-
2
-
-
84875170063
-
Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology
-
D.J.Hausenloy, H.Erik Botker, G.Condorelli, et al. Translating cardioprotection for patient benefit:position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2013;98(1):7–27.
-
(2013)
Cardiovasc Res
, vol.98
, Issue.1
, pp. 7-27
-
-
Hausenloy, D.J.1
Erik Botker, H.2
Condorelli, G.3
-
3
-
-
84957553243
-
Ischaemic conditioning and reperfusion injury
-
D.J.Hausenloy, D.M.Yellon Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol. 2016;13(4):193–209.
-
(2016)
Nat Rev Cardiol
, vol.13
, Issue.4
, pp. 193-209
-
-
Hausenloy, D.J.1
Yellon, D.M.2
-
4
-
-
36548998846
-
Universal definition of myocardial infarction
-
K.Thygesen, J.S.Alpert, H.D.White, et al. Universal definition of myocardial infarction. Circulation. 2007;116(22):2634–2653.
-
(2007)
Circulation
, vol.116
, Issue.22
, pp. 2634-2653
-
-
Thygesen, K.1
Alpert, J.S.2
White, H.D.3
-
5
-
-
84941308478
-
Cyclosporine before PCI in patients with acute myocardial infarction
-
T.T.Cung, O.Morel, G.Cayla, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373(11):1021–1031.
-
(2015)
N Engl J Med
, vol.373
, Issue.11
, pp. 1021-1031
-
-
Cung, T.T.1
Morel, O.2
Cayla, G.3
-
6
-
-
84927575168
-
Heart failure: mitochondrial dysfunction and oxidative stress in CHF
-
D.O.Okonko, A.M.Shah. Heart failure:mitochondrial dysfunction and oxidative stress in CHF. Nat Rev Cardiol. 2015;12(1):6–8.
-
(2015)
Nat Rev Cardiol
, vol.12
, Issue.1
, pp. 6-8
-
-
Okonko, D.O.1
Shah, A.M.2
-
7
-
-
84896961871
-
The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries
-
A.P.Ambrosy, G.C.Fonarow, J.Butler, et al. The global health and economic burden of hospitalizations for heart failure:lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63(12):1123–1133.
-
(2014)
J Am Coll Cardiol
, vol.63
, Issue.12
, pp. 1123-1133
-
-
Ambrosy, A.P.1
Fonarow, G.C.2
Butler, J.3
-
8
-
-
84898040307
-
The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study
-
A.E.Moran, M.H.Forouzanfar, G.A.Roth, et al. The global burden of ischemic heart disease in 1990 and 2010:the Global Burden of Disease 2010 study. Circulation. 2014;129(14):1493–1501.
-
(2014)
Circulation
, vol.129
, Issue.14
, pp. 1493-1501
-
-
Moran, A.E.1
Forouzanfar, M.H.2
Roth, G.A.3
-
9
-
-
84926297712
-
Evolving therapies for myocardial ischemia/reperfusion injury
-
B.Ibanez, G.Heusch, M.Ovize, et al. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454–1471.
-
(2015)
J Am Coll Cardiol
, vol.65
, Issue.14
, pp. 1454-1471
-
-
Ibanez, B.1
Heusch, G.2
Ovize, M.3
-
10
-
-
84890908941
-
Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury
-
V.Sivaraman, D.M.Yellon. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther. 2014;19(1):83–96.
-
(2014)
J Cardiovasc Pharmacol Ther
, vol.19
, Issue.1
, pp. 83-96
-
-
Sivaraman, V.1
Yellon, D.M.2
-
11
-
-
0033851515
-
Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction
-
J.S.Alpert, K.Thygesen, E.Antman, et al. Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36(3):959–969.
-
(2000)
J Am Coll Cardiol
, vol.36
, Issue.3
, pp. 959-969
-
-
Alpert, J.S.1
Thygesen, K.2
Antman, E.3
-
12
-
-
84873848690
-
Myocardial ischemia-reperfusion injury: a neglected therapeutic target
-
D.J.Hausenloy, D.M.Yellon. Myocardial ischemia-reperfusion injury:a neglected therapeutic target. J Clin Invest. 2013;123(1):92–100.• Describes the pathophysiological mechanisms involved in ischemia–reperfusion injury.
-
(2013)
J Clin Invest
, vol.123
, Issue.1
, pp. 92-100
-
-
Hausenloy, D.J.1
Yellon, D.M.2
-
13
-
-
1142273368
-
Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection
-
A.P.Halestrap, S.J.Clarke, S.A.Javadov. Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res. 2004;61(3):372–385.
-
(2004)
Cardiovasc Res
, vol.61
, Issue.3
, pp. 372-385
-
-
Halestrap, A.P.1
Clarke, S.J.2
Javadov, S.A.3
-
14
-
-
80051968584
-
In search of new therapeutic targets and strategies for heart failure: recent advances in basic science
-
A.M.Shah, D.L.Mann. In search of new therapeutic targets and strategies for heart failure:recent advances in basic science. Lancet. 2011;378(9792):704–712.• Describes the pathophysiological mechanisms mediating heart failure (and therapeutic strategies to approach its treatment).
-
(2011)
Lancet
, vol.378
, Issue.9792
, pp. 704-712
-
-
Shah, A.M.1
Mann, D.L.2
-
15
-
-
84983381151
-
Novel molecular approaches in heart failure: seven trans-membrane receptors signaling in the heart and circulating blood leukocytes
-
G.G.Schiattarella, F.Magliulo, F.Cattaneo, et al. Novel molecular approaches in heart failure:seven trans-membrane receptors signaling in the heart and circulating blood leukocytes. Front Cardiovasc Med. 2015;2:13.
-
(2015)
Front Cardiovasc Med
, vol.2
, pp. 13
-
-
Schiattarella, G.G.1
Magliulo, F.2
Cattaneo, F.3
-
16
-
-
84884294190
-
2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines
-
C.W.Yancy, M.Jessup, B.Bozkurt, et al. 2013 ACCF/AHA guideline for the management of heart failure:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–e239.
-
(2013)
J Am Coll Cardiol
, vol.62
, Issue.16
, pp. e147-e239
-
-
Yancy, C.W.1
Jessup, M.2
Bozkurt, B.3
-
17
-
-
77549085741
-
Ca2+, autophagy and protein degradation: thrown off balance in neurodegenerative disease
-
J.M.Vicencio, S.Lavandero, G.Szabadkai. Ca2+, autophagy and protein degradation:thrown off balance in neurodegenerative disease. Cell Calcium. 2010;47(2):112–121.
-
(2010)
Cell Calcium
, vol.47
, Issue.2
, pp. 112-121
-
-
Vicencio, J.M.1
Lavandero, S.2
Szabadkai, G.3
-
18
-
-
84885580133
-
Cardiovascular autophagy: concepts, controversies, and perspectives
-
S.Lavandero, R.Troncoso, B.A.Rothermel, et al. Cardiovascular autophagy:concepts, controversies, and perspectives. Autophagy. 2013;9(10):1455–1466.
-
(2013)
Autophagy
, vol.9
, Issue.10
, pp. 1455-1466
-
-
Lavandero, S.1
Troncoso, R.2
Rothermel, B.A.3
-
19
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
B.Levine, G.Kroemer. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.
-
(2008)
Cell
, vol.132
, Issue.1
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
20
-
-
43449121547
-
Senescence, apoptosis or autophagy? When a damaged cell must decide its path–a mini-review
-
J.M.Vicencio, L.Galluzzi, N.Tajeddine, et al. Senescence, apoptosis or autophagy? When a damaged cell must decide its path–a mini-review. Gerontology. 2008;54(2):92–99.
-
(2008)
Gerontology
, vol.54
, Issue.2
, pp. 92-99
-
-
Vicencio, J.M.1
Galluzzi, L.2
Tajeddine, N.3
-
21
-
-
84901346313
-
Autophagy–a key player in cellular and body metabolism
-
K.H.Kim, M.S.Lee. Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol. 2014;10(6):322–337.
-
(2014)
Nat Rev Endocrinol
, vol.10
, Issue.6
, pp. 322-337
-
-
Kim, K.H.1
Lee, M.S.2
-
22
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
J.Kim, M.Kundu, B.Viollet, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–141.
-
(2011)
Nat Cell Biol
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
-
23
-
-
84873660610
-
Autophagy in human health and disease
-
A.M.Choi, S.W.Ryter, B.Levine. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–662.
-
(2013)
N Engl J Med
, vol.368
, Issue.7
, pp. 651-662
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
24
-
-
84878943669
-
The mechanism and physiological function of macroautophagy
-
D.J.Klionsky, P.Codogno. The mechanism and physiological function of macroautophagy. J Innate Immun. 2013;5(5):427–433.• Describes the general mechanisms of autophagy and its role in physiological processes.
-
(2013)
J Innate Immun
, vol.5
, Issue.5
, pp. 427-433
-
-
Klionsky, D.J.1
Codogno, P.2
-
25
-
-
34347344990
-
Ambra1 regulates autophagy and development of the nervous system
-
G.M.Fimia, A.Stoykova, A.Romagnoli, et al. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447(7148):1121–1125.
-
(2007)
Nature
, vol.447
, Issue.7148
, pp. 1121-1125
-
-
Fimia, G.M.1
Stoykova, A.2
Romagnoli, A.3
-
26
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
S.Pankiv, T.H.Clausen, T.Lamark, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131–24145.
-
(2007)
J Biol Chem
, vol.282
, Issue.33
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
-
27
-
-
84898436464
-
Autophagy is essential for cardiac morphogenesis during vertebrate development
-
E.Lee, Y.Koo, A.Ng, et al. Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy. 2014;10(4):572–587.
-
(2014)
Autophagy
, vol.10
, Issue.4
, pp. 572-587
-
-
Lee, E.1
Koo, Y.2
Ng, A.3
-
28
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
A.Nakai, O.Yamaguchi, T.Takeda, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619–624.
-
(2007)
Nat Med
, vol.13
, Issue.5
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
-
29
-
-
84925521323
-
Danon disease: a phenotypic expression of LAMP-2 deficiency
-
Y.Endo, A.Furuta, I.Nishino. Danon disease:a phenotypic expression of LAMP-2 deficiency. Acta Neuropathol. 2015;129(3):391–398.
-
(2015)
Acta Neuropathol
, vol.129
, Issue.3
, pp. 391-398
-
-
Endo, Y.1
Furuta, A.2
Nishino, I.3
-
30
-
-
84924609015
-
Autophagy is involved in high glucose-induced heart tube malformation
-
G.Wang, W.Q.Huang, S.D.Cui, et al. Autophagy is involved in high glucose-induced heart tube malformation. Cell Cycle. 2015;14(5):772–783.
-
(2015)
Cell Cycle
, vol.14
, Issue.5
, pp. 772-783
-
-
Wang, G.1
Huang, W.Q.2
Cui, S.D.3
-
31
-
-
77955342581
-
Inhibition of autophagy in the heart induces age-related cardiomyopathy
-
M.Taneike, O.Yamaguchi, A.Nakai, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy. 2010;6(5):600–606.
-
(2010)
Autophagy
, vol.6
, Issue.5
, pp. 600-606
-
-
Taneike, M.1
Yamaguchi, O.2
Nakai, A.3
-
33
-
-
84920465115
-
Autophagy in cardiovascular biology
-
S.Lavandero, M.Chiong, B.A.Rothermel, et al. Autophagy in cardiovascular biology. J Clin Invest. 2015;125(1):55–64.•• Explains the mechanisms involved in autophagy as well as its potential therapeutic targeting in the context of the cardiovascular system.
-
(2015)
J Clin Invest
, vol.125
, Issue.1
, pp. 55-64
-
-
Lavandero, S.1
Chiong, M.2
Rothermel, B.A.3
-
34
-
-
84927584661
-
Molecular mechanisms of autophagy in the cardiovascular system
-
D.Gatica, M.Chiong, S.Lavandero, et al. Molecular mechanisms of autophagy in the cardiovascular system. Circ Res. 2015;116(3):456–467.
-
(2015)
Circ Res
, vol.116
, Issue.3
, pp. 456-467
-
-
Gatica, D.1
Chiong, M.2
Lavandero, S.3
-
35
-
-
84955390424
-
Too much or not enough of a good thing–The Janus faces of autophagy in cardiac fuel and protein homeostasis
-
J.Ren, H.Taegtmeyer. Too much or not enough of a good thing–The Janus faces of autophagy in cardiac fuel and protein homeostasis. J Mol Cell Cardiol. 2015;84:223–226.
-
(2015)
J Mol Cell Cardiol
, vol.84
, pp. 223-226
-
-
Ren, J.1
Taegtmeyer, H.2
-
36
-
-
84863397956
-
Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy
-
R.Troncoso, J.M.Vicencio, V.Parra, et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res. 2012;93(2):320–329.
-
(2012)
Cardiovasc Res
, vol.93
, Issue.2
, pp. 320-329
-
-
Troncoso, R.1
Vicencio, J.M.2
Parra, V.3
-
37
-
-
84957709967
-
Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia
-
Y.Yang, Y.Li, X.Chen, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med. 2016;94(6):711–724.
-
(2016)
J Mol Med
, vol.94
, Issue.6
, pp. 711-724
-
-
Yang, Y.1
Li, Y.2
Chen, X.3
-
38
-
-
34147168105
-
Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy
-
Y.Matsui, H.Takagi, X.Qu, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion:roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–922.
-
(2007)
Circ Res
, vol.100
, Issue.6
, pp. 914-922
-
-
Matsui, Y.1
Takagi, H.2
Qu, X.3
-
39
-
-
77955444881
-
Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy
-
A.T.Turer, J.A.Hill. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106(3):360–368.
-
(2010)
Am J Cardiol
, vol.106
, Issue.3
, pp. 360-368
-
-
Turer, A.T.1
Hill, J.A.2
-
41
-
-
84929624343
-
Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes
-
Z.Huang, Z.Han, B.Ye, et al. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur J Pharmacol. 2015;762:1–10.
-
(2015)
Eur J Pharmacol
, vol.762
, pp. 1-10
-
-
Huang, Z.1
Han, Z.2
Ye, B.3
-
42
-
-
79956126271
-
Oxidative stress stimulates autophagic flux during ischemia/reperfusion
-
N.Hariharan, P.Zhai, J.Sadoshima. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal. 2011;14(11):2179–2190.
-
(2011)
Antioxid Redox Signal
, vol.14
, Issue.11
, pp. 2179-2190
-
-
Hariharan, N.1
Zhai, P.2
Sadoshima, J.3
-
43
-
-
84863192578
-
Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury
-
X.Ma, H.Liu, S.R.Foyil, et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation. 2012;125(25):3170–3181.
-
(2012)
Circulation
, vol.125
, Issue.25
, pp. 3170-3181
-
-
Ma, X.1
Liu, H.2
Foyil, S.R.3
-
44
-
-
34447133404
-
Cardiac autophagy is a maladaptive response to hemodynamic stress
-
H.Zhu, P.Tannous, J.L.Johnstone, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007;117(7):1782–1793.
-
(2007)
J Clin Invest
, vol.117
, Issue.7
, pp. 1782-1793
-
-
Zhu, H.1
Tannous, P.2
Johnstone, J.L.3
-
45
-
-
34248353095
-
Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction
-
M.Odashima, S.Usui, H.Takagi, et al. Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circ Res. 2007;100(9):1344–1352.
-
(2007)
Circ Res
, vol.100
, Issue.9
, pp. 1344-1352
-
-
Odashima, M.1
Usui, S.2
Takagi, H.3
-
46
-
-
84887495190
-
Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2
-
Y.Maejima, S.Kyoi, P.Zhai, et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med. 2013;19(11):1478–1488.
-
(2013)
Nat Med
, vol.19
, Issue.11
, pp. 1478-1488
-
-
Maejima, Y.1
Kyoi, S.2
Zhai, P.3
-
47
-
-
84895923936
-
Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy
-
M.Xie, Y.Kong, W.Tan, et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 2014;129(10):1139–1151.
-
(2014)
Circulation
, vol.129
, Issue.10
, pp. 1139-1151
-
-
Xie, M.1
Kong, Y.2
Tan, W.3
-
48
-
-
84953266676
-
The cardioprotective compound cloxyquin uncouples mitochondria and induces autophagy
-
J.Zhang, S.M.Nadtochiy, W.R.Urciuoli, et al. The cardioprotective compound cloxyquin uncouples mitochondria and induces autophagy. Am J Physiol Heart Circ Physiol. 2016;310(1):H29–H38.
-
(2016)
Am J Physiol Heart Circ Physiol
, vol.310
, Issue.1
, pp. H29-H38
-
-
Zhang, J.1
Nadtochiy, S.M.2
Urciuoli, W.R.3
-
49
-
-
84951274163
-
The AMPK agonist PT1 and mTOR inhibitor 3HOI-BA-01 protect cardiomyocytes after ischemia through induction of autophagy
-
L.Huang, K.Dai, M.Chen, et al. The AMPK agonist PT1 and mTOR inhibitor 3HOI-BA-01 protect cardiomyocytes after ischemia through induction of autophagy. J Cardiovasc Pharmacol Ther. 2016;21(1):70–81.
-
(2016)
J Cardiovasc Pharmacol Ther
, vol.21
, Issue.1
, pp. 70-81
-
-
Huang, L.1
Dai, K.2
Chen, M.3
-
50
-
-
84887580380
-
Combination of D942 with curcumin protects cardiomyocytes from ischemic damage through promoting autophagy
-
K.Yang, C.Xu, X.Li, et al. Combination of D942 with curcumin protects cardiomyocytes from ischemic damage through promoting autophagy. J Cardiovasc Pharmacol Ther. 2013;18(6):570–581.
-
(2013)
J Cardiovasc Pharmacol Ther
, vol.18
, Issue.6
, pp. 570-581
-
-
Yang, K.1
Xu, C.2
Li, X.3
-
51
-
-
84924663686
-
Curcumin inhibits autophagy and apoptosis in hypoxia/reoxygenation-induced myocytes
-
Z.Huang, B.Ye, Z.Dai, et al. Curcumin inhibits autophagy and apoptosis in hypoxia/reoxygenation-induced myocytes. Mol Med Rep. 2015;11(6):4678–4684.
-
(2015)
Mol Med Rep
, vol.11
, Issue.6
, pp. 4678-4684
-
-
Huang, Z.1
Ye, B.2
Dai, Z.3
-
52
-
-
84908243002
-
High basal level of autophagy in high-altitude residents attenuates myocardial ischemia-reperfusion injury
-
Y.Hu, Q.Sun, Z.Li, et al. High basal level of autophagy in high-altitude residents attenuates myocardial ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2014;148(4):1674–1680.
-
(2014)
J Thorac Cardiovasc Surg
, vol.148
, Issue.4
, pp. 1674-1680
-
-
Hu, Y.1
Sun, Q.2
Li, Z.3
-
53
-
-
0020625086
-
Cardiac hypertrophy in rats after supravalvular aortic constriction. II. Inhibition of cellular autophagy in hypertrophying cardiomyocytes
-
J.Dammrich, U.Pfeifer. Cardiac hypertrophy in rats after supravalvular aortic constriction. II. Inhibition of cellular autophagy in hypertrophying cardiomyocytes. Virchows Arch B Cell Pathol Incl Mol Pathol. 1983;43(3):287–307.
-
(1983)
Virchows Arch B Cell Pathol Incl Mol Pathol
, vol.43
, Issue.3
, pp. 287-307
-
-
Dammrich, J.1
Pfeifer, U.2
-
54
-
-
0034755977
-
Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy
-
H.Shimomura, F.Terasaki, T.Hayashi, et al. Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ J. 2001;65(11):965–968.
-
(2001)
Jpn Circ J
, vol.65
, Issue.11
, pp. 965-968
-
-
Shimomura, H.1
Terasaki, F.2
Hayashi, T.3
-
55
-
-
84962698228
-
Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis
-
T.Saito, K.Asai, S.Sato, et al. Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis. Autophagy. 2016;12(3):579–587.
-
(2016)
Autophagy
, vol.12
, Issue.3
, pp. 579-587
-
-
Saito, T.1
Asai, K.2
Sato, S.3
-
56
-
-
84933278289
-
Class III PI3K-mediated prolonged activation of autophagy plays a critical role in the transition of cardiac hypertrophy to heart failure
-
P.Yu, Y.Zhang, C.Li, et al. Class III PI3K-mediated prolonged activation of autophagy plays a critical role in the transition of cardiac hypertrophy to heart failure. J Cell Mol Med. 2015;19(7):1710–1719.
-
(2015)
J Cell Mol Med
, vol.19
, Issue.7
, pp. 1710-1719
-
-
Yu, P.1
Zhang, Y.2
Li, C.3
-
57
-
-
77953125913
-
Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27
-
X.Zhang, X.Min, C.Li, et al. Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension. 2010;55(6):1412–1417.
-
(2010)
Hypertension
, vol.55
, Issue.6
, pp. 1412-1417
-
-
Zhang, X.1
Min, X.2
Li, C.3
-
58
-
-
84949681478
-
Therapeutic targeting of autophagy in cardiovascular disease
-
G.G.Schiattarella, J.A.Hill. Therapeutic targeting of autophagy in cardiovascular disease. J Mol Cell Cardiol. 2015;95:86–93.•• Discusses the therapeutic potential of autophagy to treat cardiovascular diseases and the present limitations of this approach.
-
(2015)
J Mol Cell Cardiol
, vol.95
, pp. 86-93
-
-
Schiattarella, G.G.1
Hill, J.A.2
-
59
-
-
33746090919
-
Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes
-
S.Khan, F.Salloum, A.Das, et al. Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J Mol Cell Cardiol. 2006;41(2):256–264.
-
(2006)
J Mol Cell Cardiol
, vol.41
, Issue.2
, pp. 256-264
-
-
Khan, S.1
Salloum, F.2
Das, A.3
-
60
-
-
84880236360
-
Fluorescence tomography of rapamycin-induced autophagy and cardioprotection in vivo
-
H.H.Chen, C.Mekkaoui, H.Cho, et al. Fluorescence tomography of rapamycin-induced autophagy and cardioprotection in vivo. Circ Cardiovasc Imaging. 2013;6(3):441–447.
-
(2013)
Circ Cardiovasc Imaging
, vol.6
, Issue.3
, pp. 441-447
-
-
Chen, H.H.1
Mekkaoui, C.2
Cho, H.3
-
61
-
-
70149095672
-
Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes
-
C.P.Hsu, S.Oka, D.Shao, et al. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res. 2009;105(5):481–491.
-
(2009)
Circ Res
, vol.105
, Issue.5
, pp. 481-491
-
-
Hsu, C.P.1
Oka, S.2
Shao, D.3
-
62
-
-
84919391963
-
The function of nicotinamide phosphoribosyltransferase in the heart
-
C.P.Hsu, T.Yamamoto, S.Oka, et al. The function of nicotinamide phosphoribosyltransferase in the heart. DNA Repair. 2014;23:64–68.
-
(2014)
DNA Repair
, vol.23
, pp. 64-68
-
-
Hsu, C.P.1
Yamamoto, T.2
Oka, S.3
-
63
-
-
73449133720
-
Nicotinamide phosphoribosyltransferase regulates cell survival through autophagy in cardiomyocytes
-
C.P.Hsu, N.Hariharan, R.R.Alcendor, et al. Nicotinamide phosphoribosyltransferase regulates cell survival through autophagy in cardiomyocytes. Autophagy. 2009;5(8):1229–1231.
-
(2009)
Autophagy
, vol.5
, Issue.8
, pp. 1229-1231
-
-
Hsu, C.P.1
Hariharan, N.2
Alcendor, R.R.3
-
64
-
-
84887595962
-
Novel role of silent information regulator 1 in myocardial ischemia
-
Y.Yang, W.Duan, Y.Li, et al. Novel role of silent information regulator 1 in myocardial ischemia. Circulation. 2013;128(20):2232–2240.
-
(2013)
Circulation
, vol.128
, Issue.20
, pp. 2232-2240
-
-
Yang, Y.1
Duan, W.2
Li, Y.3
-
65
-
-
84900564532
-
Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction
-
Q.Li, J.Xie, R.Li, et al. Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J Cell Mol Med. 2014;18(5):919–928.
-
(2014)
J Cell Mol Med
, vol.18
, Issue.5
, pp. 919-928
-
-
Li, Q.1
Xie, J.2
Li, R.3
-
66
-
-
84949310237
-
MicroRNA-145 repairs infarcted myocardium by accelerating cardiomyocyte autophagy
-
K.Higashi, Y.Yamada, S.Minatoguchi, et al. MicroRNA-145 repairs infarcted myocardium by accelerating cardiomyocyte autophagy. Am J Physiol Heart Circ Physiol. 2015;309(11):H1813–H1826.
-
(2015)
Am J Physiol Heart Circ Physiol
, vol.309
, Issue.11
, pp. H1813-H1826
-
-
Higashi, K.1
Yamada, Y.2
Minatoguchi, S.3
-
67
-
-
84927595144
-
APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p
-
K.Wang, C.Y.Liu, L.Y.Zhou, et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun. 2015;6:6779.
-
(2015)
Nat Commun
, vol.6
, pp. 6779
-
-
Wang, K.1
Liu, C.Y.2
Zhou, L.Y.3
-
68
-
-
84891763314
-
Anti-remodeling effects of rapamycin in experimental heart failure: dose response and interaction with angiotensin receptor blockade
-
K.Bishu, O.Ogut, S.Kushwaha, et al. Anti-remodeling effects of rapamycin in experimental heart failure:dose response and interaction with angiotensin receptor blockade. PloS one. 2013;8(12):e81325.
-
(2013)
PloS one
, vol.8
, Issue.12
, pp. e81325
-
-
Bishu, K.1
Ogut, O.2
Kushwaha, S.3
-
69
-
-
79959385996
-
Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice
-
Z.Xie, K.Lau, B.Eby, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 2011;60(6):1770–1778.
-
(2011)
Diabetes
, vol.60
, Issue.6
, pp. 1770-1778
-
-
Xie, Z.1
Lau, K.2
Eby, B.3
-
70
-
-
84897072824
-
Metformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase alpha2
-
X.Xu, Z.Lu, J.Fassett, et al. Metformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase alpha2. Hypertension. 2014;63(4):723–728.
-
(2014)
Hypertension
, vol.63
, Issue.4
, pp. 723-728
-
-
Xu, X.1
Lu, Z.2
Fassett, J.3
-
71
-
-
79961041348
-
Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure
-
M.Yin, I.C.van der Horst, J.P.van Melle, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol. 2011;301(2):H459–H468.
-
(2011)
Am J Physiol Heart Circ Physiol
, vol.301
, Issue.2
, pp. H459-H468
-
-
Yin, M.1
van der Horst, I.C.2
van Melle, J.P.3
-
72
-
-
84952653320
-
Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy
-
R.Kishore, P.Krishnamurthy, V.N.Garikipati, et al. Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy. J Mol Cell Cardiol. 2015;89(Pt B):203–213.
-
(2015)
J Mol Cell Cardiol
, vol.89
, pp. 203-213
-
-
Kishore, R.1
Krishnamurthy, P.2
Garikipati, V.N.3
-
73
-
-
84961381132
-
IL-10 for cardiac autophagy modulation: new direction in the pursuit of perfection
-
A.Samanta, B.Dawn. IL-10 for cardiac autophagy modulation:new direction in the pursuit of perfection. J Mol Cell Cardiol. 2016;91:204–206.
-
(2016)
J Mol Cell Cardiol
, vol.91
, pp. 204-206
-
-
Samanta, A.1
Dawn, B.2
-
74
-
-
84873709314
-
Identification of a candidate therapeutic autophagy-inducing peptide
-
S.Shoji-Kawata, R.Sumpter, M.Leveno, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494(7436):201–206.
-
(2013)
Nature
, vol.494
, Issue.7436
, pp. 201-206
-
-
Shoji-Kawata, S.1
Sumpter, R.2
Leveno, M.3
-
76
-
-
69349088740
-
Autophagy in Hydra: a response to starvation and stress in early animal evolution
-
S.Chera, W.Buzgariu, L.Ghila, et al. Autophagy in Hydra:a response to starvation and stress in early animal evolution. Biochim Biophys Acta. 2009;1793(9):1432–1443.
-
(2009)
Biochim Biophys Acta
, vol.1793
, Issue.9
, pp. 1432-1443
-
-
Chera, S.1
Buzgariu, W.2
Ghila, L.3
-
77
-
-
77951665701
-
Autophagy and apoptosis in planarians
-
C.Gonzalez-Estevez, E.Salo. Autophagy and apoptosis in planarians. Apoptosis. 2010;15(3):279–292.
-
(2010)
Apoptosis
, vol.15
, Issue.3
, pp. 279-292
-
-
Gonzalez-Estevez, C.1
Salo, E.2
-
78
-
-
79960881214
-
The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations
-
A.S.Azevedo, B.Grotek, A.Jacinto, et al. The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations. PloS one. 2011;6(7):e22820.
-
(2011)
PloS one
, vol.6
, Issue.7
, pp. e22820
-
-
Azevedo, A.S.1
Grotek, B.2
Jacinto, A.3
-
79
-
-
84903362371
-
Autophagy is required for zebrafish caudal fin regeneration
-
M.Varga, M.Sass, D.Papp, et al. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ. 2014;21(4):547–556.
-
(2014)
Cell Death Differ
, vol.21
, Issue.4
, pp. 547-556
-
-
Varga, M.1
Sass, M.2
Papp, D.3
-
80
-
-
55349132417
-
Cardiomyocyte death and renewal in the normal and diseased heart
-
L.M.Buja, D.Vela. Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol. 2008;17(6):349–374.
-
(2008)
Cardiovasc Pathol
, vol.17
, Issue.6
, pp. 349-374
-
-
Buja, L.M.1
Vela, D.2
-
81
-
-
80053547300
-
Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology
-
A.Leri, J.Kajstura, P.Anversa. Role of cardiac stem cells in cardiac pathophysiology:a paradigm shift in human myocardial biology. Circ Res. 2011;109(8):941–961.
-
(2011)
Circ Res
, vol.109
, Issue.8
, pp. 941-961
-
-
Leri, A.1
Kajstura, J.2
Anversa, P.3
-
82
-
-
84871668653
-
Ischemic survival and constitutively active autophagy in self-beating atypically-shaped cardiomyocytes (ACMs): characterization of a new subpopulation of heart cells
-
M.Omatsu-Kanbe, H.Matsuura. Ischemic survival and constitutively active autophagy in self-beating atypically-shaped cardiomyocytes (ACMs):characterization of a new subpopulation of heart cells. J Physiol Sci. 2013;63(1):17–29.
-
(2013)
J Physiol Sci
, vol.63
, Issue.1
, pp. 17-29
-
-
Omatsu-Kanbe, M.1
Matsuura, H.2
-
84
-
-
84958687916
-
Mechanisms of cardiac regeneration
-
A.Uygur, R.T.Lee. Mechanisms of cardiac regeneration. Dev Cell. 2016;36(4):362–374.
-
(2016)
Dev Cell
, vol.36
, Issue.4
, pp. 362-374
-
-
Uygur, A.1
Lee, R.T.2
-
85
-
-
84964316944
-
Stimulating endogenous cardiac repair
-
A.Finan, S.Richard. Stimulating endogenous cardiac repair. Front Dev Biol. 2015;3:57.
-
(2015)
Front Dev Biol
, vol.3
, pp. 57
-
-
Finan, A.1
Richard, S.2
-
86
-
-
84959287066
-
Cell therapy in ischemic heart disease: interventions that modulate cardiac regeneration
-
M.I.Schaun, B.Eibel, M.Kristocheck, et al. Cell therapy in ischemic heart disease:interventions that modulate cardiac regeneration. Stem Cells Int. 2016;2016:2171035.
-
(2016)
Stem Cells Int
, vol.2016
, pp. 2171035
-
-
Schaun, M.I.1
Eibel, B.2
Kristocheck, M.3
-
87
-
-
84962159429
-
Stem cell therapy for heart failure: ensuring regenerative proficiency
-
A.Terzic, A.Behfar. Stem cell therapy for heart failure:ensuring regenerative proficiency. Trends Cardiovasc Med. 2016;26(5):395–404.
-
(2016)
Trends Cardiovasc Med
, vol.26
, Issue.5
, pp. 395-404
-
-
Terzic, A.1
Behfar, A.2
-
88
-
-
84976511014
-
Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure
-
R.Madonna, L.W.Van Laake, S.M.Davidson, et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart:cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. 2016;37(23):1789–1798.
-
(2016)
Eur Heart J
, vol.37
, Issue.23
, pp. 1789-1798
-
-
Madonna, R.1
Van Laake, L.W.2
Davidson, S.M.3
-
89
-
-
84874698634
-
Autophagic control of cell ‘stemness’
-
H.Pan, N.Cai, M.Li, et al. Autophagic control of cell ‘stemness’. EMBO Mol Med. 2013;5(3):327–331.• Discusses the critical role of autophagy in stem cell regeneration.
-
(2013)
EMBO Mol Med
, vol.5
, Issue.3
, pp. 327-331
-
-
Pan, H.1
Cai, N.2
Li, M.3
-
90
-
-
84857569701
-
FRS2alpha-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity
-
J.Zhang, J.Liu, Y.Huang, et al. FRS2alpha-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res. 2012;110(4):e29–e39.
-
(2012)
Circ Res
, vol.110
, Issue.4
, pp. e29-e39
-
-
Zhang, J.1
Liu, J.2
Huang, Y.3
-
91
-
-
84862301849
-
The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy
-
J.Zhang, J.Liu, L.Liu, et al. The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy. 2012;8(4):690–691.
-
(2012)
Autophagy
, vol.8
, Issue.4
, pp. 690-691
-
-
Zhang, J.1
Liu, J.2
Liu, L.3
-
92
-
-
80052819789
-
Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells
-
T.Chen, L.Shen, J.Yu, et al. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell. 2011;10(5):908–911.
-
(2011)
Aging Cell
, vol.10
, Issue.5
, pp. 908-911
-
-
Chen, T.1
Shen, L.2
Yu, J.3
-
93
-
-
84936979255
-
Use of mesenchymal stem cells for therapy of cardiac disease
-
V.Karantalis, J.M.Hare. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015;116(8):1413–1430.
-
(2015)
Circ Res
, vol.116
, Issue.8
, pp. 1413-1430
-
-
Karantalis, V.1
Hare, J.M.2
-
94
-
-
84869433016
-
Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR
-
Y.Lee, J.Jung, K.J.Cho, et al. Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. J Cell Biochem. 2013;114(1):79–88.
-
(2013)
J Cell Biochem
, vol.114
, Issue.1
, pp. 79-88
-
-
Lee, Y.1
Jung, J.2
Cho, K.J.3
-
95
-
-
84963704911
-
Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway
-
Z.Zhang, M.Yang, Y.Wang, et al. Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway. Cell Biol Int. 2016;40(6):671–685.
-
(2016)
Cell Biol Int
, vol.40
, Issue.6
, pp. 671-685
-
-
Zhang, Z.1
Yang, M.2
Wang, Y.3
-
96
-
-
84908509128
-
Autophagy induction is a survival response against oxidative stress in bone marrow-derived mesenchymal stromal cells
-
C.Song, C.Song, F.Tong. Autophagy induction is a survival response against oxidative stress in bone marrow-derived mesenchymal stromal cells. Cytotherapy. 2014;16(10):1361–1370.
-
(2014)
Cytotherapy
, vol.16
, Issue.10
, pp. 1361-1370
-
-
Song, C.1
Song, C.2
Tong, F.3
-
97
-
-
84891651142
-
Caloric restriction and aging stem cells: the stick and the carrot?
-
G.Mazzoccoli, M.F.Tevy, M.Borghesan, et al. Caloric restriction and aging stem cells:the stick and the carrot? Exp Gerontol. 2014;50:137–148.
-
(2014)
Exp Gerontol
, vol.50
, pp. 137-148
-
-
Mazzoccoli, G.1
Tevy, M.F.2
Borghesan, M.3
-
99
-
-
84857489373
-
Autophagy in stem cell maintenance and differentiation
-
A.T.Vessoni, A.R.Muotri, O.K.Okamoto. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev. 2012;21(4):513–520.
-
(2012)
Stem Cells Dev
, vol.21
, Issue.4
, pp. 513-520
-
-
Vessoni, A.T.1
Muotri, A.R.2
Okamoto, O.K.3
-
100
-
-
84939807947
-
let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3
-
O.Ham, S.Y.Lee, C.Y.Lee, et al. let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3. Stem Cell Res Ther. 2015;6:147.
-
(2015)
Stem Cell Res Ther
, vol.6
, pp. 147
-
-
Ham, O.1
Lee, S.Y.2
Lee, C.Y.3
-
101
-
-
84952001288
-
Cellular and molecular mechanisms of HGF/Met in the cardiovascular system
-
S.Gallo, V.Sala, S.Gatti, et al. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin Sci. 2015;129(12):1173–1193.
-
(2015)
Clin Sci
, vol.129
, Issue.12
, pp. 1173-1193
-
-
Gallo, S.1
Sala, V.2
Gatti, S.3
-
102
-
-
84901058493
-
Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy
-
S.Gallo, S.Gatti, V.Sala, et al. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy. Cell Death Dis. 2014;5:e1185.
-
(2014)
Cell Death Dis
, vol.5
, pp. e1185
-
-
Gallo, S.1
Gatti, S.2
Sala, V.3
-
103
-
-
2942583980
-
Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing
-
S.Neuss, E.Becher, M.Woltje, et al. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells. 2004;22(3):405–414.
-
(2004)
Stem Cells
, vol.22
, Issue.3
, pp. 405-414
-
-
Neuss, S.1
Becher, E.2
Woltje, M.3
-
104
-
-
84860390421
-
Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart
-
G.M.Ellison, D.Torella, S.Dellegrottaglie, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol. 2011;58(9):977–986.
-
(2011)
J Am Coll Cardiol
, vol.58
, Issue.9
, pp. 977-986
-
-
Ellison, G.M.1
Torella, D.2
Dellegrottaglie, S.3
-
105
-
-
84896403379
-
Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart
-
S.Koudstaal, M.M.Bastings, D.A.Feyen, et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res. 2014;7(2):232–241.
-
(2014)
J Cardiovasc Transl Res
, vol.7
, Issue.2
, pp. 232-241
-
-
Koudstaal, S.1
Bastings, M.M.2
Feyen, D.A.3
-
106
-
-
34247142787
-
c-Met is essential for wound healing in the skin
-
J.Chmielowiec, M.Borowiak, M.Morkel, et al. c-Met is essential for wound healing in the skin. J Cell Biol. 2007;177(1):151–162.
-
(2007)
J Cell Biol
, vol.177
, Issue.1
, pp. 151-162
-
-
Chmielowiec, J.1
Borowiak, M.2
Morkel, M.3
-
107
-
-
84859153211
-
Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice
-
T.Ishikawa, V.M.Factor, J.U.Marquardt, et al. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice. Hepatology. 2012;55(4):1215–1226.
-
(2012)
Hepatology
, vol.55
, Issue.4
, pp. 1215-1226
-
-
Ishikawa, T.1
Factor, V.M.2
Marquardt, J.U.3
-
108
-
-
84894163787
-
c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration
-
M.T.Webster, C.M.Fan. c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration. PloS one. 2013;8(11):e81757.
-
(2013)
PloS one
, vol.8
, Issue.11
, pp. e81757
-
-
Webster, M.T.1
Fan, C.M.2
-
110
-
-
84977744942
-
Sustained IGF-1 secretion by adipose-derived stem cell improves infarcted heart function
-
L.L.Bagno, D.Carvalho, F.Mesquita, et al. Sustained IGF-1 secretion by adipose-derived stem cell improves infarcted heart function. Cell Transplant. 2015. [Epub ahead of print].
-
(2015)
Cell Transplant
-
-
Bagno, L.L.1
Carvalho, D.2
Mesquita, F.3
-
111
-
-
84991520711
-
Paracrine engineering of human cardiac stem cells with insulin-like growth factor 1 enhances myocardial repair
-
R.Jackson, E.L.Tilokee, N.Latham, et al. Paracrine engineering of human cardiac stem cells with insulin-like growth factor 1 enhances myocardial repair. J Am Heart Assoc. 2015;4(9):e002104.
-
(2015)
J Am Heart Assoc
, vol.4
, Issue.9
, pp. e002104
-
-
Jackson, R.1
Tilokee, E.L.2
Latham, N.3
-
112
-
-
85001976209
-
Manipulating the Hippo-Yap signal cascade in stem cells for heart regeneration
-
W.F.Cai, L.Wang, G.S.Liu, et al. Manipulating the Hippo-Yap signal cascade in stem cells for heart regeneration. Ann Palliat Med. 2016;5(2):125–134.
-
(2016)
Ann Palliat Med
, vol.5
, Issue.2
, pp. 125-134
-
-
Cai, W.F.1
Wang, L.2
Liu, G.S.3
-
113
-
-
84925263676
-
A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice
-
Y.Tian, Y.Liu, T.Wang, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7(279):279ra238.
-
(2015)
Sci Transl Med
, vol.7
, Issue.279
, pp. 279ra238
-
-
Tian, Y.1
Liu, Y.2
Wang, T.3
-
114
-
-
79952775153
-
Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy
-
D.J.Cao, Z.V.Wang, P.K.Battiprolu, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A. 2011;108(10):4123–4128.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, Issue.10
, pp. 4123-4128
-
-
Cao, D.J.1
Wang, Z.V.2
Battiprolu, P.K.3
-
115
-
-
84929347068
-
Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload
-
G.G.Schiattarella, J.A.Hill. Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation. 2015;131(16):1435–1447.
-
(2015)
Circulation
, vol.131
, Issue.16
, pp. 1435-1447
-
-
Schiattarella, G.G.1
Hill, J.A.2
-
116
-
-
84859564908
-
MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression
-
C.Wang, S.Wang, P.Zhao, et al. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression. J Cell Biochem. 2012;113(6):2040–2046.
-
(2012)
J Cell Biochem
, vol.113
, Issue.6
, pp. 2040-2046
-
-
Wang, C.1
Wang, S.2
Zhao, P.3
-
117
-
-
84940001131
-
MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis
-
M.Su, J.Wang, C.Wang, et al. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ. 2015;22(6):986–999.
-
(2015)
Cell Death Differ
, vol.22
, Issue.6
, pp. 986-999
-
-
Su, M.1
Wang, J.2
Wang, C.3
-
118
-
-
84867009927
-
The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
-
A.Ucar, S.K.Gupta, J.Fiedler, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3:1078.
-
(2012)
Nat Commun
, vol.3
, pp. 1078
-
-
Ucar, A.1
Gupta, S.K.2
Fiedler, J.3
-
119
-
-
85021323112
-
miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation
-
Z.Li, Y.Song, L.Liu, et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ. 2015. [Epub ahead of print].
-
(2015)
Cell Death Differ
-
-
Li, Z.1
Song, Y.2
Liu, L.3
-
120
-
-
84872240012
-
MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy
-
W.Pan, Y.Zhong, C.Cheng, et al. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PloS one. 2013;8(1):e53950.
-
(2013)
PloS one
, vol.8
, Issue.1
, pp. e53950
-
-
Pan, W.1
Zhong, Y.2
Cheng, C.3
-
121
-
-
84899648063
-
miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity
-
J.Huang, W.Sun, H.Huang, et al. miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PloS one. 2014;9(4):e94382.
-
(2014)
PloS one
, vol.9
, Issue.4
, pp. e94382
-
-
Huang, J.1
Sun, W.2
Huang, H.3
-
122
-
-
84911435656
-
MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1
-
L.Song, M.Su, S.Wang, et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med. 2014;18(11):2266–2274.
-
(2014)
J Cell Mol Med
, vol.18
, Issue.11
, pp. 2266-2274
-
-
Song, L.1
Su, M.2
Wang, S.3
-
123
-
-
84969234474
-
Long noncoding RNA Chast promotes cardiac remodeling
-
J.Viereck, R.Kumarswamy, A.Foinquinos, et al. Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med. 2016;8(326):326ra322.
-
(2016)
Sci Transl Med
, vol.8
, Issue.326
, pp. 326ra322
-
-
Viereck, J.1
Kumarswamy, R.2
Foinquinos, A.3
-
124
-
-
84934441517
-
Injury models to study cardiac remodeling in the mouse: myocardial infarction and ischemia-reperfusion
-
D.J.Luther, C.K.Thodeti, J.G.Meszaros. Injury models to study cardiac remodeling in the mouse:myocardial infarction and ischemia-reperfusion. Methods Mol Biol. 2013;1037:325–342.
-
(2013)
Methods Mol Biol
, vol.1037
, pp. 325-342
-
-
Luther, D.J.1
Thodeti, C.K.2
Meszaros, J.G.3
-
125
-
-
78650277944
-
Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation
-
P.Aranguiz-Urroz, J.Canales, M.Copaja, et al. Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochim Biophys Acta. 2011;1812(1):23–31.
-
(2011)
Biochim Biophys Acta
, vol.1812
, Issue.1
, pp. 23-31
-
-
Aranguiz-Urroz, P.1
Canales, J.2
Copaja, M.3
-
126
-
-
80054912866
-
Decreased metalloprotease 9 induction, cardiac fibrosis, and higher autophagy after pressure overload in mice lacking the transcriptional regulator p8
-
S.P.Georgescu, M.J.Aronovitz, J.L.Iovanna, et al. Decreased metalloprotease 9 induction, cardiac fibrosis, and higher autophagy after pressure overload in mice lacking the transcriptional regulator p8. Am J Physiol Cell Physiol. 2011;301(5):C1046–C1056.
-
(2011)
Am J Physiol Cell Physiol
, vol.301
, Issue.5
, pp. C1046-C1056
-
-
Georgescu, S.P.1
Aronovitz, M.J.2
Iovanna, J.L.3
-
127
-
-
80051793072
-
Reversibility of adverse, calcineurin-dependent cardiac remodeling
-
J.M.Berry, V.Le, D.Rotter, et al. Reversibility of adverse, calcineurin-dependent cardiac remodeling. Circ Res. 2011;109(4):407–417.
-
(2011)
Circ Res
, vol.109
, Issue.4
, pp. 407-417
-
-
Berry, J.M.1
Le, V.2
Rotter, D.3
-
128
-
-
84891784334
-
Calcineurin suppresses AMPK-dependent cytoprotective autophagy in cardiomyocytes under oxidative stress
-
H.He, X.Liu, L.Lv, et al. Calcineurin suppresses AMPK-dependent cytoprotective autophagy in cardiomyocytes under oxidative stress. Cell Death Dis. 2014;5:e997.
-
(2014)
Cell Death Dis
, vol.5
, pp. e997
-
-
He, H.1
Liu, X.2
Lv, L.3
-
129
-
-
41449083867
-
Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
-
O.Vakhrusheva, C.Smolka, P.Gajawada, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102(6):703–710.
-
(2008)
Circ Res
, vol.102
, Issue.6
, pp. 703-710
-
-
Vakhrusheva, O.1
Smolka, C.2
Gajawada, P.3
-
130
-
-
84942162806
-
Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor-beta signaling pathway
-
S.Araki, Y.Izumiya, T.Rokutanda, et al. Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor-beta signaling pathway. Circulation. 2015;132(12):1081–1093.
-
(2015)
Circulation
, vol.132
, Issue.12
, pp. 1081-1093
-
-
Araki, S.1
Izumiya, Y.2
Rokutanda, T.3
-
131
-
-
84947284871
-
Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts
-
S.Ghavami, R.H.Cunnington, S.Gupta, et al. Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis. 2015;6:e1696.
-
(2015)
Cell Death Dis
, vol.6
, pp. e1696
-
-
Ghavami, S.1
Cunnington, R.H.2
Gupta, S.3
-
132
-
-
84964842234
-
Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-beta R II during TGF-beta1-induced fibrogenesis in human cardiac fibroblasts
-
M.Zou, F.Wang, R.Gao, et al. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-beta R II during TGF-beta1-induced fibrogenesis in human cardiac fibroblasts. Sci Rep. 2016;6:24747.
-
(2016)
Sci Rep
, vol.6
, pp. 24747
-
-
Zou, M.1
Wang, F.2
Gao, R.3
-
133
-
-
84922646378
-
In vivo activation of a conserved microRNA program induces mammalian heart regeneration
-
A.Aguirre, N.Montserrat, S.Zacchigna, et al. In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell. 2014;15(5):589–604.
-
(2014)
Cell Stem Cell
, vol.15
, Issue.5
, pp. 589-604
-
-
Aguirre, A.1
Montserrat, N.2
Zacchigna, S.3
-
134
-
-
84963582740
-
Inhibition of let-7 augments the recruitment of epicardial cells and improves cardiac function after myocardial infarction
-
T.Seeger, Q.F.Xu, M.Muhly-Reinholz, et al. Inhibition of let-7 augments the recruitment of epicardial cells and improves cardiac function after myocardial infarction. J Mol Cell Cardiol. 2016;94:145–152.
-
(2016)
J Mol Cell Cardiol
, vol.94
, pp. 145-152
-
-
Seeger, T.1
Xu, Q.F.2
Muhly-Reinholz, M.3
-
135
-
-
84875953755
-
Stem cell metabolism in tissue development and aging
-
N.Shyh-Chang, G.Q.Daley, L.C.Cantley. Stem cell metabolism in tissue development and aging. Development. 2013;140(12):2535–2547.
-
(2013)
Development
, vol.140
, Issue.12
, pp. 2535-2547
-
-
Shyh-Chang, N.1
Daley, G.Q.2
Cantley, L.C.3
-
137
-
-
84907967415
-
Let-7 coordinately suppresses components of the amino acid sensing pathway to repress mTORC1 and induce autophagy
-
A.N.Dubinsky, S.G.Dastidar, C.L.Hsu, et al. Let-7 coordinately suppresses components of the amino acid sensing pathway to repress mTORC1 and induce autophagy. Cell Metab. 2014;20(4):626–638.
-
(2014)
Cell Metab
, vol.20
, Issue.4
, pp. 626-638
-
-
Dubinsky, A.N.1
Dastidar, S.G.2
Hsu, C.L.3
-
138
-
-
84891738225
-
Autophagy and human diseases
-
P.Jiang, N.Mizushima. Autophagy and human diseases. Cell Res. 2014;24(1):69–79.
-
(2014)
Cell Res
, vol.24
, Issue.1
, pp. 69-79
-
-
Jiang, P.1
Mizushima, N.2
|