-
1
-
-
1542423138
-
Production of L-threonine by auxotrophic mutants of Escherichia coli
-
1 Huang, H.T., Production of L-threonine by auxotrophic mutants of Escherichia coli. Appl Microbiol 9 (1961), 419–424.
-
(1961)
Appl Microbiol
, vol.9
, pp. 419-424
-
-
Huang, H.T.1
-
2
-
-
0019800517
-
Bacterial production of human insulin
-
2 Riggs, A.D., Bacterial production of human insulin. Diabetes Care 4 (1981), 64–68.
-
(1981)
Diabetes Care
, vol.4
, pp. 64-68
-
-
Riggs, A.D.1
-
3
-
-
84923860609
-
Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products
-
3 Förster, A.H., Gescher, J., Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products. Front Bioeng Biotechnol, 2, 2014, 16.
-
(2014)
Front Bioeng Biotechnol
, vol.2
, pp. 16
-
-
Förster, A.H.1
Gescher, J.2
-
4
-
-
84870172887
-
The molecular toolbox for chromosomal heterologous multiprotein expression in Escherichia coli
-
4 Richter, K., Gescher, J., The molecular toolbox for chromosomal heterologous multiprotein expression in Escherichia coli. Biochem Soc Trans 40 (2012), 1222–1226.
-
(2012)
Biochem Soc Trans
, vol.40
, pp. 1222-1226
-
-
Richter, K.1
Gescher, J.2
-
5
-
-
84923868543
-
Advanced biotechnology metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products
-
5 Becker, J., Wittmann, C., Advanced biotechnology metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54 (2015), 3328–3350.
-
(2015)
Angew Chem Int Ed Engl
, vol.54
, pp. 3328-3350
-
-
Becker, J.1
Wittmann, C.2
-
6
-
-
84882921508
-
Systems metabolic engineering of Escherichia coli for chemicals, materials, biofuels, and pharmaceuticals
-
C Wittmann S.Y. Lee Springer
-
6 Na, D., Park, J.H., Jang, Y.S., Lee, J.W., Lee, S.Y., Systems metabolic engineering of Escherichia coli for chemicals, materials, biofuels, and pharmaceuticals. Wittmann, C, Lee, S.Y., (eds.) Systems Metabolic Engineering, 2012, Springer, 117–149.
-
(2012)
Systems Metabolic Engineering
, pp. 117-149
-
-
Na, D.1
Park, J.H.2
Jang, Y.S.3
Lee, J.W.4
Lee, S.Y.5
-
7
-
-
84950277538
-
Microbial production of value-added nutraceuticals
-
7 Wang, J., Guleria, S., Koffas, M.A., Yan, Y., Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37 (2015), 97–104.
-
(2015)
Curr Opin Biotechnol
, vol.37
, pp. 97-104
-
-
Wang, J.1
Guleria, S.2
Koffas, M.A.3
Yan, Y.4
-
8
-
-
84940206768
-
Advancing metabolic engineering through systems biology of industrial microorganisms
-
8 Dai, Z., Nielsen, J., Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 36 (2015), 8–15.
-
(2015)
Curr Opin Biotechnol
, vol.36
, pp. 8-15
-
-
Dai, Z.1
Nielsen, J.2
-
9
-
-
84938415635
-
Microbial pigments as natural color sources: current trends and future perspectives
-
9 Tuli, H.S., Chaudhary, P., Beniwal, V., Sharma, A.K., Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52 (2015), 4669–4678.
-
(2015)
J Food Sci Technol
, vol.52
, pp. 4669-4678
-
-
Tuli, H.S.1
Chaudhary, P.2
Beniwal, V.3
Sharma, A.K.4
-
10
-
-
84923923224
-
Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol
-
This paper reports on the heterologous production of the high-value therapeutic agent deoxyviolacein with an outstanding production titer of 1.6 g/L. The heart of the study is a tailor-made E. coli strain, which was engineered on a systems-wide level. Optimized process operations and streamlined purification yielded >99.5% pure deoxyviolacein.
-
10•• Rodrigues, A.L., Becker, J., de Souza Lima, A.O., Porto, L.M., Wittmann, C., Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol. Biotechnol Bioeng 111 (2014), 2280–2289 This paper reports on the heterologous production of the high-value therapeutic agent deoxyviolacein with an outstanding production titer of 1.6 g/L. The heart of the study is a tailor-made E. coli strain, which was engineered on a systems-wide level. Optimized process operations and streamlined purification yielded >99.5% pure deoxyviolacein.
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 2280-2289
-
-
Rodrigues, A.L.1
Becker, J.2
de Souza Lima, A.O.3
Porto, L.M.4
Wittmann, C.5
-
11
-
-
84858009322
-
Microbial production of the drugs violacein and deoxyviolacein: analytical development and strain comparison
-
11 Rodrigues, A.L., Göcke, Y., Bolten, C., Brock, N.L., Dickschat, J.S., Wittmann, C., Microbial production of the drugs violacein and deoxyviolacein: analytical development and strain comparison. Biotechnol Lett 34 (2012), 717–720.
-
(2012)
Biotechnol Lett
, vol.34
, pp. 717-720
-
-
Rodrigues, A.L.1
Göcke, Y.2
Bolten, C.3
Brock, N.L.4
Dickschat, J.S.5
Wittmann, C.6
-
12
-
-
84884166429
-
Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein
-
12 Rodrigues, A.L., Trachtmann, N., Becker, J., Lohanatha, A.F., Blotenberg, J., Bolten, C.J., Korneli, C., de Souza Lima, A.O., Porto, L.M., Sprenger, G.A., Wittmann, C., Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab Eng 20 (2013), 29–41.
-
(2013)
Metab Eng
, vol.20
, pp. 29-41
-
-
Rodrigues, A.L.1
Trachtmann, N.2
Becker, J.3
Lohanatha, A.F.4
Blotenberg, J.5
Bolten, C.J.6
Korneli, C.7
de Souza Lima, A.O.8
Porto, L.M.9
Sprenger, G.A.10
Wittmann, C.11
-
13
-
-
84924140841
-
High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway
-
13 Fang, M.Y., Zhang, C., Yang, S., Cui, J.Y., Jiang, P.X., Lou, K., Wachi, M., Xing, X.H., High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb Cell Fact, 14, 2015, 8.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 8
-
-
Fang, M.Y.1
Zhang, C.2
Yang, S.3
Cui, J.Y.4
Jiang, P.X.5
Lou, K.6
Wachi, M.7
Xing, X.H.8
-
14
-
-
84931292024
-
ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways
-
14 Jones, J.A., Vernacchio, V.R., Lachance, D.M., Lebovich, M., Fu, L., Shirke, A.N., Schultz, V.L., Cress, B., Linhardt, R.J., Koffas, M.A., ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci Rep, 5, 2015, 11301.
-
(2015)
Sci Rep
, vol.5
, pp. 11301
-
-
Jones, J.A.1
Vernacchio, V.R.2
Lachance, D.M.3
Lebovich, M.4
Fu, L.5
Shirke, A.N.6
Schultz, V.L.7
Cress, B.8
Linhardt, R.J.9
Koffas, M.A.10
-
15
-
-
84954320141
-
Biotechnology of riboflavin
-
15 Schwechheimer, S.K., Park, E.Y., Revuelta, J.L., Becker, J., Wittmann, C., Biotechnology of riboflavin. Appl Microbiol Biotechnol, 2016.
-
(2016)
Appl Microbiol Biotechnol
-
-
Schwechheimer, S.K.1
Park, E.Y.2
Revuelta, J.L.3
Becker, J.4
Wittmann, C.5
-
16
-
-
0034091478
-
Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production
-
16 Stahmann, K.P., Revuelta, J.L., Seulberger, H., Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53 (2000), 509–516.
-
(2000)
Appl Microbiol Biotechnol
, vol.53
, pp. 509-516
-
-
Stahmann, K.P.1
Revuelta, J.L.2
Seulberger, H.3
-
17
-
-
84858005266
-
Riboflavin production by Ashbya gossypii
-
17 Kato, T., Park, E.Y., Riboflavin production by Ashbya gossypii. Biotechnol Lett 34 (2012), 611–618.
-
(2012)
Biotechnol Lett
, vol.34
, pp. 611-618
-
-
Kato, T.1
Park, E.Y.2
-
18
-
-
84923925548
-
Metabolic engineering of Escherichia coli for the production of riboflavin
-
18 Lin, Z., Xu, Z., Li, Y., Wang, Z., Chen, T., Zhao, X., Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact, 13, 2014, 104.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 104
-
-
Lin, Z.1
Xu, Z.2
Li, Y.3
Wang, Z.4
Chen, T.5
Zhao, X.6
-
19
-
-
35348981360
-
Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum — over expression and modification of G6P dehydrogenase
-
19 Becker, J., Klopprogge, C., Herold, A., Zelder, O., Bolten, C.J., Wittmann, C., Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum — over expression and modification of G6P dehydrogenase. J Biotechnol 132 (2007), 99–109.
-
(2007)
J Biotechnol
, vol.132
, pp. 99-109
-
-
Becker, J.1
Klopprogge, C.2
Herold, A.3
Zelder, O.4
Bolten, C.J.5
Wittmann, C.6
-
20
-
-
11144261828
-
A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum
-
20 Ohnishi, J., Katahira, R., Mitsuhashi, S., Kakita, S., Ikeda, M., A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242 (2005), 265–274.
-
(2005)
FEMS Microbiol Lett
, vol.242
, pp. 265-274
-
-
Ohnishi, J.1
Katahira, R.2
Mitsuhashi, S.3
Kakita, S.4
Ikeda, M.5
-
21
-
-
84962835260
-
Rhodiola rosea L. and Alzheimer's disease: from farm to pharmacy
-
21 Nabavi, S.F., Braidy, N., Orhan, I.E., Badiee, A., Daglia, M., Nabavi, S.M., Rhodiola rosea L. and Alzheimer's disease: from farm to pharmacy. Phytother Res 30 (2016), 532–539.
-
(2016)
Phytother Res
, vol.30
, pp. 532-539
-
-
Nabavi, S.F.1
Braidy, N.2
Orhan, I.E.3
Badiee, A.4
Daglia, M.5
Nabavi, S.M.6
-
22
-
-
84924488449
-
Production of salidroside in metabolically engineered Escherichia coli
-
22 Bai, Y., Bi, H., Zhuang, Y., Liu, C., Cai, T., Liu, X., Zhang, X., Liu, T., Ma, Y., Production of salidroside in metabolically engineered Escherichia coli. Sci Rep, 4, 2014, 6640.
-
(2014)
Sci Rep
, vol.4
, pp. 6640
-
-
Bai, Y.1
Bi, H.2
Zhuang, Y.3
Liu, C.4
Cai, T.5
Liu, X.6
Zhang, X.7
Liu, T.8
Ma, Y.9
-
23
-
-
84958969892
-
Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli
-
23 Jiang, M., Zhang, H., Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli. Curr Opin Biotechnol 42 (2016), 1–6.
-
(2016)
Curr Opin Biotechnol
, vol.42
, pp. 1-6
-
-
Jiang, M.1
Zhang, H.2
-
24
-
-
84937459775
-
Engineered biosynthesis of natural products in heterologous hosts
-
24 Luo, Y., Li, B.Z., Liu, D., Zhang, L., Chen, Y., Jia, B., Zeng, B.X., Zhao, H., Yuan, Y.J., Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev, 2015, 5265–5290.
-
(2015)
Chem Soc Rev
, pp. 5265-5290
-
-
Luo, Y.1
Li, B.Z.2
Liu, D.3
Zhang, L.4
Chen, Y.5
Jia, B.6
Zeng, B.X.7
Zhao, H.8
Yuan, Y.J.9
-
25
-
-
84922572075
-
Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis
-
25 Rufino, A.T., Ribeiro, M., Sousa, C., Judas, F., Salgueiro, L., Cavaleiro, C., Mendes, A.F., Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur J Pharmacol 750 (2015), 141–150.
-
(2015)
Eur J Pharmacol
, vol.750
, pp. 141-150
-
-
Rufino, A.T.1
Ribeiro, M.2
Sousa, C.3
Judas, F.4
Salgueiro, L.5
Cavaleiro, C.6
Mendes, A.F.7
-
26
-
-
84929376563
-
Microbial synthesis of myrcene by metabolically engineered Escherichia coli
-
26 Kim, E.M., Eom, J.H., Um, Y., Kim, Y., Woo, H.M., Microbial synthesis of myrcene by metabolically engineered Escherichia coli. J Agric Food Chem 63 (2015), 4606–4612.
-
(2015)
J Agric Food Chem
, vol.63
, pp. 4606-4612
-
-
Kim, E.M.1
Eom, J.H.2
Um, Y.3
Kim, Y.4
Woo, H.M.5
-
27
-
-
84899051891
-
Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
-
27 Paddon, C.J., Keasling, J.D., Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12 (2014), 355–367.
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 355-367
-
-
Paddon, C.J.1
Keasling, J.D.2
-
28
-
-
0038391517
-
Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
-
28 Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D., Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21 (2003), 796–802.
-
(2003)
Nat Biotechnol
, vol.21
, pp. 796-802
-
-
Martin, V.J.1
Pitera, D.J.2
Withers, S.T.3
Newman, J.D.4
Keasling, J.D.5
-
29
-
-
84879142653
-
High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli
-
This study is the first report on the production of the artemisinin precursor amorpha-4,11-diene at commercially relevant titers. Production performance of the recombinant strains was substantially optimized by selecting the most suitable enzyme variants for S. cerevisiae and S. aureus. Combined with a superior fermentation process, 27.4 g/L amorpha-4,11-diene was produced in fed-batch fermentation.
-
29•• Tsuruta, H., Paddon, C.J., Eng, D., Lenihan, J.R., Horning, T., Anthony, L.C., Regentin, R., Keasling, J.D., Renninger, N.S., Newman, J.D., High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One, 4, 2009, e4489 This study is the first report on the production of the artemisinin precursor amorpha-4,11-diene at commercially relevant titers. Production performance of the recombinant strains was substantially optimized by selecting the most suitable enzyme variants for S. cerevisiae and S. aureus. Combined with a superior fermentation process, 27.4 g/L amorpha-4,11-diene was produced in fed-batch fermentation.
-
(2009)
PLoS One
, vol.4
, pp. e4489
-
-
Tsuruta, H.1
Paddon, C.J.2
Eng, D.3
Lenihan, J.R.4
Horning, T.5
Anthony, L.C.6
Regentin, R.7
Keasling, J.D.8
Renninger, N.S.9
Newman, J.D.10
-
30
-
-
84938209211
-
Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production
-
30 Zhang, C., Zou, R., Chen, X., Stephanopoulos, G., Too, H.P., Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production. Appl Microbiol Biotechnol 99 (2015), 3825–3837.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 3825-3837
-
-
Zhang, C.1
Zou, R.2
Chen, X.3
Stephanopoulos, G.4
Too, H.P.5
-
31
-
-
84876784070
-
High-level semi-synthetic production of the potent antimalarial artemisinin
-
31 Paddon, C.J., Westfall, P.J., Pitera, D.J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M.D., Tai, A., Main, A., Eng, D., Polichuk, D.R., Teoh, K.H., Reed, D.W., Treynor, T., Lenihan, J., Fleck, M., Bajad, S., Dang, G., Dengrove, D., Diola, D., Dorin, G., Ellens, K.W., Fickes, S., Galazzo, J., Gaucher, S.P., Geistlinger, T., Henry, R., Hepp, M., Horning, T., Iqbal, T., Jiang, H., Kizer, L., Lieu, B., Melis, D., Moss, N., Regentin, R., Secrest, S., Tsuruta, H., Vazquez, R., Westblade, L.F., Xu, L., Yu, M., Zhang, Y., Zhao, L., Lievense, J., Covello, P.S., Keasling, J.D., Reiling, K.K., Renninger, N.S., Newman, J.D., High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 (2013), 528–532.
-
(2013)
Nature
, vol.496
, pp. 528-532
-
-
Paddon, C.J.1
Westfall, P.J.2
Pitera, D.J.3
Benjamin, K.4
Fisher, K.5
McPhee, D.6
Leavell, M.D.7
Tai, A.8
Main, A.9
Eng, D.10
Polichuk, D.R.11
Teoh, K.H.12
Reed, D.W.13
Treynor, T.14
Lenihan, J.15
Fleck, M.16
Bajad, S.17
Dang, G.18
Dengrove, D.19
Diola, D.20
Dorin, G.21
Ellens, K.W.22
Fickes, S.23
Galazzo, J.24
Gaucher, S.P.25
Geistlinger, T.26
Henry, R.27
Hepp, M.28
Horning, T.29
Iqbal, T.30
Jiang, H.31
Kizer, L.32
Lieu, B.33
Melis, D.34
Moss, N.35
Regentin, R.36
Secrest, S.37
Tsuruta, H.38
Vazquez, R.39
Westblade, L.F.40
Xu, L.41
Yu, M.42
Zhang, Y.43
Zhao, L.44
Lievense, J.45
Covello, P.S.46
Keasling, J.D.47
Reiling, K.K.48
Renninger, N.S.49
Newman, J.D.50
more..
-
32
-
-
84951014894
-
Developing fermentative terpenoid production for commercial usage
-
32 Leavell, M.D., McPhee, D.J., Paddon, C.J., Developing fermentative terpenoid production for commercial usage. Curr Opin Biotechnol 37 (2015), 114–119.
-
(2015)
Curr Opin Biotechnol
, vol.37
, pp. 114-119
-
-
Leavell, M.D.1
McPhee, D.J.2
Paddon, C.J.3
-
33
-
-
84955249209
-
Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production
-
33 Yang, L., Wang, C., Zhou, J., Kim, S.W., Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production. Microb Cell Fact, 15, 2016, 14.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 14
-
-
Yang, L.1
Wang, C.2
Zhou, J.3
Kim, S.W.4
-
34
-
-
84920077579
-
Natural and engineered production of taxadiene with taxadiene synthase
-
34 Soliman, S., Tang, Y., Natural and engineered production of taxadiene with taxadiene synthase. Biotechnol Bioeng 112 (2015), 229–235.
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 229-235
-
-
Soliman, S.1
Tang, Y.2
-
35
-
-
84949575568
-
Synthetic biology for pharmaceutical drug discovery
-
35 Trosset, J.Y., Carbonell, P., Synthetic biology for pharmaceutical drug discovery. Drug Des Devel Ther 9 (2015), 6285–6302.
-
(2015)
Drug Des Devel Ther
, vol.9
, pp. 6285-6302
-
-
Trosset, J.Y.1
Carbonell, P.2
-
36
-
-
84897856218
-
Paclitaxel: biosynthesis, production and future prospects
-
36 Howat, S., Park, B., Oh, I.S., Jin, Y.W., Lee, E.K., Loake, G.J., Paclitaxel: biosynthesis, production and future prospects. Nat Biotechnol 31 (2014), 242–245.
-
(2014)
Nat Biotechnol
, vol.31
, pp. 242-245
-
-
Howat, S.1
Park, B.2
Oh, I.S.3
Jin, Y.W.4
Lee, E.K.5
Loake, G.J.6
-
37
-
-
77957329119
-
Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli
-
37 Ajikumar, P.K., Xiao, W.H., Tyo, K.E., Wang, Y., Simeon, F., Leonard, E., Mucha, O., Phon, T.H., Pfeifer, B., Stephanopoulos, G., Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330 (2010), 70–74.
-
(2010)
Science
, vol.330
, pp. 70-74
-
-
Ajikumar, P.K.1
Xiao, W.H.2
Tyo, K.E.3
Wang, Y.4
Simeon, F.5
Leonard, E.6
Mucha, O.7
Phon, T.H.8
Pfeifer, B.9
Stephanopoulos, G.10
-
38
-
-
33645573250
-
Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae
-
38 Dejong, J.M., Liu, Y., Bollon, A.P., Long, R.M., Jennewein, S., Williams, D., Croteau, R.B., Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93 (2006), 212–224.
-
(2006)
Biotechnol Bioeng
, vol.93
, pp. 212-224
-
-
Dejong, J.M.1
Liu, Y.2
Bollon, A.P.3
Long, R.M.4
Jennewein, S.5
Williams, D.6
Croteau, R.B.7
-
39
-
-
0034838359
-
Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol
-
39 Huang, Q., Roessner, C.A., Croteau, R., Scott, A.I., Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9 (2001), 2237–2242.
-
(2001)
Bioorg Med Chem
, vol.9
, pp. 2237-2242
-
-
Huang, Q.1
Roessner, C.A.2
Croteau, R.3
Scott, A.I.4
-
40
-
-
84926646130
-
Distributing a metabolic pathway among a microbial consortium enhances production of natural products
-
This study proposes a promising concept to link the synthetic capacity of different cells for production.
-
40• Zhou, K., Qiao, K., Edgar, S., Stephanopoulos, G., Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33 (2015), 377–383 This study proposes a promising concept to link the synthetic capacity of different cells for production.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 377-383
-
-
Zhou, K.1
Qiao, K.2
Edgar, S.3
Stephanopoulos, G.4
-
41
-
-
18844392599
-
Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
-
41 Alper, H., Jin, Y.S., Moxley, J.F., Stephanopoulos, G., Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7 (2005), 155–164.
-
(2005)
Metab Eng
, vol.7
, pp. 155-164
-
-
Alper, H.1
Jin, Y.S.2
Moxley, J.F.3
Stephanopoulos, G.4
-
42
-
-
22844452835
-
Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets
-
42 Alper, H., Miyaoku, K., Stephanopoulos, G., Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23 (2005), 612–616.
-
(2005)
Nat Biotechnol
, vol.23
, pp. 612-616
-
-
Alper, H.1
Miyaoku, K.2
Stephanopoulos, G.3
-
43
-
-
84875670791
-
Engineering central metabolic modules of Escherichia coli for improving beta-carotene production
-
Authors applied a multi-module combinatory approach to optimize beta-carotene production in E. coli. Variations in the expression levels of selected genes from the TCA cycle, PP pathway, ATP synthesis, isoprenoid pathway, and terminal biosynthesis allowed the production of 2.1 g/L beta-carotene.
-
43• Zhao, J., Li, Q., Sun, T., Zhu, X., Xu, H., Tang, J., Zhang, X., Ma, Y., Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metab Eng 17 (2013), 42–50 Authors applied a multi-module combinatory approach to optimize beta-carotene production in E. coli. Variations in the expression levels of selected genes from the TCA cycle, PP pathway, ATP synthesis, isoprenoid pathway, and terminal biosynthesis allowed the production of 2.1 g/L beta-carotene.
-
(2013)
Metab Eng
, vol.17
, pp. 42-50
-
-
Zhao, J.1
Li, Q.2
Sun, T.3
Zhu, X.4
Xu, H.5
Tang, J.6
Zhang, X.7
Ma, Y.8
-
44
-
-
79955103635
-
Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin
-
44 Lemuth, K., Steuer, K., Albermann, C., Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact, 10, 2011, 29.
-
(2011)
Microb Cell Fact
, vol.10
, pp. 29
-
-
Lemuth, K.1
Steuer, K.2
Albermann, C.3
-
45
-
-
84925511388
-
Metabolic engineering of Escherichia coli to produce zeaxanthin
-
45 Li, X.R., Tian, G.Q., Shen, H.J., Liu, J.Z., Metabolic engineering of Escherichia coli to produce zeaxanthin. J Ind Microbiol Biotechnol 42 (2015), 627–636.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 627-636
-
-
Li, X.R.1
Tian, G.Q.2
Shen, H.J.3
Liu, J.Z.4
-
46
-
-
84884591440
-
Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines
-
46 Weichert, S., Jennewein, S., Hufner, E., Weiss, C., Borkowski, J., Putze, J., Schroten, H., Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res 33 (2013), 831–838.
-
(2013)
Nutr Res
, vol.33
, pp. 831-838
-
-
Weichert, S.1
Jennewein, S.2
Hufner, E.3
Weiss, C.4
Borkowski, J.5
Putze, J.6
Schroten, H.7
-
47
-
-
85047696209
-
Enhanced production of 2′-fucosyllactose in engineered Escherichia coli BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase
-
47 Chin, Y.W., Kim, J.Y., Lee, W.H., Seo, J.H., Enhanced production of 2′-fucosyllactose in engineered Escherichia coli BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase. J Biotechnol 210 (2015), 107–115.
-
(2015)
J Biotechnol
, vol.210
, pp. 107-115
-
-
Chin, Y.W.1
Kim, J.Y.2
Lee, W.H.3
Seo, J.H.4
-
48
-
-
84876816081
-
Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose
-
The authors constructed the first selection of a marker-free E. coli strain that produces 2′-fucosyllactose from lactose and glycerol. Implementation of the full biosynthetic pathway for GDP-L-fucose allowed de novo synthesis of the high-priced fucose component from glycerol. Overall, a final 2′-fucosyllactose concentration of >20 g/L was achieved.
-
48• Baumgärtner, F., Seitz, L., Sprenger, G.A., Albermann, C., Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose. Microb Cell Fact, 12, 2013, 40 The authors constructed the first selection of a marker-free E. coli strain that produces 2′-fucosyllactose from lactose and glycerol. Implementation of the full biosynthetic pathway for GDP-L-fucose allowed de novo synthesis of the high-priced fucose component from glycerol. Overall, a final 2′-fucosyllactose concentration of >20 g/L was achieved.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 40
-
-
Baumgärtner, F.1
Seitz, L.2
Sprenger, G.A.3
Albermann, C.4
-
49
-
-
84862215539
-
Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli
-
49 Lee, W.H., Pathanibul, P., Quarterman, J., Jo, J.H., Han, N.S., Miller, M.J., Jin, Y.S., Seo, J.H., Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli. Microb Cell Fact, 11, 2012, 48.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 48
-
-
Lee, W.H.1
Pathanibul, P.2
Quarterman, J.3
Jo, J.H.4
Han, N.S.5
Miller, M.J.6
Jin, Y.S.7
Seo, J.H.8
-
50
-
-
85027929533
-
Synthesis of the human milk oligosaccharide lacto-N-tetraose in metabolically engineered, plasmid-free E. coli
-
50 Baumgärtner, F., Conrad, J., Sprenger, G.A., Albermann, C., Synthesis of the human milk oligosaccharide lacto-N-tetraose in metabolically engineered, plasmid-free E. coli. Chembiochem 15 (2014), 1896–1900.
-
(2014)
Chembiochem
, vol.15
, pp. 1896-1900
-
-
Baumgärtner, F.1
Conrad, J.2
Sprenger, G.A.3
Albermann, C.4
-
51
-
-
84946069029
-
Synthesis of fucosylated lacto-N-tetraose using whole-cell biotransformation
-
51 Baumgärtner, F., Jurzitza, L., Conrad, J., Beifuss, U., Sprenger, G.A., Albermann, C., Synthesis of fucosylated lacto-N-tetraose using whole-cell biotransformation. Bioorg Med Chem 23 (2015), 6799–6806.
-
(2015)
Bioorg Med Chem
, vol.23
, pp. 6799-6806
-
-
Baumgärtner, F.1
Jurzitza, L.2
Conrad, J.3
Beifuss, U.4
Sprenger, G.A.5
Albermann, C.6
-
52
-
-
84958191367
-
Novel alpha-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides
-
52 Lezyk, M., Jers, C., Kjaerulff, L., Gotfredsen, C.H., Mikkelsen, M.D., Mikkelsen, J.D., Novel alpha-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides. PLOS ONE, 11, 2016, e0147438.
-
(2016)
PLOS ONE
, vol.11
, pp. e0147438
-
-
Lezyk, M.1
Jers, C.2
Kjaerulff, L.3
Gotfredsen, C.H.4
Mikkelsen, M.D.5
Mikkelsen, J.D.6
-
53
-
-
84901927684
-
Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work
-
53 Pena, C., Castillo, T., Garcia, A., Millan, M., Segura, D., Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7 (2014), 278–293.
-
(2014)
Microb Biotechnol
, vol.7
, pp. 278-293
-
-
Pena, C.1
Castillo, T.2
Garcia, A.3
Millan, M.4
Segura, D.5
-
54
-
-
85014870763
-
Diamines for bio-based materials
-
C. Wittmann J.C. Liao Wiley-VCH [in press]
-
54 Becker, J., Wittmann, C., Diamines for bio-based materials. Wittmann, C., Liao, J.C., (eds.) Industrial Biotechnology, 2016, Wiley-VCH [in press].
-
(2016)
Industrial Biotechnology
-
-
Becker, J.1
Wittmann, C.2
-
55
-
-
84939207951
-
Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine
-
55 Chae, T.U., Kim, W.J., Choi, S., Park, S.J., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci Rep, 5, 2015, 13040.
-
(2015)
Sci Rep
, vol.5
, pp. 13040
-
-
Chae, T.U.1
Kim, W.J.2
Choi, S.3
Park, S.J.4
Lee, S.Y.5
-
56
-
-
84941217806
-
Top value platform chemicals: bio-based production of organic acids
-
56 Becker, J., Lange, A., Fabarius, J., Wittmann, C., Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 36 (2015), 168–175.
-
(2015)
Curr Opin Biotechnol
, vol.36
, pp. 168-175
-
-
Becker, J.1
Lange, A.2
Fabarius, J.3
Wittmann, C.4
-
57
-
-
77956296603
-
Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber
-
In this study, E. coli was, for the first time, engineered to produce spider dragline silk, an extraordinarily strong and elastic protein fiber with broad application potential. Strain optimization, high cell density cultivation and subsequent product purification yielded a total of 1.2 g of protein.
-
57•• Xia, X.X., Qian, Z.G., Ki, C.S., Park, Y.H., Kaplan, D.L., Lee, S.Y., Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107 (2010), 14059–14063 In this study, E. coli was, for the first time, engineered to produce spider dragline silk, an extraordinarily strong and elastic protein fiber with broad application potential. Strain optimization, high cell density cultivation and subsequent product purification yielded a total of 1.2 g of protein.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 14059-14063
-
-
Xia, X.X.1
Qian, Z.G.2
Ki, C.S.3
Park, Y.H.4
Kaplan, D.L.5
Lee, S.Y.6
-
58
-
-
0025008260
-
Structure of a protein superfiber: spider dragline silk
-
58 Xu, M., Lewis, R.V., Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci U S A 87 (1990), 7120–7124.
-
(1990)
Proc Natl Acad Sci U S A
, vol.87
, pp. 7120-7124
-
-
Xu, M.1
Lewis, R.V.2
-
59
-
-
15444368211
-
Characterization of the protein components of Nephila clavipes dragline silk
-
59 Sponner, A., Schlott, B., Vollrath, F., Unger, E., Grosse, F., Weisshart, K., Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry 44 (2005), 4727–4736.
-
(2005)
Biochemistry
, vol.44
, pp. 4727-4736
-
-
Sponner, A.1
Schlott, B.2
Vollrath, F.3
Unger, E.4
Grosse, F.5
Weisshart, K.6
-
60
-
-
84865600352
-
Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor
-
60 Zhang, C., Liu, L., Teng, L., Chen, J., Liu, J., Li, J., Du, G., Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor. Metab Eng 14 (2012), 521–527.
-
(2012)
Metab Eng
, vol.14
, pp. 521-527
-
-
Zhang, C.1
Liu, L.2
Teng, L.3
Chen, J.4
Liu, J.5
Li, J.6
Du, G.7
-
61
-
-
84885900286
-
High cell density cultivation of a recombinant E. coli strain expressing a key enzyme in bioengineered heparin production
-
61 Restaino, O.F., Bhaskar, U., Paul, P., Li, L., De Rosa, M., Dordick, J.S., Linhardt, R.J., High cell density cultivation of a recombinant E. coli strain expressing a key enzyme in bioengineered heparin production. Appl Microbiol Biotechnol 97 (2013), 3893–3900.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 3893-3900
-
-
Restaino, O.F.1
Bhaskar, U.2
Paul, P.3
Li, L.4
De Rosa, M.5
Dordick, J.S.6
Linhardt, R.J.7
-
62
-
-
84865300402
-
Production of intracellular heparosan and derived oligosaccharides by lyase expression in metabolically engineered E. coli K-12
-
62 Barreteau, H., Richard, E., Drouillard, S., Samain, E., Priem, B., Production of intracellular heparosan and derived oligosaccharides by lyase expression in metabolically engineered E. coli K-12. Carbohydr Res 360 (2012), 19–24.
-
(2012)
Carbohydr Res
, vol.360
, pp. 19-24
-
-
Barreteau, H.1
Richard, E.2
Drouillard, S.3
Samain, E.4
Priem, B.5
-
63
-
-
55549129643
-
A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors
-
63 Yu, H., Tyo, K., Alper, H., Klein-Marcuschamer, D., Stephanopoulos, G., A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors. Biotechnol Bioeng 101 (2008), 788–796.
-
(2008)
Biotechnol Bioeng
, vol.101
, pp. 788-796
-
-
Yu, H.1
Tyo, K.2
Alper, H.3
Klein-Marcuschamer, D.4
Stephanopoulos, G.5
-
64
-
-
37349103842
-
Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid
-
64 Yu, H., Stephanopoulos, G., Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng 10 (2008), 24–32.
-
(2008)
Metab Eng
, vol.10
, pp. 24-32
-
-
Yu, H.1
Stephanopoulos, G.2
-
65
-
-
77955559190
-
Production of chondroitin sulfate and chondroitin
-
65 Schiraldi, C., Cimini, D., De Rosa, M., Production of chondroitin sulfate and chondroitin. Appl Microbiol Biotechnol 87 (2010), 1209–1220.
-
(2010)
Appl Microbiol Biotechnol
, vol.87
, pp. 1209-1220
-
-
Schiraldi, C.1
Cimini, D.2
De Rosa, M.3
-
66
-
-
77952220250
-
Isolation of an Escherichia coli K4 kfoC mutant over-producing capsular chondroitin
-
66 Zanfardino, A., Restaino, O.F., Notomista, E., Cimini, D., Schiraldi, C., De Rosa, M., De Felice, M., Varcamonti, M., Isolation of an Escherichia coli K4 kfoC mutant over-producing capsular chondroitin. Microb Cell Fact, 9, 2010, 34.
-
(2010)
Microb Cell Fact
, vol.9
, pp. 34
-
-
Zanfardino, A.1
Restaino, O.F.2
Notomista, E.3
Cimini, D.4
Schiraldi, C.5
De Rosa, M.6
De Felice, M.7
Varcamonti, M.8
-
67
-
-
78149468483
-
Improved fructosylated chondroitin production by kfoC overexpression in E. coli K4
-
67 Cimini, D., De Rosa, M., Viggiani, A., Restaino, O.F., Carlino, E., Schiraldi, C., Improved fructosylated chondroitin production by kfoC overexpression in E. coli K4. J Biotechnol 150 (2010), 324–331.
-
(2010)
J Biotechnol
, vol.150
, pp. 324-331
-
-
Cimini, D.1
De Rosa, M.2
Viggiani, A.3
Restaino, O.F.4
Carlino, E.5
Schiraldi, C.6
-
68
-
-
84899895942
-
IS2-mediated overexpression of kfoC in E. coli K4 increases chondroitin-like capsular polysaccharide production
-
68 Cimini, D., Fantaccione, S., Volpe, F., De Rosa, M., Restaino, O.F., Aquino, G., Schiraldi, C., IS2-mediated overexpression of kfoC in E. coli K4 increases chondroitin-like capsular polysaccharide production. Appl Microbiol Biotechnol 98 (2014), 3955–3964.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 3955-3964
-
-
Cimini, D.1
Fantaccione, S.2
Volpe, F.3
De Rosa, M.4
Restaino, O.F.5
Aquino, G.6
Schiraldi, C.7
-
69
-
-
84914129027
-
Production of chondroitin in metabolically engineered E. coli
-
69 He, W., Fu, L., Li, G., Andrew Jones, J., Linhardt, R.J., Koffas, M., Production of chondroitin in metabolically engineered E. coli. Metab Eng 27 (2015), 92–100.
-
(2015)
Metab Eng
, vol.27
, pp. 92-100
-
-
He, W.1
Fu, L.2
Li, G.3
Andrew Jones, J.4
Linhardt, R.J.5
Koffas, M.6
-
70
-
-
84867209510
-
Systems and synthetic metabolic engineering for amino acid production — the heartbeat of industrial strain development
-
70 Becker, J., Wittmann, C., Systems and synthetic metabolic engineering for amino acid production — the heartbeat of industrial strain development. Curr Opin Biotechnol 23 (2012), 718–726.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 718-726
-
-
Becker, J.1
Wittmann, C.2
-
71
-
-
84864801619
-
Bio-based production of chemicals, materials and fuels — Corynebacterium glutamicum as versatile cell factory
-
71 Becker, J., Wittmann, C., Bio-based production of chemicals, materials and fuels — Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23 (2012), 631–640.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 631-640
-
-
Becker, J.1
Wittmann, C.2
-
72
-
-
84938950996
-
Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products
-
72 Heider, S.A., Wendisch, V.F., Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnol J 10 (2015), 1170–1184.
-
(2015)
Biotechnol J
, vol.10
, pp. 1170-1184
-
-
Heider, S.A.1
Wendisch, V.F.2
-
73
-
-
84887624541
-
Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces
-
73 Liu, L., Redden, H., Alper, H.S., Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 24 (2013), 1023–1030.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 1023-1030
-
-
Liu, L.1
Redden, H.2
Alper, H.S.3
-
74
-
-
70449715238
-
Production of aromatic compounds in bacteria
-
74 Gosset, G., Production of aromatic compounds in bacteria. Curr Opin Biotechnol 20 (2009), 651–658.
-
(2009)
Curr Opin Biotechnol
, vol.20
, pp. 651-658
-
-
Gosset, G.1
-
75
-
-
0141594681
-
Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria
-
75 Kaneko, M., Hwang, E.I., Ohnishi, Y., Horinouchi, S., Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria. J Ind Microbiol Biotechnol 30 (2003), 456–461.
-
(2003)
J Ind Microbiol Biotechnol
, vol.30
, pp. 456-461
-
-
Kaneko, M.1
Hwang, E.I.2
Ohnishi, Y.3
Horinouchi, S.4
-
76
-
-
84928749665
-
Biological synthesis of coumarins in Escherichia coli
-
76 Yang, S.M., Shim, G.Y., Kim, B.G., Ahn, J.H., Biological synthesis of coumarins in Escherichia coli. Microb Cell Fact, 14, 2015, 65.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 65
-
-
Yang, S.M.1
Shim, G.Y.2
Kim, B.G.3
Ahn, J.H.4
-
77
-
-
84930201218
-
Enabling technologies to advance microbial isoprenoid production
-
77 Chen, Y., Zhou, Y.J., Siewers, V., Nielsen, J., Enabling technologies to advance microbial isoprenoid production. Adv Biochem Eng Biotechnol 148 (2015), 143–160.
-
(2015)
Adv Biochem Eng Biotechnol
, vol.148
, pp. 143-160
-
-
Chen, Y.1
Zhou, Y.J.2
Siewers, V.3
Nielsen, J.4
-
78
-
-
84942774964
-
Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli
-
78 Kong, M.K., Kang, H.J., Kim, J.H., Oh, S.H., Lee, P.C., Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli. J Biotechnol 214 (2015), 95–102.
-
(2015)
J Biotechnol
, vol.214
, pp. 95-102
-
-
Kong, M.K.1
Kang, H.J.2
Kim, J.H.3
Oh, S.H.4
Lee, P.C.5
-
79
-
-
84955267195
-
Metabolic engineering of Escherichia coli for the production of cinnamaldehyde
-
79 Bang, H.B., Lee, Y.H., Kim, S.C., Sung, C.K., Jeong, K.J., Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microb Cell Fact, 15, 2016, 16.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 16
-
-
Bang, H.B.1
Lee, Y.H.2
Kim, S.C.3
Sung, C.K.4
Jeong, K.J.5
-
80
-
-
84901617508
-
In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli
-
80 Zhu, F., Zhong, X., Hu, M., Lu, L., Deng, Z., Liu, T., In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111 (2014), 1396–1405.
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 1396-1405
-
-
Zhu, F.1
Zhong, X.2
Hu, M.3
Lu, L.4
Deng, Z.5
Liu, T.6
-
81
-
-
84877256074
-
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
-
81 Avalos, J.L., Fink, G.R., Stephanopoulos, G., Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31 (2013), 335–341.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 335-341
-
-
Avalos, J.L.1
Fink, G.R.2
Stephanopoulos, G.3
-
82
-
-
84928756896
-
Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments
-
82 Huber, M.C., Schreiber, A., von Olshausen, P., Varga, B.R., Kretz, O., Joch, B., Barnert, S., Schubert, R., Eimer, S., Kele, P., Schiller, S.M., Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nat Mater 14 (2015), 125–132.
-
(2015)
Nat Mater
, vol.14
, pp. 125-132
-
-
Huber, M.C.1
Schreiber, A.2
von Olshausen, P.3
Varga, B.R.4
Kretz, O.5
Joch, B.6
Barnert, S.7
Schubert, R.8
Eimer, S.9
Kele, P.10
Schiller, S.M.11
-
83
-
-
84900032261
-
Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform
-
83 Poust, S., Hagen, A., Katz, L., Keasling, J.D., Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Curr Opin Biotechnol 30 (2014), 32–39.
-
(2014)
Curr Opin Biotechnol
, vol.30
, pp. 32-39
-
-
Poust, S.1
Hagen, A.2
Katz, L.3
Keasling, J.D.4
|