-
1
-
-
0028264188
-
Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator
-
Akabas, M.H., C. Kaufmann, T.A. Cook, and P. Archdeacon. 1994. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269:14865-14868.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 14865-14868
-
-
Akabas, M.H.1
Kaufmann, C.2
Cook, T.A.3
Archdeacon, P.4
-
2
-
-
70350236733
-
Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore
-
Alexander, C., A. Ivetac, X. Liu, Y. Norimatsu, J.R. Serrano, A. Landstrom, M. Sansom, and D.C. Dawson. 2009. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Biochemistry. 48:10078-10088. http://dx.doi.org/10.1021/bi901314c
-
(2009)
Biochemistry.
, vol.48
, pp. 10078-10088
-
-
Alexander, C.1
Ivetac, A.2
Liu, X.3
Norimatsu, Y.4
Serrano, J.R.5
Landstrom, A.6
Sansom, M.7
Dawson, D.C.8
-
3
-
-
63449139456
-
Structure of P-glycoprotein reveals a molecular basis for polyspecific drug binding
-
Aller, S.G., J. Yu, A. Ward, Y. Weng, S. Chittaboina, R. Zhuo, P.M. Harrell, Y.T. Trinh, Q. Zhang, I.L. Urbatsch, and G. Chang. 2009. Structure of P-glycoprotein reveals a molecular basis for polyspecific drug binding. Science. 323:1718-1722. http://dx.doi.org/10.1126/science.1168750.
-
(2009)
Science.
, vol.323
, pp. 1718-1722
-
-
Aller, S.G.1
Yu, J.2
Ward, A.3
Weng, Y.4
Chittaboina, S.5
Zhuo, R.6
Harrell, P.M.7
Trinh, Y.T.8
Zhang, Q.9
Urbatsch, I.L.10
Chang, G.11
-
4
-
-
77956237499
-
Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation
-
Bai, Y., M. Li, and T.C. Hwang. 2010. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. J. Gen. Physiol. 136:293-309. http://dx.doi.org/10.1085/jgp.201010480.
-
(2010)
J. Gen. Physiol.
, vol.136
, pp. 293-309
-
-
Bai, Y.1
Li, M.2
Hwang, T.C.3
-
5
-
-
80555127440
-
Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7)
-
Bai, Y., M. Li, and T.C. Hwang. 2011. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). J. Gen. Physiol. 138:495-507. http://dx.doi.org/10.1085/jgp.201110705.
-
(2011)
J. Gen. Physiol.
, vol.138
, pp. 495-507
-
-
Bai, Y.1
Li, M.2
Hwang, T.C.3
-
6
-
-
42049096734
-
CLC-0 and CFTR: chloride channels evolved from transporters
-
Chen, T.Y., and T.C. Hwang. 2008. CLC-0 and CFTR: chloride channels evolved from transporters. Physiol. Rev. 88:351-387. http://dx.doi.org/10.1152/physrev.00058.2006.
-
(2008)
Physiol. Rev.
, vol.88
, pp. 351-387
-
-
Chen, T.Y.1
Hwang, T.C.2
-
7
-
-
84880338598
-
Rates and stoichiometries of metal ion probes of cysteine residues within ion channels
-
Choi, L.S., T. Mach, and H. Bayley. 2013. Rates and stoichiometries of metal ion probes of cysteine residues within ion channels. Biophys. J. 105:356-364. http://dx.doi.org/10.1016/j.bpj.2013.04.046.
-
(2013)
Biophys. J.
, vol.105
, pp. 356-364
-
-
Choi, L.S.1
Mach, T.2
Bayley, H.3
-
8
-
-
84903478669
-
Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state
-
Choudhury, H.G., Z. Tong, I. Mathavan, Y. Li, S. Iwata, S. Zirah, S. Rebuffat, H.W. van Veen, and K. Beis. 2014. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc. Natl. Acad. Sci. USA. 111:9145-9150. http://dx.doi.org/10.1073/pnas.1320506111.
-
(2014)
Proc. Natl. Acad. Sci. USA.
, vol.111
, pp. 9145-9150
-
-
Choudhury, H.G.1
Tong, Z.2
Mathavan, I.3
Li, Y.4
Iwata, S.5
Zirah, S.6
Rebuffat, S.7
van Veen, H.W.8
Beis, K.9
-
9
-
-
0009673010
-
Ion channel genes and human neurological disease: recent progress, prospects, and challenges
-
Cooper, E.C., and L.Y. Jan. 1999. Ion channel genes and human neurological disease: recent progress, prospects, and challenges. Proc. Natl. Acad. Sci. USA. 96:4759-4766. http://dx.doi.org/10.1073/pnas.96.9.4759.
-
(1999)
Proc. Natl. Acad. Sci. USA.
, vol.96
, pp. 4759-4766
-
-
Cooper, E.C.1
Jan, L.Y.2
-
10
-
-
84943189754
-
Cystic fibrosis transmembrane conductance regulator (CFTR): closed and open state channel models
-
Corradi, V., P. Vergani, and D.P. Tieleman. 2015. Cystic fibrosis transmembrane conductance regulator (CFTR): closed and open state channel models. J. Biol. Chem. 290:22891-22906. http://dx.doi.org/10.1074/jbc. M115.665125.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 22891-22906
-
-
Corradi, V.1
Vergani, P.2
Tieleman, D.P.3
-
11
-
-
0033063094
-
CFTR channel gating: Incremental progress in irreversible steps
-
Csanády, L., and D.C. Gadsby. 1999. CFTR channel gating: Incremental progress in irreversible steps. J. Gen. Physiol. 114:49-54. http://dx.doi.org/10.1085/jgp.114.1.49.
-
(1999)
J. Gen. Physiol.
, vol.114
, pp. 49-54
-
-
Csanády, L.1
Gadsby, D.C.2
-
12
-
-
84905394929
-
Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR
-
Cui, G., K.S. Rahman, D.T. Infield, C. Kuang, C.Z. Prince, and N.A. McCarty. 2014. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR. J. Gen. Physiol. 144:159-179. http://dx.doi.org/10.1085/jgp.201311122.
-
(2014)
J. Gen. Physiol.
, vol.144
, pp. 159-179
-
-
Cui, G.1
Rahman, K.S.2
Infield, D.T.3
Kuang, C.4
Prince, C.Z.5
McCarty, N.A.6
-
13
-
-
84864258150
-
New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation
-
Dalton, J., O. Kalid, M. Schushan, N. Ben-Tal, and J. Villà-Freixa. 2012. New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J. Chem. Inf. Model. 52:1842-1853. http://dx.doi.org/10.1021/ci2005884.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1842-1853
-
-
Dalton, J.1
Kalid, O.2
Schushan, M.3
Ben-Tal, N.4
Villà-Freixa, J.5
-
14
-
-
33748644877
-
Structure of a bacterial multidrug ABC transporter
-
Dawson, R.J., and K.P. Locher. 2006. Structure of a bacterial multidrug ABC transporter. Nature. 443:180-185. http://dx.doi.org/10.1038/nature05155.
-
(2006)
Nature.
, vol.443
, pp. 180-185
-
-
Dawson, R.J.1
Locher, K.P.2
-
15
-
-
25844487733
-
Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates
-
Dean, M., and T. Annilo. 2005. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet. 6:123-142. http://dx.doi.org/10.1146/annurev.genom.6.080604.162122.
-
(2005)
Annu. Rev. Genomics Hum. Genet.
, vol.6
, pp. 123-142
-
-
Dean, M.1
Annilo, T.2
-
16
-
-
0035923745
-
Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel
-
del Camino, D., and G. Yellen. 2001. Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron. 32:649-656. http://dx.doi.org/10.1016/S0896-6273(01)00487-1.
-
(2001)
Neuron.
, vol.32
, pp. 649-656
-
-
del Camino, D.1
Yellen, G.2
-
17
-
-
77957761417
-
Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel
-
El Hiani, Y., and P. Linsdell. 2010. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel. J. Biol. Chem. 285:32126-32140. http://dx.doi.org/10.1074/jbc. M110.113332.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 32126-32140
-
-
El Hiani, Y.1
Linsdell, P.2
-
18
-
-
84907610568
-
Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel
-
El Hiani, Y., and P. Linsdell. 2014. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel. J. Biol. Chem. 289:28149-28159. http://dx.doi.org/10.1074/jbc. M114.593103.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 28149-28159
-
-
El Hiani, Y.1
Linsdell, P.2
-
19
-
-
0032936619
-
Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis
-
Gadsby, D.C., and A.C. Nairn. 1999a. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol. Rev. 79:S77-S107.
-
(1999)
Physiol. Rev.
, vol.79
, pp. S77-S107
-
-
Gadsby, D.C.1
Nairn, A.C.2
-
21
-
-
33645307384
-
The ABC protein turned chloride channel whose failure causes cystic fibrosis
-
Gadsby, D.C., P. Vergani, and L. Csanády. 2006. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature. 440:477-483. http://dx.doi.org/10.1038/nature04712.
-
(2006)
Nature.
, vol.440
, pp. 477-483
-
-
Gadsby, D.C.1
Vergani, P.2
Csanády, L.3
-
22
-
-
84923668367
-
Localizing a gate in CFTR
-
Gao, X., and T.C. Hwang. 2015. Localizing a gate in CFTR. Proc. Natl. Acad. Sci. USA. 112:2461-2466. http://dx.doi.org/10.1073/pnas.1420676112.
-
(2015)
Proc. Natl. Acad. Sci. USA.
, vol.112
, pp. 2461-2466
-
-
Gao, X.1
Hwang, T.C.2
-
23
-
-
84874150515
-
Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation
-
Gao, X., Y. Bai, and T.C. Hwang. 2013. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation. Biophys. J. 104:786-797. http://dx.doi.org/10.1016/j.bpj.2012.12.048.
-
(2013)
Biophys. J.
, vol.104
, pp. 786-797
-
-
Gao, X.1
Bai, Y.2
Hwang, T.C.3
-
24
-
-
55549094466
-
Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating
-
He, L., A.A. Aleksandrov, A.W. Serohijos, T. Hegedus, L.A. Aleksandrov, L. Cui, N.V. Dokholyan, and J.R. Riordan. 2008. Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating. J. Biol. Chem. 283:26383-26390. http://dx.doi.org/10.1074/jbc. M803894200.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 26383-26390
-
-
He, L.1
Aleksandrov, A.A.2
Serohijos, A.W.3
Hegedus, T.4
Aleksandrov, L.A.5
Cui, L.6
Dokholyan, N.V.7
Riordan, J.R.8
-
25
-
-
84861310612
-
Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation
-
Hohl, M., C. Briand, M.G. Grütter, and M.A. Seeger. 2012. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat. Struct. Mol. Biol. 19:395-402. http://dx.doi.org/10.1038/nsmb.2267.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 395-402
-
-
Hohl, M.1
Briand, C.2
Grütter, M.G.3
Seeger, M.A.4
-
26
-
-
0032168179
-
The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge
-
Holmgren, M., K.S. Shin, and G. Yellen. 1998. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron. 21:617-621. http://dx.doi.org/10.1016/S0896-6273(00)80571-1.
-
(1998)
Neuron.
, vol.21
, pp. 617-621
-
-
Holmgren, M.1
Shin, K.S.2
Yellen, G.3
-
27
-
-
67649884419
-
Cadmium(II) complex formation with cysteine and penicillamine
-
Jalilehvand, F., B.O. Leung, and V. Mah. 2009. Cadmium(II) complex formation with cysteine and penicillamine. Inorg. Chem. 48:5758-5771. http://dx.doi.org/10.1021/ic802278r
-
(2009)
Inorg. Chem.
, vol.48
, pp. 5758-5771
-
-
Jalilehvand, F.1
Leung, B.O.2
Mah, V.3
-
28
-
-
84870847213
-
Nonequilibrium gating of CFTR on an equilibrium theme
-
Jih, K.Y., and T.C. Hwang. 2012. Nonequilibrium gating of CFTR on an equilibrium theme. Physiology (Bethesda). 27:351-361. http://dx.doi.org/10.1152/physiol.00026.2012.
-
(2012)
Physiology (Bethesda).
, vol.27
, pp. 351-361
-
-
Jih, K.Y.1
Hwang, T.C.2
-
29
-
-
84867883248
-
Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans
-
Jin, M.S., M.L. Oldham, Q. Zhang, and J. Chen. 2012. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature. 490:566-569. http://dx.doi.org/10.1038/nature11448.
-
(2012)
Nature.
, vol.490
, pp. 566-569
-
-
Jin, M.S.1
Oldham, M.L.2
Zhang, Q.3
Chen, J.4
-
30
-
-
84896512558
-
Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog
-
Kodan, A., T. Yamaguchi, T. Nakatsu, K. Sakiyama, C.J. Hipolito, A. Fujioka, R. Hirokane, K. Ikeguchi, B. Watanabe, J. Hiratake, et al. 2014. Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog. Proc. Natl. Acad. Sci. USA. 111:4049-4054. http://dx.doi.org/10.1073/pnas.1321562111.
-
(2014)
Proc. Natl. Acad. Sci. USA.
, vol.111
, pp. 4049-4054
-
-
Kodan, A.1
Yamaguchi, T.2
Nakatsu, T.3
Sakiyama, K.4
Hipolito, C.J.5
Fujioka, A.6
Hirokane, R.7
Ikeguchi, K.8
Watanabe, B.9
Hiratake, J.10
-
31
-
-
0035068698
-
Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant
-
Krezel, A., W. Lesniak, M. Jezowska-Bojczuk, P. Mlynarz, J. Brasuñ, H. Kozlowski, and W. Bal. 2001. Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. J. Inorg. Biochem. 84:77-88. http://dx.doi.org/10.1016/S0162-0134(00)00212-9.
-
(2001)
J. Inorg. Biochem.
, vol.84
, pp. 77-88
-
-
Krezel, A.1
Lesniak, W.2
Jezowska-Bojczuk, M.3
Mlynarz, P.4
Brasuñ, J.5
Kozlowski, H.6
Bal, W.7
-
32
-
-
84893088864
-
Functional architecture of the CFTR chloride channel
-
Linsdell, P. 2014. Functional architecture of the CFTR chloride channel. Mol. Membr. Biol. 31:1-16. http://dx.doi.org/10.3109/09687688.2013.868055.
-
(2014)
Mol. Membr. Biol.
, vol.31
, pp. 1-16
-
-
Linsdell, P.1
-
33
-
-
0030885564
-
Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions
-
Linsdell, P., J.A. Tabcharani, J.M. Rommens, Y.X. Hou, X.B. Chang, L.C. Tsui, J.R. Riordan, and J.W. Hanrahan. 1997. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J. Gen. Physiol. 110:355-364. http://dx.doi.org/10.1085/jgp.110.4.355.
-
(1997)
J. Gen. Physiol.
, vol.110
, pp. 355-364
-
-
Linsdell, P.1
Tabcharani, J.A.2
Rommens, J.M.3
Hou, Y.X.4
Chang, X.B.5
Tsui, L.C.6
Riordan, J.R.7
Hanrahan, J.W.8
-
35
-
-
33646363584
-
Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol
-
Liu, X., C. Alexander, J. Serrano, E. Borg, and D.C. Dawson. 2006. Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol. J. Biol. Chem. 281:8275-8285. http://dx.doi.org/10.1074/jbc. M512458200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 8275-8285
-
-
Liu, X.1
Alexander, C.2
Serrano, J.3
Borg, E.4
Dawson, D.C.5
-
36
-
-
0030795112
-
Gated access to the pore of a voltage-dependent K+ channel
-
Liu, Y., M. Holmgren, M.E. Jurman, and G. Yellen. 1997. Gated access to the pore of a voltage-dependent K+ channel. Neuron. 19:175-184. http://dx.doi.org/10.1016/S0896-6273(00)80357-8.
-
(1997)
Neuron.
, vol.19
, pp. 175-184
-
-
Liu, Y.1
Holmgren, M.2
Jurman, M.E.3
Yellen, G.4
-
37
-
-
0036896008
-
Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxininduced intestinal fluid secretion
-
Ma, T., J.R. Thiagarajah, H. Yang, N.D. Sonawane, C. Folli, L.J. Galietta, and A.S. Verkman. 2002. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxininduced intestinal fluid secretion. J. Clin. Invest. 110:1651-1658. http://dx.doi.org/10.1172/JCI0216112.
-
(2002)
J. Clin. Invest.
, vol.110
, pp. 1651-1658
-
-
Ma, T.1
Thiagarajah, J.R.2
Yang, H.3
Sonawane, N.D.4
Folli, C.5
Galietta, L.J.6
Verkman, A.S.7
-
38
-
-
33750222000
-
In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer
-
Mense, M., P. Vergani, D.M. White, G. Altberg, A.C. Nairn, and D.C. Gadsby. 2006. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J. 25:4728-4739. http://dx.doi.org/10.1038/sj.emboj.7601373.
-
(2006)
EMBO J.
, vol.25
, pp. 4728-4739
-
-
Mense, M.1
Vergani, P.2
White, D.M.3
Altberg, G.4
Nairn, A.C.5
Gadsby, D.C.6
-
39
-
-
84928493859
-
Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics
-
Mornon, J.P., B. Hoffmann, S. Jonic, P. Lehn, and I. Callebaut. 2015. Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell. Mol. Life Sci. 72:1377-1403. http://dx.doi.org/10.1007/s00018-014-1749-2.
-
(2015)
Cell. Mol. Life Sci.
, vol.72
, pp. 1377-1403
-
-
Mornon, J.P.1
Hoffmann, B.2
Jonic, S.3
Lehn, P.4
Callebaut, I.5
-
40
-
-
84858633600
-
Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore
-
Norimatsu, Y., A. Ivetac, C. Alexander, J. Kirkham, N. O'Donnell, D.C. Dawson, and M.S. Sansom. 2012. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore. Biochemistry. 51:2199-2212. http://dx.doi.org/10.1021/bi201888a
-
(2012)
Biochemistry.
, vol.51
, pp. 2199-2212
-
-
Norimatsu, Y.1
Ivetac, A.2
Alexander, C.3
Kirkham, J.4
O'Donnell, N.5
Dawson, D.C.6
Sansom, M.S.7
-
41
-
-
80054724207
-
Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant
-
Qian, F., Y. El Hiani, and P. Linsdell. 2011. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant. Pflugers Arch. 462:559-571. http://dx.doi.org/10.1007/s00424-011-0998-2.
-
(2011)
Pflugers Arch.
, vol.462
, pp. 559-571
-
-
Qian, F.1
El Hiani, Y.2
Linsdell, P.3
-
42
-
-
84884699027
-
Modeling the conformational changes underlying channel opening in CFTR
-
Rahman, K.S., G. Cui, S.C. Harvey, and N.A. McCarty. 2013. Modeling the conformational changes underlying channel opening in CFTR. PLoS One. 8:e74574. http://dx.doi.org/10.1371/journal.pone.0074574.
-
(2013)
PLoS One.
, vol.8
-
-
Rahman, K.S.1
Cui, G.2
Harvey, S.C.3
McCarty, N.A.4
-
43
-
-
0024424270
-
Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA
-
Riordan, J.R., J.M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plavsic, J.L. Chou, et al. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 245:1066-1073. http://dx.doi.org/10.1126/science.2475911.
-
(1989)
Science.
, vol.245
, pp. 1066-1073
-
-
Riordan, J.R.1
Rommens, J.M.2
Kerem, B.3
Alon, N.4
Rozmahel, R.5
Grzelczak, Z.6
Zielenski, J.7
Lok, S.8
Plavsic, N.9
Chou, J.L.10
-
44
-
-
0036143456
-
Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel
-
Rothberg, B.S., K.S. Shin, P.S. Phale, and G. Yellen. 2002. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel. J. Gen. Physiol. 119:83-91. http://dx.doi.org/10.1085/jgp.119.1.83.
-
(2002)
J. Gen. Physiol.
, vol.119
, pp. 83-91
-
-
Rothberg, B.S.1
Shin, K.S.2
Phale, P.S.3
Yellen, G.4
-
45
-
-
0242498603
-
Movements near the gate of a hyperpolarization-activated cation channel
-
Rothberg, B.S., K.S. Shin, and G. Yellen. 2003. Movements near the gate of a hyperpolarization-activated cation channel. J. Gen. Physiol. 122:501-510. http://dx.doi.org/10.1085/jgp.200308928.
-
(2003)
J. Gen. Physiol.
, vol.122
, pp. 501-510
-
-
Rothberg, B.S.1
Shin, K.S.2
Yellen, G.3
-
46
-
-
0038452402
-
Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins
-
Rulíšek, L., and J. Vondrášek. 1998. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J. Inorg. Biochem. 71:115-127. http://dx.doi.org/10.1016/S0162-0134(98)10042-9.
-
(1998)
J. Inorg. Biochem.
, vol.71
, pp. 115-127
-
-
Rulíšek, L.1
Vondrášek, J.2
-
47
-
-
84870776387
-
Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate
-
Ryu, S., and G. Yellen. 2012. Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate. J. Gen. Physiol. 140:469-479. http://dx.doi.org/10.1085/jgp.201210850.
-
(2012)
J. Gen. Physiol.
, vol.140
, pp. 469-479
-
-
Ryu, S.1
Yellen, G.2
-
48
-
-
42149120706
-
Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function
-
Serohijos, A.W., T. Hegedus, A.A. Aleksandrov, L. He, L. Cui, N.V. Dokholyan, and J.R. Riordan. 2008. Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc. Natl. Acad. Sci. USA. 105:3256-3261. http://dx.doi.org/10.1073/pnas.0800254105.
-
(2008)
Proc. Natl. Acad. Sci. USA.
, vol.105
, pp. 3256-3261
-
-
Serohijos, A.W.1
Hegedus, T.2
Aleksandrov, A.A.3
He, L.4
Cui, L.5
Dokholyan, N.V.6
Riordan, J.R.7
-
49
-
-
33748444936
-
CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore
-
Serrano, J.R., X. Liu, E.R. Borg, C.S. Alexander, C.F. Shaw III, and D.C. Dawson. 2006. CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore. Biophys. J. 91:1737-1748. http://dx.doi.org/10.1529/biophysj.105.078899.
-
(2006)
Biophys. J.
, vol.91
, pp. 1737-1748
-
-
Serrano, J.R.1
Liu, X.2
Borg, E.R.3
Alexander, C.S.4
Shaw, C.F.5
Dawson, D.C.6
-
50
-
-
0030847723
-
+ channels expressed in a murine cell line
-
+ channels expressed in a murine cell line. J. Physiol. 503:333-346. http://dx.doi.org/10.1111/j.1469-7793.1997.333bh.x
-
(1997)
J. Physiol.
, vol.503
, pp. 333-346
-
-
Sheppard, D.N.1
Robinson, K.A.2
-
51
-
-
84879002569
-
Structures of ABCB10, a human ATP-binding cassette transporter in apo-and nucleotide-bound states
-
Shintre, C.A., A.C. Pike, Q. Li, J.I. Kim, A.J. Barr, S. Goubin, L. Shrestha, J. Yang, G. Berridge, J. Ross, et al. 2013. Structures of ABCB10, a human ATP-binding cassette transporter in apo-and nucleotide-bound states. Proc. Natl. Acad. Sci. USA. 110:9710-9715. http://dx.doi.org/10.1073/pnas.1217042110.
-
(2013)
Proc. Natl. Acad. Sci. USA.
, vol.110
, pp. 9710-9715
-
-
Shintre, C.A.1
Pike, A.C.2
Li, Q.3
Kim, J.I.4
Barr, A.J.5
Goubin, S.6
Shrestha, L.7
Yang, J.8
Berridge, G.9
Ross, J.10
-
52
-
-
79961146667
-
Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore
-
Wang, W., Y. El Hiani, and P. Linsdell. 2011. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J. Gen. Physiol. 138:165-178. http://dx.doi.org/10.1085/jgp.201110605.
-
(2011)
J. Gen. Physiol.
, vol.138
, pp. 165-178
-
-
Wang, W.1
El Hiani, Y.2
Linsdell, P.3
-
53
-
-
84896690825
-
Relative contribution of different transmembrane segments to the CFTR chloride channel pore
-
Wang, W., Y. El Hiani, H.N. Rubaiy, and P. Linsdell. 2014. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Arch. 466:477-490. http://dx.doi.org/10.1007/s00424-013-1317-x
-
(2014)
Pflugers Arch.
, vol.466
, pp. 477-490
-
-
Wang, W.1
El Hiani, Y.2
Rubaiy, H.N.3
Linsdell, P.4
-
54
-
-
36348989763
-
Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein
-
Wang, Y., T.W. Loo, M.C. Bartlett, and D.M. Clarke. 2007. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein. J. Biol. Chem. 282:33247-33251. http://dx.doi.org/10.1074/jbc. C700175200.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 33247-33251
-
-
Wang, Y.1
Loo, T.W.2
Bartlett, M.C.3
Clarke, D.M.4
-
55
-
-
37649004412
-
Flexibility in the ABC transporter MsbA: Alternating access with a twist
-
Ward, A., C.L. Reyes, J. Yu, C.B. Roth, and G. Chang. 2007. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc. Natl. Acad. Sci. USA. 104:19005-19010. http://dx.doi.org/10.1073/pnas.0709388104.
-
(2007)
Proc. Natl. Acad. Sci. USA.
, vol.104
, pp. 19005-19010
-
-
Ward, A.1
Reyes, C.L.2
Yu, J.3
Roth, C.B.4
Chang, G.5
-
56
-
-
1942467020
-
Intracellular gate opening in Shaker K+ channels defined by highaffinity metal bridges
-
Webster, S.M., D. Del Camino, J.P. Dekker, and G. Yellen. 2004. Intracellular gate opening in Shaker K+ channels defined by highaffinity metal bridges. Nature. 428:864-868. http://dx.doi.org/10.1038/nature02468.
-
(2004)
Nature.
, vol.428
, pp. 864-868
-
-
Webster, S.M.1
Del Camino, D.2
Dekker, J.P.3
Yellen, G.4
-
57
-
-
0032102496
-
The location of the gate in the acetylcholine receptor channel
-
Wilson, G.G., and A. Karlin. 1998. The location of the gate in the acetylcholine receptor channel. Neuron. 20:1269-1281. http://dx.doi.org/10.1016/S0896-6273(00)80506-1.
-
(1998)
Neuron.
, vol.20
, pp. 1269-1281
-
-
Wilson, G.G.1
Karlin, A.2
-
58
-
-
0028297301
-
An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding
-
Yellen, G., D. Sodickson, T.Y. Chen, and M.E. Jurman. 1994. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66:1068-1075. http://dx.doi.org/10.1016/S0006-3495(94)80888-4.
-
(1994)
Biophys. J.
, vol.66
, pp. 1068-1075
-
-
Yellen, G.1
Sodickson, D.2
Chen, T.Y.3
Jurman, M.E.4
-
59
-
-
84934924925
-
The fifth transmembrane segment of cystic fibrosis transmembrane conductance regulator contributes to its anion permeation pathway
-
Zhang, J., and T.C. Hwang. 2015. The fifth transmembrane segment of cystic fibrosis transmembrane conductance regulator contributes to its anion permeation pathway. Biochemistry. 54:3839-3850. http://dx.doi.org/10.1021/acs.biochem.5b00427.
-
(2015)
Biochemistry.
, vol.54
, pp. 3839-3850
-
-
Zhang, J.1
Hwang, T.C.2
-
60
-
-
0036846927
-
Probing an open CFTR pore with organic anion blockers
-
Zhou, Z., S. Hu, and T.C. Hwang. 2002. Probing an open CFTR pore with organic anion blockers. J. Gen. Physiol. 120:647-662. http://dx.doi.org/10.1085/jgp.20028685.
-
(2002)
J. Gen. Physiol.
, vol.120
, pp. 647-662
-
-
Zhou, Z.1
Hu, S.2
Hwang, T.C.3
|