761-763
    • Linden, T.1    Katschinski, D.M.2    Eckhardt, K.3    Scheid, A.4    Pagel, H.5    Wenger, R.H.6
  • 12
    • 79955633342 scopus 로고    scopus 로고
    • The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway
    • [12] Luo, Y., Zhou, H., Liu, L., Shen, T., Chen, W., Xu, B., et al. The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway. Oncogene 30 (2011), 2098–2107.
    • (2011) Oncogene , vol.30 , pp. 2098-2107
    • Luo, Y.1    Zhou, H.2    Liu, L.3    Shen, T.4    Chen, W.5    Xu, B.6
  • 13
    • 84883551479 scopus 로고    scopus 로고
    • Novel mTOR inhibitory activity of ciclopirox enhances parthenolide antileukemia activity
    • e794.
    • [13] Sen, S., Hassane, D.C., Corbett, C., Becker, M.W., Jordan, C.T., Guzman, M.L., Novel mTOR inhibitory activity of ciclopirox enhances parthenolide antileukemia activity. Exp. Hematol. 41 (2013), 799–807, e794.
    • (2013) Exp. Hematol. , vol.41 , pp. 799-807
    • Sen, S.1    Hassane, D.C.2    Corbett, C.3    Becker, M.W.4    Jordan, C.T.5    Guzman, M.L.6
  • 14
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • [14] Laplante, M., Sabatini, D.M., MTOR signaling in growth control and disease. Cell 149 (2012), 274–293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 15
    • 84883787742 scopus 로고    scopus 로고
    • MTOR kinase inhibitors as potential cancer therapeutic drugs
    • [15] Sun, S.Y., MTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Lett. 340 (2013), 1–8.
    • (2013) Cancer Lett. , vol.340 , pp. 1-8
    • Sun, S.Y.1
  • 16
    • 79953709986 scopus 로고    scopus 로고
    • Targeting the mTOR kinase domain: the second generation of mTOR inhibitors
    • [16] Zhang, Y.J., Duan, Y., Zheng, X.F., Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov. Today 16 (2011), 325–331.
    • (2011) Drug Discov. Today , vol.16 , pp. 325-331
    • Zhang, Y.J.1    Duan, Y.2    Zheng, X.F.3
  • 17
    • 84862908818 scopus 로고    scopus 로고
    • AMPK and mTOR in cellular energy homeostasis and drug targets
    • [17] Inoki, K., Kim, J., Guan, K.L., AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52 (2012), 381–400.
    • (2012) Annu. Rev. Pharmacol. Toxicol. , vol.52 , pp. 381-400
    • Inoki, K.1    Kim, J.2    Guan, K.L.3
  • 18
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • [18] Sarbassov, D.D., Guertin, D.A., Ali, S.M., Sabatini, D.M., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307 (2005), 1098–1101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 19
    • 58649092475 scopus 로고    scopus 로고
    • MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)
    • [19] Garcia-Martinez, J.M., Alessi, D.R., MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J. 416 (2008), 375–385.
    • (2008) Biochem. J. , vol.416 , pp. 375-385
    • Garcia-Martinez, J.M.1    Alessi, D.R.2
  • 20
    • 79955486858 scopus 로고    scopus 로고
    • MTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways
    • [20] Gulhati, P., Bowen, K.A., Liu, J., Stevens, P.D., Rychahou, P.G., Chen, M., et al. MTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 71 (2011), 3246–3256.
    • (2011) Cancer Res. , vol.71 , pp. 3246-3256
    • Gulhati, P.1    Bowen, K.A.2    Liu, J.3    Stevens, P.D.4    Rychahou, P.G.5    Chen, M.6
  • 21
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • [21] Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M.A., Hall, A., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6 (2004), 1122–1128.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 1122-1128
    • Jacinto, E.1    Loewith, R.2    Schmidt, A.3    Lin, S.4    Ruegg, M.A.5    Hall, A.6
  • 22
    • 50649123206 scopus 로고    scopus 로고
    • Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins
    • [22] Liu, L., Chen, L., Chung, J., Huang, S., Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27 (2008), 4998–5010.
    • (2008) Oncogene , vol.27 , pp. 4998-5010
    • Liu, L.1    Chen, L.2    Chung, J.3    Huang, S.4
  • 23
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • [23] Sarbassov, D.D., Ali, S.M., Kim, D.H., Guertin, D.A., Latek, R.R., Erdjument-Bromage, H., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14 (2004), 1296–1302.
    • (2004) Curr. Biol. , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1    Ali, S.M.2    Kim, D.H.3    Guertin, D.A.4    Latek, R.R.5    Erdjument-Bromage, H.6
  • 24
    • 0041802820 scopus 로고    scopus 로고
    • Targeting mTOR signaling for cancer therapy
    • [24] Huang, S., Houghton, P.J., Targeting mTOR signaling for cancer therapy. Curr. Opin. Pharmacol. 3 (2003), 371–377.
    • (2003) Curr. Opin. Pharmacol. , vol.3 , pp. 371-377
    • Huang, S.1    Houghton, P.J.2
  • 26
    • 84930579368 scopus 로고    scopus 로고
    • Clinical efficacy of mTOR inhibitors in solid tumors: a systematic review
    • [26] Huang, Z., Wu, Y., Zhou, X., Qian, J., Zhu, W., Shu, Y., et al. Clinical efficacy of mTOR inhibitors in solid tumors: a systematic review. Future Oncol. 11 (2015), 1687–1699.
    • (2015) Future Oncol. , vol.11 , pp. 1687-1699
    • Huang, Z.1    Wu, Y.2    Zhou, X.3    Qian, J.4    Zhu, W.5    Shu, Y.6
  • 27
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • [27] Inoki, K., Zhu, T., Guan, K.L., TSC2 mediates cellular energy response to control cell growth and survival. Cell 115 (2003), 577–590.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 28
  • 29
    • 84919621076 scopus 로고    scopus 로고
    • AMPK–sensing energy while talking to other signaling pathways
    • [29] Hardie, D.G., AMPK–sensing energy while talking to other signaling pathways. Cell Metab. 20 (2014), 939–952.
    • (2014) Cell Metab. , vol.20 , pp. 939-952
    • Hardie, D.G.1
  • 30
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • [30] Tee, A.R., Manning, B.D., Roux, P.P., Cantley, L.C., Blenis, J., Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13 (2003), 1259–1268.
    • (2003) Curr. Biol. , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 31
    • 0038433304 scopus 로고    scopus 로고
    • Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
    • [31] Garami, A., Zwartkruis, F.J., Nobukuni, T., Joaquin, M., Roccio, M., Stocker, H., et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11 (2003), 1457–1466.
    • (2003) Mol. Cell , vol.11 , pp. 1457-1466
    • Garami, A.1    Zwartkruis, F.J.2    Nobukuni, T.3    Joaquin, M.4    Roccio, M.5    Stocker, H.6
  • 32
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • [32] Inoki, K., Li, Y., Xu, T., Guan, K.L., Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17 (2003), 1829–1834.
    • (2003) Genes Dev. , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.L.4
  • 33
    • 0038141979 scopus 로고    scopus 로고
    • Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
    • [33] Zhang, Y., Gao, X., Saucedo, L.J., Ru, B., Edgar, B.A., Pan, D., Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5 (2003), 578–581.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 578-581
    • Zhang, Y.1    Gao, X.2    Saucedo, L.J.3    Ru, B.4    Edgar, B.A.5    Pan, D.6
  • 35
    • 33847651745 scopus 로고    scopus 로고
    • Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells
    • [35] Urano, J., Sato, T., Matsuo, T., Otsubo, Y., Yamamoto, M., Tamanoi, F., Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 3514–3519.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 3514-3519
    • Urano, J.1    Sato, T.2    Matsuo, T.3    Otsubo, Y.4    Yamamoto, M.5    Tamanoi, F.6
  • 36
    • 33746033831 scopus 로고    scopus 로고
    • Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions
    • [36] Yin, W., Cheepala, S., Roberts, J.N., Syson-Chan, K., DiGiovanni, J., Clifford, J.L., Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions. Mol. Cancer, 5, 2006, 15.
    • (2006) Mol. Cancer , vol.5 , pp. 15
    • Yin, W.1    Cheepala, S.2    Roberts, J.N.3    Syson-Chan, K.4    DiGiovanni, J.5    Clifford, J.L.6
  • 37
    • 40749116561 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP
    • [37] Kim, Y.D., Park, K.G., Lee, Y.S., Park, Y.Y., Kim, D.K., Nedumaran, B., et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57 (2008), 306–314.
    • (2008) Diabetes , vol.57 , pp. 306-314
    • Kim, Y.D.1    Park, K.G.2    Lee, Y.S.3    Park, Y.Y.4    Kim, D.K.5    Nedumaran, B.6
  • 38
    • 33750858427 scopus 로고    scopus 로고
    • Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways
    • [38] Liu, L., Li, F., Cardelli, J.A., Martin, K.A., Blenis, J., Huang, S., Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene 25 (2006), 7029–7040.
    • (2006) Oncogene , vol.25 , pp. 7029-7040
    • Liu, L.1    Li, F.2    Cardelli, J.A.3    Martin, K.A.4    Blenis, J.5    Huang, S.6
  • 39
    • 33744829237 scopus 로고    scopus 로고
    • CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling
    • [39] Wan, X., Shen, N., Mendoza, A., Khanna, C., Helman, L.J., CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia 8 (2006), 394–401.
    • (2006) Neoplasia , vol.8 , pp. 394-401
    • Wan, X.1    Shen, N.2    Mendoza, A.3    Khanna, C.4    Helman, L.J.5
  • 40
    • 0032485937 scopus 로고    scopus 로고
    • Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability
    • [40] Hashemolhosseini, S., Nagamine, Y., Morley, S.J., Desrivieres, S., Mercep, L., Ferrari, S., Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J. Biol. Chem. 273 (1998), 14424–14429.
    • (1998) J. Biol. Chem. , vol.273 , pp. 14424-14429
    • Hashemolhosseini, S.1    Nagamine, Y.2    Morley, S.J.3    Desrivieres, S.4    Mercep, L.5    Ferrari, S.6
  • 41
    • 4043050174 scopus 로고    scopus 로고
    • G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells
    • [41] Gao, N., Flynn, D.C., Zhang, Z., Zhong, X.S., Walker, V., Liu, K.J., et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol. 287 (2004), C281–291.
    • (2004) Am. J. Physiol. Cell Physiol. , vol.287 , pp. C281-291
    • Gao, N.1    Flynn, D.C.2    Zhang, Z.3    Zhong, X.S.4    Walker, V.5    Liu, K.J.6
  • 42
    • 18844409151 scopus 로고    scopus 로고
    • Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax: Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity
    • [42] Tirado, O.M., Mateo-Lozano, S., Notario, V., Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax: Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity. Oncogene 24 (2005), 3348–3357.
    • (2005) Oncogene , vol.24 , pp. 3348-3357
    • Tirado, O.M.1    Mateo-Lozano, S.2    Notario, V.3
  • 43
    • 17444440115 scopus 로고    scopus 로고
    • Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone
    • [43] Stromberg, T., Dimberg, A., Hammarberg, A., Carlson, K., Osterborg, A., Nilsson, K., et al. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood 103 (2004), 3138–3147.
    • (2004) Blood , vol.103 , pp. 3138-3147
    • Stromberg, T.1    Dimberg, A.2    Hammarberg, A.3    Carlson, K.4    Osterborg, A.5    Nilsson, K.6
  • 44
    • 79954613601 scopus 로고    scopus 로고
    • Mammalian target of rapamycin regulates expression of beta-catenin in hepatocellular carcinoma
    • [44] Feng, Z., Fan, X., Jiao, Y., Ban, K., Mammalian target of rapamycin regulates expression of beta-catenin in hepatocellular carcinoma. Hum. Pathol. 42 (2011), 659–668.
    • (2011) Hum. Pathol. , vol.42 , pp. 659-668
    • Feng, Z.1    Fan, X.2    Jiao, Y.3    Ban, K.4
  • 45
    • 84859127106 scopus 로고    scopus 로고
    • Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression
    • [45] Luo, Y., Liu, L., Rogers, D., Su, W., Odaka, Y., Zhou, H., et al. Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression. Neoplasia 14 (2012), 228–237.
    • (2012) Neoplasia , vol.14 , pp. 228-237
    • Luo, Y.1    Liu, L.2    Rogers, D.3    Su, W.4    Odaka, Y.5    Zhou, H.6
  • 46
    • 4344610451 scopus 로고    scopus 로고
    • Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity
    • [46] Huang, S., Shu, L., Easton, J., Harwood, F.C., Germain, G.S., Ichijo, H., et al. Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity. J. Biol. Chem. 279 (2004), 36490–36496.
    • (2004) J. Biol. Chem. , vol.279 , pp. 36490-36496
    • Huang, S.1    Shu, L.2    Easton, J.3    Harwood, F.C.4    Germain, G.S.5    Ichijo, H.6
  • 47
    • 55849109650 scopus 로고    scopus 로고
    • Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma
    • [47] Schneider, A., Younis, R.H., Gutkind, J.S., Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma. Neoplasia 10 (2008), 1295–1302.
    • (2008) Neoplasia , vol.10 , pp. 1295-1302
    • Schneider, A.1    Younis, R.H.2    Gutkind, J.S.3
  • 48
    • 2942555355 scopus 로고    scopus 로고
    • Activation of HIF-1alpha mRNA by hypoxia and iron chelator in isolated rat carotid body
    • [48] Roy, A., Volgin, D.V., Baby, S.M., Mokashi, A., Kubin, L., Lahiri, S., Activation of HIF-1alpha mRNA by hypoxia and iron chelator in isolated rat carotid body. Neurosci. Lett. 363 (2004), 229–232.
    • (2004) Neurosci. Lett. , vol.363 , pp. 229-232
    • Roy, A.1    Volgin, D.V.2    Baby, S.M.3    Mokashi, A.4    Kubin, L.5    Lahiri, S.6
  • 49
    • 84877687558 scopus 로고    scopus 로고
    • Protein phosphatase 2A and DNA-dependent protein kinase are involved in mediating rapamycin-induced Akt phosphorylation
    • [49] Li, Y., Wang, X., Yue, P., Tao, H., Ramalingam, S.S., Owonikoko, T.K., et al. Protein phosphatase 2A and DNA-dependent protein kinase are involved in mediating rapamycin-induced Akt phosphorylation. J. Biol. Chem. 288 (2013), 13215–13224.
    • (2013) J. Biol. Chem. , vol.288 , pp. 13215-13224
    • Li, Y.1    Wang, X.2    Yue, P.3    Tao, H.4    Ramalingam, S.S.5    Owonikoko, T.K.6
  • 50
  • 51
    • 27644534999 scopus 로고    scopus 로고
    • Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade
    • [51] Shi, Y., Yan, H., Frost, P., Gera, J., Lichtenstein, A., Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol. Cancer Ther. 4 (2005), 1533–1540.
    • (2005) Mol. Cancer Ther. , vol.4 , pp. 1533-1540
    • Shi, Y.1    Yan, H.2    Frost, P.3    Gera, J.4    Lichtenstein, A.5
  • 52
    • 23844438209 scopus 로고    scopus 로고
    • Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition
    • [52] Sun, S.Y., Rosenberg, L.M., Wang, X., Zhou, Z., Yue, P., Fu, H., et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65 (2005), 7052–7058.
    • (2005) Cancer Res. , vol.65 , pp. 7052-7058
    • Sun, S.Y.1    Rosenberg, L.M.2    Wang, X.3    Zhou, Z.4    Yue, P.5    Fu, H.6
  • 53
    • 32944457518 scopus 로고    scopus 로고
    • MTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt
    • [53] O'Reilly, K.E., Rojo, F., She, Q.B., Solit, D., Mills, G.B., Smith, D., et al. MTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66 (2006), 1500–1508.
    • (2006) Cancer Res. , vol.66 , pp. 1500-1508
    • O'Reilly, K.E.1    Rojo, F.2    She, Q.B.3    Solit, D.4    Mills, G.B.5    Smith, D.6
  • 54
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • [54] Hsu, P.P., Kang, S.A., Rameseder, J., Zhang, Y., Ottina, K.A., Lim, D., et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332 (2011), 1317–1322.
    • (2011) Science , vol.332 , pp. 1317-1322
    • Hsu, P.P.1    Kang, S.A.2    Rameseder, J.3    Zhang, Y.4    Ottina, K.A.5    Lim, D.6
  • 55
    • 79958696336 scopus 로고    scopus 로고
    • Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
    • [55] Yu, Y., Yoon, S.O., Poulogiannis, G., Yang, Q., Ma, X.M., Villen, J., et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332 (2011), 1322–1326.
    • (2011) Science , vol.332 , pp. 1322-1326
    • Yu, Y.1    Yoon, S.O.2    Poulogiannis, G.3    Yang, Q.4    Ma, X.M.5    Villen, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.