메뉴 건너뛰기




Volumn 147, Issue 5, 2016, Pages 407-422

Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway

Author keywords

[No Author keywords available]

Indexed keywords

CHLORIDE; CYSTEINE; CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR;

EID: 84983486746     PISSN: 00221295     EISSN: 15407748     Source Type: Journal    
DOI: 10.1085/jgp.201511557     Document Type: Article
Times cited : (13)

References (60)
  • 1
    • 0028264188 scopus 로고
    • Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator
    • Akabas, M.H., C. Kaufmann, T.A. Cook, and P. Archdeacon. 1994. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269:14865-14868.
    • (1994) J. Biol. Chem. , vol.269 , pp. 14865-14868
    • Akabas, M.H.1    Kaufmann, C.2    Cook, T.A.3    Archdeacon, P.4
  • 2
    • 70350236733 scopus 로고    scopus 로고
    • Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore
    • Alexander, C., A. Ivetac, X. Liu, Y. Norimatsu, J.R. Serrano, A. Landstrom, M. Sansom, and D.C. Dawson. 2009. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Biochemistry. 48:10078-10088. http://dx.doi.org/10.1021/bi901314c
    • (2009) Biochemistry. , vol.48 , pp. 10078-10088
    • Alexander, C.1    Ivetac, A.2    Liu, X.3    Norimatsu, Y.4    Serrano, J.R.5    Landstrom, A.6    Sansom, M.7    Dawson, D.C.8
  • 4
    • 77956237499 scopus 로고    scopus 로고
    • Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation
    • Bai, Y., M. Li, and T.C. Hwang. 2010. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. J. Gen. Physiol. 136:293-309. http://dx.doi.org/10.1085/jgp.201010480.
    • (2010) J. Gen. Physiol. , vol.136 , pp. 293-309
    • Bai, Y.1    Li, M.2    Hwang, T.C.3
  • 5
    • 80555127440 scopus 로고    scopus 로고
    • Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7)
    • Bai, Y., M. Li, and T.C. Hwang. 2011. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). J. Gen. Physiol. 138:495-507. http://dx.doi.org/10.1085/jgp.201110705.
    • (2011) J. Gen. Physiol. , vol.138 , pp. 495-507
    • Bai, Y.1    Li, M.2    Hwang, T.C.3
  • 6
    • 42049096734 scopus 로고    scopus 로고
    • CLC-0 and CFTR: chloride channels evolved from transporters
    • Chen, T.Y., and T.C. Hwang. 2008. CLC-0 and CFTR: chloride channels evolved from transporters. Physiol. Rev. 88:351-387. http://dx.doi.org/10.1152/physrev.00058.2006.
    • (2008) Physiol. Rev. , vol.88 , pp. 351-387
    • Chen, T.Y.1    Hwang, T.C.2
  • 7
    • 84880338598 scopus 로고    scopus 로고
    • Rates and stoichiometries of metal ion probes of cysteine residues within ion channels
    • Choi, L.S., T. Mach, and H. Bayley. 2013. Rates and stoichiometries of metal ion probes of cysteine residues within ion channels. Biophys. J. 105:356-364. http://dx.doi.org/10.1016/j.bpj.2013.04.046.
    • (2013) Biophys. J. , vol.105 , pp. 356-364
    • Choi, L.S.1    Mach, T.2    Bayley, H.3
  • 9
    • 0009673010 scopus 로고    scopus 로고
    • Ion channel genes and human neurological disease: recent progress, prospects, and challenges
    • Cooper, E.C., and L.Y. Jan. 1999. Ion channel genes and human neurological disease: recent progress, prospects, and challenges. Proc. Natl. Acad. Sci. USA. 96:4759-4766. http://dx.doi.org/10.1073/pnas.96.9.4759.
    • (1999) Proc. Natl. Acad. Sci. USA. , vol.96 , pp. 4759-4766
    • Cooper, E.C.1    Jan, L.Y.2
  • 10
    • 84943189754 scopus 로고    scopus 로고
    • Cystic fibrosis transmembrane conductance regulator (CFTR): closed and open state channel models
    • Corradi, V., P. Vergani, and D.P. Tieleman. 2015. Cystic fibrosis transmembrane conductance regulator (CFTR): closed and open state channel models. J. Biol. Chem. 290:22891-22906. http://dx.doi.org/10.1074/jbc. M115.665125.
    • (2015) J. Biol. Chem. , vol.290 , pp. 22891-22906
    • Corradi, V.1    Vergani, P.2    Tieleman, D.P.3
  • 11
    • 0033063094 scopus 로고    scopus 로고
    • CFTR channel gating: Incremental progress in irreversible steps
    • Csanády, L., and D.C. Gadsby. 1999. CFTR channel gating: Incremental progress in irreversible steps. J. Gen. Physiol. 114:49-54. http://dx.doi.org/10.1085/jgp.114.1.49.
    • (1999) J. Gen. Physiol. , vol.114 , pp. 49-54
    • Csanády, L.1    Gadsby, D.C.2
  • 12
    • 84905394929 scopus 로고    scopus 로고
    • Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR
    • Cui, G., K.S. Rahman, D.T. Infield, C. Kuang, C.Z. Prince, and N.A. McCarty. 2014. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR. J. Gen. Physiol. 144:159-179. http://dx.doi.org/10.1085/jgp.201311122.
    • (2014) J. Gen. Physiol. , vol.144 , pp. 159-179
    • Cui, G.1    Rahman, K.S.2    Infield, D.T.3    Kuang, C.4    Prince, C.Z.5    McCarty, N.A.6
  • 13
    • 84864258150 scopus 로고    scopus 로고
    • New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation
    • Dalton, J., O. Kalid, M. Schushan, N. Ben-Tal, and J. Villà-Freixa. 2012. New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J. Chem. Inf. Model. 52:1842-1853. http://dx.doi.org/10.1021/ci2005884.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1842-1853
    • Dalton, J.1    Kalid, O.2    Schushan, M.3    Ben-Tal, N.4    Villà-Freixa, J.5
  • 14
    • 33748644877 scopus 로고    scopus 로고
    • Structure of a bacterial multidrug ABC transporter
    • Dawson, R.J., and K.P. Locher. 2006. Structure of a bacterial multidrug ABC transporter. Nature. 443:180-185. http://dx.doi.org/10.1038/nature05155.
    • (2006) Nature. , vol.443 , pp. 180-185
    • Dawson, R.J.1    Locher, K.P.2
  • 15
    • 25844487733 scopus 로고    scopus 로고
    • Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates
    • Dean, M., and T. Annilo. 2005. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet. 6:123-142. http://dx.doi.org/10.1146/annurev.genom.6.080604.162122.
    • (2005) Annu. Rev. Genomics Hum. Genet. , vol.6 , pp. 123-142
    • Dean, M.1    Annilo, T.2
  • 16
    • 0035923745 scopus 로고    scopus 로고
    • Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel
    • del Camino, D., and G. Yellen. 2001. Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron. 32:649-656. http://dx.doi.org/10.1016/S0896-6273(01)00487-1.
    • (2001) Neuron. , vol.32 , pp. 649-656
    • del Camino, D.1    Yellen, G.2
  • 17
    • 77957761417 scopus 로고    scopus 로고
    • Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel
    • El Hiani, Y., and P. Linsdell. 2010. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel. J. Biol. Chem. 285:32126-32140. http://dx.doi.org/10.1074/jbc. M110.113332.
    • (2010) J. Biol. Chem. , vol.285 , pp. 32126-32140
    • El Hiani, Y.1    Linsdell, P.2
  • 18
    • 84907610568 scopus 로고    scopus 로고
    • Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel
    • El Hiani, Y., and P. Linsdell. 2014. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel. J. Biol. Chem. 289:28149-28159. http://dx.doi.org/10.1074/jbc. M114.593103.
    • (2014) J. Biol. Chem. , vol.289 , pp. 28149-28159
    • El Hiani, Y.1    Linsdell, P.2
  • 19
    • 0032936619 scopus 로고    scopus 로고
    • Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis
    • Gadsby, D.C., and A.C. Nairn. 1999a. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol. Rev. 79:S77-S107.
    • (1999) Physiol. Rev. , vol.79 , pp. S77-S107
    • Gadsby, D.C.1    Nairn, A.C.2
  • 21
    • 33645307384 scopus 로고    scopus 로고
    • The ABC protein turned chloride channel whose failure causes cystic fibrosis
    • Gadsby, D.C., P. Vergani, and L. Csanády. 2006. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature. 440:477-483. http://dx.doi.org/10.1038/nature04712.
    • (2006) Nature. , vol.440 , pp. 477-483
    • Gadsby, D.C.1    Vergani, P.2    Csanády, L.3
  • 22
    • 84923668367 scopus 로고    scopus 로고
    • Localizing a gate in CFTR
    • Gao, X., and T.C. Hwang. 2015. Localizing a gate in CFTR. Proc. Natl. Acad. Sci. USA. 112:2461-2466. http://dx.doi.org/10.1073/pnas.1420676112.
    • (2015) Proc. Natl. Acad. Sci. USA. , vol.112 , pp. 2461-2466
    • Gao, X.1    Hwang, T.C.2
  • 23
    • 84874150515 scopus 로고    scopus 로고
    • Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation
    • Gao, X., Y. Bai, and T.C. Hwang. 2013. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation. Biophys. J. 104:786-797. http://dx.doi.org/10.1016/j.bpj.2012.12.048.
    • (2013) Biophys. J. , vol.104 , pp. 786-797
    • Gao, X.1    Bai, Y.2    Hwang, T.C.3
  • 24
    • 55549094466 scopus 로고    scopus 로고
    • Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating
    • He, L., A.A. Aleksandrov, A.W. Serohijos, T. Hegedus, L.A. Aleksandrov, L. Cui, N.V. Dokholyan, and J.R. Riordan. 2008. Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating. J. Biol. Chem. 283:26383-26390. http://dx.doi.org/10.1074/jbc. M803894200.
    • (2008) J. Biol. Chem. , vol.283 , pp. 26383-26390
    • He, L.1    Aleksandrov, A.A.2    Serohijos, A.W.3    Hegedus, T.4    Aleksandrov, L.A.5    Cui, L.6    Dokholyan, N.V.7    Riordan, J.R.8
  • 25
    • 84861310612 scopus 로고    scopus 로고
    • Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation
    • Hohl, M., C. Briand, M.G. Grütter, and M.A. Seeger. 2012. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat. Struct. Mol. Biol. 19:395-402. http://dx.doi.org/10.1038/nsmb.2267.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 395-402
    • Hohl, M.1    Briand, C.2    Grütter, M.G.3    Seeger, M.A.4
  • 26
    • 0032168179 scopus 로고    scopus 로고
    • The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge
    • Holmgren, M., K.S. Shin, and G. Yellen. 1998. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron. 21:617-621. http://dx.doi.org/10.1016/S0896-6273(00)80571-1.
    • (1998) Neuron. , vol.21 , pp. 617-621
    • Holmgren, M.1    Shin, K.S.2    Yellen, G.3
  • 27
    • 67649884419 scopus 로고    scopus 로고
    • Cadmium(II) complex formation with cysteine and penicillamine
    • Jalilehvand, F., B.O. Leung, and V. Mah. 2009. Cadmium(II) complex formation with cysteine and penicillamine. Inorg. Chem. 48:5758-5771. http://dx.doi.org/10.1021/ic802278r
    • (2009) Inorg. Chem. , vol.48 , pp. 5758-5771
    • Jalilehvand, F.1    Leung, B.O.2    Mah, V.3
  • 28
    • 84870847213 scopus 로고    scopus 로고
    • Nonequilibrium gating of CFTR on an equilibrium theme
    • Jih, K.Y., and T.C. Hwang. 2012. Nonequilibrium gating of CFTR on an equilibrium theme. Physiology (Bethesda). 27:351-361. http://dx.doi.org/10.1152/physiol.00026.2012.
    • (2012) Physiology (Bethesda). , vol.27 , pp. 351-361
    • Jih, K.Y.1    Hwang, T.C.2
  • 29
    • 84867883248 scopus 로고    scopus 로고
    • Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans
    • Jin, M.S., M.L. Oldham, Q. Zhang, and J. Chen. 2012. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature. 490:566-569. http://dx.doi.org/10.1038/nature11448.
    • (2012) Nature. , vol.490 , pp. 566-569
    • Jin, M.S.1    Oldham, M.L.2    Zhang, Q.3    Chen, J.4
  • 32
    • 84893088864 scopus 로고    scopus 로고
    • Functional architecture of the CFTR chloride channel
    • Linsdell, P. 2014. Functional architecture of the CFTR chloride channel. Mol. Membr. Biol. 31:1-16. http://dx.doi.org/10.3109/09687688.2013.868055.
    • (2014) Mol. Membr. Biol. , vol.31 , pp. 1-16
    • Linsdell, P.1
  • 33
    • 0030885564 scopus 로고    scopus 로고
    • Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions
    • Linsdell, P., J.A. Tabcharani, J.M. Rommens, Y.X. Hou, X.B. Chang, L.C. Tsui, J.R. Riordan, and J.W. Hanrahan. 1997. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J. Gen. Physiol. 110:355-364. http://dx.doi.org/10.1085/jgp.110.4.355.
    • (1997) J. Gen. Physiol. , vol.110 , pp. 355-364
    • Linsdell, P.1    Tabcharani, J.A.2    Rommens, J.M.3    Hou, Y.X.4    Chang, X.B.5    Tsui, L.C.6    Riordan, J.R.7    Hanrahan, J.W.8
  • 35
    • 33646363584 scopus 로고    scopus 로고
    • Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol
    • Liu, X., C. Alexander, J. Serrano, E. Borg, and D.C. Dawson. 2006. Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol. J. Biol. Chem. 281:8275-8285. http://dx.doi.org/10.1074/jbc. M512458200.
    • (2006) J. Biol. Chem. , vol.281 , pp. 8275-8285
    • Liu, X.1    Alexander, C.2    Serrano, J.3    Borg, E.4    Dawson, D.C.5
  • 36
    • 0030795112 scopus 로고    scopus 로고
    • Gated access to the pore of a voltage-dependent K+ channel
    • Liu, Y., M. Holmgren, M.E. Jurman, and G. Yellen. 1997. Gated access to the pore of a voltage-dependent K+ channel. Neuron. 19:175-184. http://dx.doi.org/10.1016/S0896-6273(00)80357-8.
    • (1997) Neuron. , vol.19 , pp. 175-184
    • Liu, Y.1    Holmgren, M.2    Jurman, M.E.3    Yellen, G.4
  • 37
    • 0036896008 scopus 로고    scopus 로고
    • Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxininduced intestinal fluid secretion
    • Ma, T., J.R. Thiagarajah, H. Yang, N.D. Sonawane, C. Folli, L.J. Galietta, and A.S. Verkman. 2002. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxininduced intestinal fluid secretion. J. Clin. Invest. 110:1651-1658. http://dx.doi.org/10.1172/JCI0216112.
    • (2002) J. Clin. Invest. , vol.110 , pp. 1651-1658
    • Ma, T.1    Thiagarajah, J.R.2    Yang, H.3    Sonawane, N.D.4    Folli, C.5    Galietta, L.J.6    Verkman, A.S.7
  • 38
    • 33750222000 scopus 로고    scopus 로고
    • In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer
    • Mense, M., P. Vergani, D.M. White, G. Altberg, A.C. Nairn, and D.C. Gadsby. 2006. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J. 25:4728-4739. http://dx.doi.org/10.1038/sj.emboj.7601373.
    • (2006) EMBO J. , vol.25 , pp. 4728-4739
    • Mense, M.1    Vergani, P.2    White, D.M.3    Altberg, G.4    Nairn, A.C.5    Gadsby, D.C.6
  • 39
    • 84928493859 scopus 로고    scopus 로고
    • Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics
    • Mornon, J.P., B. Hoffmann, S. Jonic, P. Lehn, and I. Callebaut. 2015. Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell. Mol. Life Sci. 72:1377-1403. http://dx.doi.org/10.1007/s00018-014-1749-2.
    • (2015) Cell. Mol. Life Sci. , vol.72 , pp. 1377-1403
    • Mornon, J.P.1    Hoffmann, B.2    Jonic, S.3    Lehn, P.4    Callebaut, I.5
  • 40
    • 84858633600 scopus 로고    scopus 로고
    • Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore
    • Norimatsu, Y., A. Ivetac, C. Alexander, J. Kirkham, N. O'Donnell, D.C. Dawson, and M.S. Sansom. 2012. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore. Biochemistry. 51:2199-2212. http://dx.doi.org/10.1021/bi201888a
    • (2012) Biochemistry. , vol.51 , pp. 2199-2212
    • Norimatsu, Y.1    Ivetac, A.2    Alexander, C.3    Kirkham, J.4    O'Donnell, N.5    Dawson, D.C.6    Sansom, M.S.7
  • 41
    • 80054724207 scopus 로고    scopus 로고
    • Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant
    • Qian, F., Y. El Hiani, and P. Linsdell. 2011. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant. Pflugers Arch. 462:559-571. http://dx.doi.org/10.1007/s00424-011-0998-2.
    • (2011) Pflugers Arch. , vol.462 , pp. 559-571
    • Qian, F.1    El Hiani, Y.2    Linsdell, P.3
  • 42
    • 84884699027 scopus 로고    scopus 로고
    • Modeling the conformational changes underlying channel opening in CFTR
    • Rahman, K.S., G. Cui, S.C. Harvey, and N.A. McCarty. 2013. Modeling the conformational changes underlying channel opening in CFTR. PLoS One. 8:e74574. http://dx.doi.org/10.1371/journal.pone.0074574.
    • (2013) PLoS One. , vol.8
    • Rahman, K.S.1    Cui, G.2    Harvey, S.C.3    McCarty, N.A.4
  • 44
    • 0036143456 scopus 로고    scopus 로고
    • Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel
    • Rothberg, B.S., K.S. Shin, P.S. Phale, and G. Yellen. 2002. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel. J. Gen. Physiol. 119:83-91. http://dx.doi.org/10.1085/jgp.119.1.83.
    • (2002) J. Gen. Physiol. , vol.119 , pp. 83-91
    • Rothberg, B.S.1    Shin, K.S.2    Phale, P.S.3    Yellen, G.4
  • 45
    • 0242498603 scopus 로고    scopus 로고
    • Movements near the gate of a hyperpolarization-activated cation channel
    • Rothberg, B.S., K.S. Shin, and G. Yellen. 2003. Movements near the gate of a hyperpolarization-activated cation channel. J. Gen. Physiol. 122:501-510. http://dx.doi.org/10.1085/jgp.200308928.
    • (2003) J. Gen. Physiol. , vol.122 , pp. 501-510
    • Rothberg, B.S.1    Shin, K.S.2    Yellen, G.3
  • 46
    • 0038452402 scopus 로고    scopus 로고
    • Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins
    • Rulíšek, L., and J. Vondrášek. 1998. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J. Inorg. Biochem. 71:115-127. http://dx.doi.org/10.1016/S0162-0134(98)10042-9.
    • (1998) J. Inorg. Biochem. , vol.71 , pp. 115-127
    • Rulíšek, L.1    Vondrášek, J.2
  • 47
    • 84870776387 scopus 로고    scopus 로고
    • Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate
    • Ryu, S., and G. Yellen. 2012. Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate. J. Gen. Physiol. 140:469-479. http://dx.doi.org/10.1085/jgp.201210850.
    • (2012) J. Gen. Physiol. , vol.140 , pp. 469-479
    • Ryu, S.1    Yellen, G.2
  • 48
    • 42149120706 scopus 로고    scopus 로고
    • Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function
    • Serohijos, A.W., T. Hegedus, A.A. Aleksandrov, L. He, L. Cui, N.V. Dokholyan, and J.R. Riordan. 2008. Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc. Natl. Acad. Sci. USA. 105:3256-3261. http://dx.doi.org/10.1073/pnas.0800254105.
    • (2008) Proc. Natl. Acad. Sci. USA. , vol.105 , pp. 3256-3261
    • Serohijos, A.W.1    Hegedus, T.2    Aleksandrov, A.A.3    He, L.4    Cui, L.5    Dokholyan, N.V.6    Riordan, J.R.7
  • 49
    • 33748444936 scopus 로고    scopus 로고
    • CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore
    • Serrano, J.R., X. Liu, E.R. Borg, C.S. Alexander, C.F. Shaw III, and D.C. Dawson. 2006. CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore. Biophys. J. 91:1737-1748. http://dx.doi.org/10.1529/biophysj.105.078899.
    • (2006) Biophys. J. , vol.91 , pp. 1737-1748
    • Serrano, J.R.1    Liu, X.2    Borg, E.R.3    Alexander, C.S.4    Shaw, C.F.5    Dawson, D.C.6
  • 50
    • 0030847723 scopus 로고    scopus 로고
    • + channels expressed in a murine cell line
    • + channels expressed in a murine cell line. J. Physiol. 503:333-346. http://dx.doi.org/10.1111/j.1469-7793.1997.333bh.x
    • (1997) J. Physiol. , vol.503 , pp. 333-346
    • Sheppard, D.N.1    Robinson, K.A.2
  • 52
    • 79961146667 scopus 로고    scopus 로고
    • Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore
    • Wang, W., Y. El Hiani, and P. Linsdell. 2011. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J. Gen. Physiol. 138:165-178. http://dx.doi.org/10.1085/jgp.201110605.
    • (2011) J. Gen. Physiol. , vol.138 , pp. 165-178
    • Wang, W.1    El Hiani, Y.2    Linsdell, P.3
  • 53
    • 84896690825 scopus 로고    scopus 로고
    • Relative contribution of different transmembrane segments to the CFTR chloride channel pore
    • Wang, W., Y. El Hiani, H.N. Rubaiy, and P. Linsdell. 2014. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Arch. 466:477-490. http://dx.doi.org/10.1007/s00424-013-1317-x
    • (2014) Pflugers Arch. , vol.466 , pp. 477-490
    • Wang, W.1    El Hiani, Y.2    Rubaiy, H.N.3    Linsdell, P.4
  • 54
    • 36348989763 scopus 로고    scopus 로고
    • Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein
    • Wang, Y., T.W. Loo, M.C. Bartlett, and D.M. Clarke. 2007. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein. J. Biol. Chem. 282:33247-33251. http://dx.doi.org/10.1074/jbc. C700175200.
    • (2007) J. Biol. Chem. , vol.282 , pp. 33247-33251
    • Wang, Y.1    Loo, T.W.2    Bartlett, M.C.3    Clarke, D.M.4
  • 55
    • 37649004412 scopus 로고    scopus 로고
    • Flexibility in the ABC transporter MsbA: Alternating access with a twist
    • Ward, A., C.L. Reyes, J. Yu, C.B. Roth, and G. Chang. 2007. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc. Natl. Acad. Sci. USA. 104:19005-19010. http://dx.doi.org/10.1073/pnas.0709388104.
    • (2007) Proc. Natl. Acad. Sci. USA. , vol.104 , pp. 19005-19010
    • Ward, A.1    Reyes, C.L.2    Yu, J.3    Roth, C.B.4    Chang, G.5
  • 56
    • 1942467020 scopus 로고    scopus 로고
    • Intracellular gate opening in Shaker K+ channels defined by highaffinity metal bridges
    • Webster, S.M., D. Del Camino, J.P. Dekker, and G. Yellen. 2004. Intracellular gate opening in Shaker K+ channels defined by highaffinity metal bridges. Nature. 428:864-868. http://dx.doi.org/10.1038/nature02468.
    • (2004) Nature. , vol.428 , pp. 864-868
    • Webster, S.M.1    Del Camino, D.2    Dekker, J.P.3    Yellen, G.4
  • 57
    • 0032102496 scopus 로고    scopus 로고
    • The location of the gate in the acetylcholine receptor channel
    • Wilson, G.G., and A. Karlin. 1998. The location of the gate in the acetylcholine receptor channel. Neuron. 20:1269-1281. http://dx.doi.org/10.1016/S0896-6273(00)80506-1.
    • (1998) Neuron. , vol.20 , pp. 1269-1281
    • Wilson, G.G.1    Karlin, A.2
  • 58
    • 0028297301 scopus 로고
    • An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding
    • Yellen, G., D. Sodickson, T.Y. Chen, and M.E. Jurman. 1994. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66:1068-1075. http://dx.doi.org/10.1016/S0006-3495(94)80888-4.
    • (1994) Biophys. J. , vol.66 , pp. 1068-1075
    • Yellen, G.1    Sodickson, D.2    Chen, T.Y.3    Jurman, M.E.4
  • 59
    • 84934924925 scopus 로고    scopus 로고
    • The fifth transmembrane segment of cystic fibrosis transmembrane conductance regulator contributes to its anion permeation pathway
    • Zhang, J., and T.C. Hwang. 2015. The fifth transmembrane segment of cystic fibrosis transmembrane conductance regulator contributes to its anion permeation pathway. Biochemistry. 54:3839-3850. http://dx.doi.org/10.1021/acs.biochem.5b00427.
    • (2015) Biochemistry. , vol.54 , pp. 3839-3850
    • Zhang, J.1    Hwang, T.C.2
  • 60
    • 0036846927 scopus 로고    scopus 로고
    • Probing an open CFTR pore with organic anion blockers
    • Zhou, Z., S. Hu, and T.C. Hwang. 2002. Probing an open CFTR pore with organic anion blockers. J. Gen. Physiol. 120:647-662. http://dx.doi.org/10.1085/jgp.20028685.
    • (2002) J. Gen. Physiol. , vol.120 , pp. 647-662
    • Zhou, Z.1    Hu, S.2    Hwang, T.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.