-
1
-
-
0019067386
-
Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans
-
Horvitz H.R., Sulston J.E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 1980, 96:435-454.
-
(1980)
Genetics
, vol.96
, pp. 435-454
-
-
Horvitz, H.R.1
Sulston, J.E.2
-
2
-
-
0021771445
-
Heterochronic mutants of the nematode Caenorhabditis elegans
-
Ambros V., Horvitz H.R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 1984, 226:409-416.
-
(1984)
Science
, vol.226
, pp. 409-416
-
-
Ambros, V.1
Horvitz, H.R.2
-
3
-
-
0030970775
-
The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA
-
Moss E.G., et al. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 1997, 88:637-646.
-
(1997)
Cell
, vol.88
, pp. 637-646
-
-
Moss, E.G.1
-
4
-
-
0034708122
-
The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans
-
Reinhart B.J., et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000, 403:901-906.
-
(2000)
Nature
, vol.403
, pp. 901-906
-
-
Reinhart, B.J.1
-
5
-
-
0034597777
-
Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA
-
Pasquinelli A.E., et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000, 408:86-89.
-
(2000)
Nature
, vol.408
, pp. 86-89
-
-
Pasquinelli, A.E.1
-
6
-
-
24144494563
-
The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans
-
Abbott A.L., et al. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev. Cell 2005, 9:403-414.
-
(2005)
Dev. Cell
, vol.9
, pp. 403-414
-
-
Abbott, A.L.1
-
7
-
-
0037783427
-
Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites
-
Moss E.G., Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev. Biol. 2003, 258:432-442.
-
(2003)
Dev. Biol.
, vol.258
, pp. 432-442
-
-
Moss, E.G.1
Tang, L.2
-
8
-
-
36749043230
-
Induced pluripotent stem cell lines derived from human somatic cells
-
Yu J., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917-1920.
-
(2007)
Science
, vol.318
, pp. 1917-1920
-
-
Yu, J.1
-
9
-
-
33747334621
-
Extensive post-transcriptional regulation of microRNAs and its implications for cancer
-
Thomson J.M., et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006, 20:2202-2207.
-
(2006)
Genes Dev.
, vol.20
, pp. 2202-2207
-
-
Thomson, J.M.1
-
10
-
-
40849108663
-
Selective blockade of microRNA processing by Lin28
-
Viswanathan S.R., et al. Selective blockade of microRNA processing by Lin28. Science 2008, 320:97-100.
-
(2008)
Science
, vol.320
, pp. 97-100
-
-
Viswanathan, S.R.1
-
11
-
-
48649103982
-
A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment
-
Rybak A., et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 2008, 10:987-993.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 987-993
-
-
Rybak, A.1
-
12
-
-
53949088050
-
Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA
-
Heo I., et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 2008, 32:276-284.
-
(2008)
Mol. Cell
, vol.32
, pp. 276-284
-
-
Heo, I.1
-
13
-
-
47949100595
-
Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing
-
Newman M.A., et al. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 2008, 14:1539-1549.
-
(2008)
RNA
, vol.14
, pp. 1539-1549
-
-
Newman, M.A.1
-
14
-
-
70349810911
-
LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans
-
Lehrbach N.J., et al. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 2009, 16:1016-1020.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1016-1020
-
-
Lehrbach, N.J.1
-
15
-
-
79952360425
-
LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans
-
Van Wynsberghe P.M. LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 2011, 18:302-308.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 302-308
-
-
Van Wynsberghe, P.M.1
-
16
-
-
84875933577
-
Lin28: Primal regulator of growth and metabolism in stem cells
-
Shyh-Chang N., Daley G.Q. Lin28: Primal regulator of growth and metabolism in stem cells. Cell Stem Cell 2013, 12:395-406.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 395-406
-
-
Shyh-Chang, N.1
Daley, G.Q.2
-
17
-
-
84907967415
-
Let-7 coordinately suppresses components of the amino acid sensing pathway to repress mTORC1 and induce autophagy
-
Dubinsky A.N., et al. Let-7 coordinately suppresses components of the amino acid sensing pathway to repress mTORC1 and induce autophagy. Cell Metab. 2014, 20:626-638.
-
(2014)
Cell Metab.
, vol.20
, pp. 626-638
-
-
Dubinsky, A.N.1
-
18
-
-
34247589770
-
Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency
-
Polesskaya A., et al. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev. 2007, 21:1125-1138.
-
(2007)
Genes Dev.
, vol.21
, pp. 1125-1138
-
-
Polesskaya, A.1
-
19
-
-
79953015943
-
Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells
-
Peng S., et al. Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells 2011, 29:496-504.
-
(2011)
Stem Cells
, vol.29
, pp. 496-504
-
-
Peng, S.1
-
20
-
-
80053481600
-
The Lin28/let-7 axis regulates glucose metabolism
-
Zhu H., et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011, 147:81-94.
-
(2011)
Cell
, vol.147
, pp. 81-94
-
-
Zhu, H.1
-
21
-
-
84880938062
-
Expression of exogenous LIN28 contributes to proliferation and survival of mouse primary cortical neurons in vitro
-
Bhuiyan M.I., et al. Expression of exogenous LIN28 contributes to proliferation and survival of mouse primary cortical neurons in vitro. Neuroscience 2013, 17:448-458.
-
(2013)
Neuroscience
, vol.17
, pp. 448-458
-
-
Bhuiyan, M.I.1
-
22
-
-
84928600023
-
Lin28 promotes the proliferative capacity of neural progenitor cells in brain development
-
Yang M., et al. Lin28 promotes the proliferative capacity of neural progenitor cells in brain development. Development 2015, 142:1616-1627.
-
(2015)
Development
, vol.142
, pp. 1616-1627
-
-
Yang, M.1
-
23
-
-
77954144740
-
Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies
-
Zhu H., et al. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nat. Genet. 2010, 42:626-630.
-
(2010)
Nat. Genet.
, vol.42
, pp. 626-630
-
-
Zhu, H.1
-
24
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
-
25
-
-
33748752151
-
The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
-
Schieke S.M., et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J. Biol. Chem. 2006, 281:27643-27652.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 27643-27652
-
-
Schieke, S.M.1
-
26
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex
-
Cunningham J.T. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 2007, 450:736-740.
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
-
28
-
-
80053437994
-
Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs
-
Le M.T., et al. Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet. 2011, 7:e1002242.
-
(2011)
PLoS Genet.
, vol.7
, pp. e1002242
-
-
Le, M.T.1
-
29
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
30
-
-
84865847962
-
Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells
-
Janiszewska M.S., et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 2012, 26:1926-1944.
-
(2012)
Genes Dev.
, vol.26
, pp. 1926-1944
-
-
Janiszewska, M.S.1
-
31
-
-
84887984423
-
Lin28 enhances tissue repair by reprogramming cellular metabolism
-
Shyh-Chang N., et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 2013, 155:778-792.
-
(2013)
Cell
, vol.155
, pp. 778-792
-
-
Shyh-Chang, N.1
-
32
-
-
20044395613
-
RAS is regulated by the let-7 microRNA family
-
Johnson S.M., et al. RAS is regulated by the let-7 microRNA family. Cell 2005, 120:635-647.
-
(2005)
Cell
, vol.120
, pp. 635-647
-
-
Johnson, S.M.1
-
33
-
-
84857784512
-
Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells
-
Benhamed M., et al. Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat. Cell Biol. 2012, 14:266-275.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 266-275
-
-
Benhamed, M.1
-
34
-
-
67649881121
-
Lin28 promotes transformation and is associated with advanced human malignancies
-
Viswanathan S.R., et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat. Genet. 2009, 41:843-848.
-
(2009)
Nat. Genet.
, vol.41
, pp. 843-848
-
-
Viswanathan, S.R.1
-
35
-
-
84868210731
-
LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression
-
Molenaar J.J., et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat. Genet. 2012, 44:1199-1206.
-
(2012)
Nat. Genet.
, vol.44
, pp. 1199-1206
-
-
Molenaar, J.J.1
-
36
-
-
84864563641
-
Enforced expression of Lin28b leads to impaired T-cell development, release of infl ligatureammatory cytokines, and peripheral T-cell lymphoma
-
Beachy S.H., et al. Enforced expression of Lin28b leads to impaired T-cell development, release of infl ligatureammatory cytokines, and peripheral T-cell lymphoma. Blood 2012, 120:1048-1059.
-
(2012)
Blood
, vol.120
, pp. 1048-1059
-
-
Beachy, S.H.1
-
37
-
-
84899740983
-
Lin28 sustains early renal progenitors and induces Wilms tumor
-
Urbach A., et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 2014, 28:971-982.
-
(2014)
Genes Dev.
, vol.28
, pp. 971-982
-
-
Urbach, A.1
-
38
-
-
84905715895
-
Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models
-
Nguyen L.H., et al. Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models. Cancer Cell 2014, 26:248-261.
-
(2014)
Cancer Cell
, vol.26
, pp. 248-261
-
-
Nguyen, L.H.1
-
39
-
-
79958799436
-
LIN28B promotes colon cancer progression and metastasis
-
King C.E., et al. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 2011, 71:4260-4268.
-
(2011)
Cancer Res.
, vol.71
, pp. 4260-4268
-
-
King, C.E.1
-
40
-
-
84929590704
-
LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans
-
Tu H.C., et al. LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans. Genes Dev. 2015, 29:1074-1086.
-
(2015)
Genes Dev.
, vol.29
, pp. 1074-1086
-
-
Tu, H.C.1
-
41
-
-
84866887187
-
Common variation at 6q16 within HACE1 and LIN28B infl ligatureuences susceptibility to neuroblastoma
-
Diskin S.J., et al. Common variation at 6q16 within HACE1 and LIN28B infl ligatureuences susceptibility to neuroblastoma. Nat. Genet. 2012, 44:1126-1130.
-
(2012)
Nat. Genet.
, vol.44
, pp. 1126-1130
-
-
Diskin, S.J.1
-
42
-
-
84923025327
-
Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1
-
Ma, et al. Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat. Commun. 2014, 5:5212.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5212
-
-
Ma1
-
43
-
-
84883315995
-
Fetal deficiency of Lin28 programs life-long aberrations in growth and glucose metabolism
-
Shinoda G., et al. Fetal deficiency of Lin28 programs life-long aberrations in growth and glucose metabolism. Stem Cells 2013, 31:1563-1573.
-
(2013)
Stem Cells
, vol.31
, pp. 1563-1573
-
-
Shinoda, G.1
-
44
-
-
84855518254
-
Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs
-
Frost R.J., Olson E.N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:21075-21080.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 21075-21080
-
-
Frost, R.J.1
Olson, E.N.2
-
45
-
-
42649092874
-
Identification of ten loci associated with height highlights new biological pathways in human growth
-
Lettre G., et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 2008, 40:584-591.
-
(2008)
Nat. Genet.
, vol.40
, pp. 584-591
-
-
Lettre, G.1
-
46
-
-
77951976670
-
Distinct variants at LIN28B influence growth in height from birth to adulthood
-
Widén E., et al. Distinct variants at LIN28B influence growth in height from birth to adulthood. Am. J. Hum. Genet. 2010, 86:773-782.
-
(2010)
Am. J. Hum. Genet.
, vol.86
, pp. 773-782
-
-
Widén, E.1
-
47
-
-
77954143522
-
Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
-
Voight B.F., et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 2010, 42:579-589.
-
(2010)
Nat. Genet.
, vol.42
, pp. 579-589
-
-
Voight, B.F.1
-
48
-
-
84878680769
-
The polymorphism in the let-7 targeted region of the Lin28 gene is associated with increased risk of type 2 diabetes mellitus
-
Zhang J., et al. The polymorphism in the let-7 targeted region of the Lin28 gene is associated with increased risk of type 2 diabetes mellitus. Mol. Cell. Endocrinol. 2013, 375:53-57.
-
(2013)
Mol. Cell. Endocrinol.
, vol.375
, pp. 53-57
-
-
Zhang, J.1
-
49
-
-
79957647418
-
Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis
-
Drummond M.J., et al. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol. Genomics 2011, 43:595-603.
-
(2011)
Physiol. Genomics
, vol.43
, pp. 595-603
-
-
Drummond, M.J.1
-
50
-
-
0029094755
-
Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C
-
Zhou X., et al. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 1995, 376:771-774.
-
(1995)
Nature
, vol.376
, pp. 771-774
-
-
Zhou, X.1
-
51
-
-
0033215388
-
The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis
-
Battista S., et al. The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis. Cancer Res. 1999, 59:4793-4797.
-
(1999)
Cancer Res.
, vol.59
, pp. 4793-4797
-
-
Battista, S.1
-
52
-
-
2942534884
-
Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice
-
Hansen T.V.O., et al. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice. Mol. Cell. Biol. 2004, 24:4448-4464.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 4448-4464
-
-
Hansen, T.V.O.1
-
53
-
-
3042547563
-
Differential regulation of the insulin-like growth factor II mRNA-binding protein genes by architectural transcription factor HMGA2
-
Brants J.R., et al. Differential regulation of the insulin-like growth factor II mRNA-binding protein genes by architectural transcription factor HMGA2. FEBS Lett. 2004, 569:277-283.
-
(2004)
FEBS Lett.
, vol.569
, pp. 277-283
-
-
Brants, J.R.1
-
54
-
-
34248233108
-
HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-kappaB
-
Cleynen I., et al. HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-kappaB. Mol. Cancer Res. 2007, 5:363-372.
-
(2007)
Mol. Cancer Res.
, vol.5
, pp. 363-372
-
-
Cleynen, I.1
-
55
-
-
84928393220
-
IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins
-
Dai N., et al. IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins. Cell Metab. 2015, 21:609-621.
-
(2015)
Cell Metab.
, vol.21
, pp. 609-621
-
-
Dai, N.1
-
56
-
-
22544482628
-
Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice
-
Foti D., et al. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat. Med. 2005, 11:765-773.
-
(2005)
Nat. Med.
, vol.11
, pp. 765-773
-
-
Foti, D.1
-
57
-
-
84856793694
-
Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes
-
Chiefari E., et al. Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes. Nat. Comm. 2010, 1:40.
-
(2010)
Nat. Comm.
, vol.1
, pp. 40
-
-
Chiefari, E.1
-
58
-
-
84870856707
-
An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis
-
Li Z., et al. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis. Dev. Cell 2012, 23:1176-1188.
-
(2012)
Dev. Cell
, vol.23
, pp. 1176-1188
-
-
Li, Z.1
-
59
-
-
0026772772
-
Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis
-
Hales C.N., Barker D.J.P. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992, 35:595-601.
-
(1992)
Diabetologia
, vol.35
, pp. 595-601
-
-
Hales, C.N.1
Barker, D.J.P.2
-
60
-
-
84921793235
-
Early developmental conditioning of later health and disease: physiology or pathophysiology?
-
Hanson M.A., Gluckman P.D. Early developmental conditioning of later health and disease: physiology or pathophysiology?. Physiol. Rev. 2014, 94:1027-1076.
-
(2014)
Physiol. Rev.
, vol.94
, pp. 1027-1076
-
-
Hanson, M.A.1
Gluckman, P.D.2
-
61
-
-
84885374473
-
The imprinted H19 lncRNA antagonizes let-7 microRNAs
-
Kallen A.N., et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 2013, 52:101-112.
-
(2013)
Mol. Cell
, vol.52
, pp. 101-112
-
-
Kallen, A.N.1
-
62
-
-
84920974266
-
The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells
-
Gao Y., et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014, 42:13799-13811.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 13799-13811
-
-
Gao, Y.1
-
63
-
-
84955564840
-
MiRNA let-7 expression is regulated by glucose and TNF-alpha by a remote upstream promoter
-
Katayama M., et al. miRNA let-7 expression is regulated by glucose and TNF-alpha by a remote upstream promoter. Biochem. J. 2015, 472:147-156.
-
(2015)
Biochem. J.
, vol.472
, pp. 147-156
-
-
Katayama, M.1
-
64
-
-
84890828236
-
H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1
-
Monnier P., et al. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc. Natl. Acad. Sci. U.S.A. 2014, 110:20693-20698.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 20693-20698
-
-
Monnier, P.1
-
65
-
-
84862216894
-
MicroRNA-125b/Lin28 pathway contributes to the mesoendodermal fate decision of embryonic stem cells
-
Wang J., et al. MicroRNA-125b/Lin28 pathway contributes to the mesoendodermal fate decision of embryonic stem cells. Stem Cells Dev. 2012, 21:1524-1536.
-
(2012)
Stem Cells Dev.
, vol.21
, pp. 1524-1536
-
-
Wang, J.1
-
66
-
-
84930224849
-
Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes
-
Kuppusamy K.T., et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E2785-E2794.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E2785-E2794
-
-
Kuppusamy, K.T.1
-
67
-
-
84888162654
-
Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells
-
Bao M.H., et al. Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. Int. J. Mol. Sci. 2013, 14:23086-23102.
-
(2013)
Int. J. Mol. Sci.
, vol.14
, pp. 23086-23102
-
-
Bao, M.H.1
-
68
-
-
84914126594
-
Let-7 miRNA profiles are associated with the reversal of left ventricular hypertrophy and hypertension in adult male offspring from mothers undernourished during pregnancy after preweaning growth hormone treatment
-
Gray C., et al. Let-7 miRNA profiles are associated with the reversal of left ventricular hypertrophy and hypertension in adult male offspring from mothers undernourished during pregnancy after preweaning growth hormone treatment. Endocrinology 2014, 155:4808-4817.
-
(2014)
Endocrinology
, vol.155
, pp. 4808-4817
-
-
Gray, C.1
-
69
-
-
85019295619
-
Inhibition of Let-7 microRNA attenuates myocardial remodeling and improves cardiac function postinfarction in mice
-
Tolonen A.M., et al. Inhibition of Let-7 microRNA attenuates myocardial remodeling and improves cardiac function postinfarction in mice. Pharmacol. Res. Perspect. 2014, 2:e00056.
-
(2014)
Pharmacol. Res. Perspect.
, vol.2
, pp. e00056
-
-
Tolonen, A.M.1
-
70
-
-
84929952785
-
Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway
-
Zhang M., et al. Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway. J. Cell. Mol. Med. 2015, 19:1174-1182.
-
(2015)
J. Cell. Mol. Med.
, vol.19
, pp. 1174-1182
-
-
Zhang, M.1
-
71
-
-
84908006900
-
Lin28a protects against hypoxia/reoxygenation induced cardiomyocytes apoptosis by alleviating mitochondrial dysfunction under high glucose/high fat conditions
-
Zhang M., et al. Lin28a protects against hypoxia/reoxygenation induced cardiomyocytes apoptosis by alleviating mitochondrial dysfunction under high glucose/high fat conditions. PLoS ONE 2014, 9:e110580.
-
(2014)
PLoS ONE
, vol.9
, pp. e110580
-
-
Zhang, M.1
-
72
-
-
43049118632
-
A crucial role of a high mobility group protein HMGA2 in cardiogenesis
-
Monzen K., et al. A crucial role of a high mobility group protein HMGA2 in cardiogenesis. Nat. Cell Biol. 2008, 10:567-574.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 567-574
-
-
Monzen, K.1
-
73
-
-
84922646378
-
In vivo activation of a conserved microRNA program induces mammalian heart regeneration
-
Aguirre A., et al. In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell 2014, 15:589-604.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 589-604
-
-
Aguirre, A.1
-
74
-
-
84863323282
-
Healthy aging: is smaller better - a mini-review
-
Bartke A. Healthy aging: is smaller better - a mini-review. Gerontology 2012, 58:337-343.
-
(2012)
Gerontology
, vol.58
, pp. 337-343
-
-
Bartke, A.1
-
75
-
-
0037237370
-
Glucose regulation and oxidative stress in healthy centenarians
-
Barbieri M., et al. Glucose regulation and oxidative stress in healthy centenarians. Exp. Gerontol. 2003, 38:137-143.
-
(2003)
Exp. Gerontol.
, vol.38
, pp. 137-143
-
-
Barbieri, M.1
-
76
-
-
0033525558
-
Longevity, stress response, and cancer in aging telomerase-deficient mice
-
Rudolph K.L., et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 1999, 96:701-712.
-
(1999)
Cell
, vol.96
, pp. 701-712
-
-
Rudolph, K.L.1
-
77
-
-
0037011958
-
P53 mutant mice that display early ageing-associated phenotypes
-
Tyner S.D., et al. P53 mutant mice that display early ageing-associated phenotypes. Nature 2002, 415:45-53.
-
(2002)
Nature
, vol.415
, pp. 45-53
-
-
Tyner, S.D.1
-
78
-
-
84949908492
-
Precise let-7 expression levels balance organ regeneration against tumor suppression
-
Wu L., et al. Precise let-7 expression levels balance organ regeneration against tumor suppression. Elife 2015, 4:09431.
-
(2015)
Elife
, vol.4
, pp. 09431
-
-
Wu, L.1
-
79
-
-
33646376411
-
Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
-
Yilmaz O.H., et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006, 441:475-482.
-
(2006)
Nature
, vol.441
, pp. 475-482
-
-
Yilmaz, O.H.1
-
80
-
-
84872160110
-
Influence of threonine metabolism on S-adenosylmethionine and histone methylation
-
Shyh-Chang N., et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2013, 339:222-226.
-
(2013)
Science
, vol.339
, pp. 222-226
-
-
Shyh-Chang, N.1
-
81
-
-
84941024717
-
Oocyte factors suppress mitochondrial polynucleotide phosphorylase to remodel the metabolome and enhance reprogramming
-
Khaw S.L., et al. Oocyte factors suppress mitochondrial polynucleotide phosphorylase to remodel the metabolome and enhance reprogramming. Cell Rep. 2015, 12:1080-1088.
-
(2015)
Cell Rep.
, vol.12
, pp. 1080-1088
-
-
Khaw, S.L.1
-
82
-
-
84924350833
-
Metabolic switches linked to pluripotency and embryonic stem cell differentiation
-
Shyh-Chang N., Daley G.Q. Metabolic switches linked to pluripotency and embryonic stem cell differentiation. Cell Metab. 2015, 21:349-350.
-
(2015)
Cell Metab.
, vol.21
, pp. 349-350
-
-
Shyh-Chang, N.1
Daley, G.Q.2
-
83
-
-
84958128060
-
Stem cell mitochondria during aging
-
Min-Wen J.C., et al. Stem cell mitochondria during aging. Semin. Cell Dev. Biol. 2016, 10.1016/j.semcdb.2016.02.005.
-
(2016)
Semin. Cell Dev. Biol.
-
-
Min-Wen, J.C.1
|