-
1
-
-
84855603512
-
Cellular and molecular mechanisms of metformin: an overview
-
[1] Viollet, B, Guigas, B, Sanz Garcia, N, Leclerc, J, Foretz, M, Andreelli, F, Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122 (2012), 253–270.
-
(2012)
Clin Sci (Lond)
, vol.122
, pp. 253-270
-
-
Viollet, B.1
Guigas, B.2
Sanz Garcia, N.3
Leclerc, J.4
Foretz, M.5
Andreelli, F.6
-
2
-
-
84905019074
-
Metformin pharmacogenomics: current status and future directions
-
[2] Pawlyk, AC, Giacomini, KM, McKeon, C, Shuldiner, AR, Florez, JC, Metformin pharmacogenomics: current status and future directions. Diabetes 63 (2014), 2590–2599.
-
(2014)
Diabetes
, vol.63
, pp. 2590-2599
-
-
Pawlyk, A.C.1
Giacomini, K.M.2
McKeon, C.3
Shuldiner, A.R.4
Florez, J.C.5
-
3
-
-
84941652715
-
Diabetes advances in diagnosis and treatment
-
[3] Nathan, DM, Diabetes advances in diagnosis and treatment. JAMA, 314, 2015, 1052.
-
(2015)
JAMA
, vol.314
, pp. 1052
-
-
Nathan, D.M.1
-
4
-
-
84914159859
-
Oral antihyperglycemic treatment options for type 2 diabetes mellitus
-
[4] Brietzke, SA, Oral antihyperglycemic treatment options for type 2 diabetes mellitus. Med Clin North Am 99 (2015), 87–106.
-
(2015)
Med Clin North Am
, vol.99
, pp. 87-106
-
-
Brietzke, S.A.1
-
5
-
-
84941339888
-
What's next after metformin? Focus on sulphonylurea : add-on or combination therapy
-
[5] Lim, PC, Chong, CP, What's next after metformin? Focus on sulphonylurea : add-on or combination therapy. Pharm Pract (Granada), 13, 2015, 606.
-
(2015)
Pharm Pract (Granada)
, vol.13
, pp. 606
-
-
Lim, P.C.1
Chong, C.P.2
-
6
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation
-
[6] Lan, F, Cacicedo, JM, Ruderman, N, Ido, Y, SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation. J Biol Chem 283 (2008), 27628–27635.
-
(2008)
J Biol Chem
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
Cacicedo, J.M.2
Ruderman, N.3
Ido, Y.4
-
7
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity
-
[7] Cantó, C, Gerhart-Hines, Z, Feige, JN, Lagouge, M, Noriega, L, Milne, JC, et al. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature 458 (2009), 1056–1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Cantó, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
-
8
-
-
34548857700
-
SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B
-
[8] Sun, C, Zhang, F, Ge, X, Yan, T, Chen, X, Shi, X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6 (2007), 307–319.
-
(2007)
Cell Metab
, vol.6
, pp. 307-319
-
-
Sun, C.1
Zhang, F.2
Ge, X.3
Yan, T.4
Chen, X.5
Shi, X.6
-
9
-
-
84879621442
-
AMPK, insulin resistance, and the metabolic syndrome
-
[9] Ruderman, NB, Carling, D, Prentki, M, Cacicedo, JM, AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 123 (2013), 2764–2772.
-
(2013)
J Clin Invest
, vol.123
, pp. 2764-2772
-
-
Ruderman, N.B.1
Carling, D.2
Prentki, M.3
Cacicedo, J.M.4
-
10
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
[10] Banks, AS, Kon, N, Knight, C, Matsumoto, M, Gutiérrez-Juárez, R, Rossetti, L, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8 (2008), 333–341.
-
(2008)
Cell Metab
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
Matsumoto, M.4
Gutiérrez-Juárez, R.5
Rossetti, L.6
-
11
-
-
84895893720
-
Synergistic effects of polyphenols and methylxanthines with leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes
-
[11] Bruckbauer, A, Zemel, MB, Synergistic effects of polyphenols and methylxanthines with leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS One, 9, 2014, e89166.
-
(2014)
PLoS One
, vol.9
, pp. e89166
-
-
Bruckbauer, A.1
Zemel, M.B.2
-
12
-
-
84929653284
-
Leucine amplifies the effects of metformin on insulin sensitivity and glycemic control in diet-induced obese mice
-
[12] Fu, L, Bruckbauer, A, Li, F, Cao, Q, Cui, X, Wu, R, et al. Leucine amplifies the effects of metformin on insulin sensitivity and glycemic control in diet-induced obese mice. Metabolism 64 (2015), 845–856.
-
(2015)
Metabolism
, vol.64
, pp. 845-856
-
-
Fu, L.1
Bruckbauer, A.2
Li, F.3
Cao, Q.4
Cui, X.5
Wu, R.6
-
13
-
-
38449085292
-
Maintenance of C. elegans
-
[13] Stiernagle, T, Maintenance of C. elegans. WormBook, 1–11, 2006.
-
(2006)
WormBook
, vol.1-11
-
-
Stiernagle, T.1
-
14
-
-
77949817711
-
AMPK and SIRT1: a long-standing partnership?
-
[14] Ruderman, NB, Xu, XJ, Nelson, L, Cacicedo, JM, Saha, AK, Lan, F, et al. AMPK and SIRT1: a long-standing partnership?. Am J Physiol Endocrinol Metab 298 (2010), E751–E760.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, pp. E751-E760
-
-
Ruderman, N.B.1
Xu, X.J.2
Nelson, L.3
Cacicedo, J.M.4
Saha, A.K.5
Lan, F.6
-
15
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
[15] Pfluger, PT, Herranz, D, Velasco-miguel, S, Serrano, M, Tscho, MH, Sirt1 protects against high-fat diet-induced metabolic damage. PNAS 105 (2008), 9793–9798.
-
(2008)
PNAS
, vol.105
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-miguel, S.3
Serrano, M.4
Tscho, M.H.5
-
16
-
-
78650964142
-
Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans
-
[16] Gauthier, M-S, O'Brien, EL, Bigornia, S, Mott, M, Cacicedo, JM, Xu, JX, et al. Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun 404 (2011), 382–387.
-
(2011)
Biochem Biophys Res Commun
, vol.404
, pp. 382-387
-
-
Gauthier, M.-S.1
O'Brien, E.L.2
Bigornia, S.3
Mott, M.4
Cacicedo, J.M.5
Xu, J.X.6
-
17
-
-
28444497837
-
High-fat diet feeding impairs both the expression and activity of AMPKa in rats’ skeletal muscle
-
[17] Liu, Y, Wan, Q, Guan, Q, Gao, L, Zhao, J, High-fat diet feeding impairs both the expression and activity of AMPKa in rats’ skeletal muscle. Biochem Biophys Res Commun 339 (2006), 701–707.
-
(2006)
Biochem Biophys Res Commun
, vol.339
, pp. 701-707
-
-
Liu, Y.1
Wan, Q.2
Guan, Q.3
Gao, L.4
Zhao, J.5
-
18
-
-
80055051189
-
Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice
-
[18] Caton, PW, Kieswich, J, Yaqoob, MM, Holness, MJ, Sugden, MC, Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes Obes Metab 13 (2011), 1097–1104.
-
(2011)
Diabetes Obes Metab
, vol.13
, pp. 1097-1104
-
-
Caton, P.W.1
Kieswich, J.2
Yaqoob, M.M.3
Holness, M.J.4
Sugden, M.C.5
-
19
-
-
65449133147
-
Metformin–the gold standard in type 2 diabetes: what does the evidence tell us?
-
[19] Bosi, E, Metformin–the gold standard in type 2 diabetes: what does the evidence tell us?. Diabetes Obes Metab 11:Suppl. 2 (2009), 3–8.
-
(2009)
Diabetes Obes Metab
, vol.11
, pp. 3-8
-
-
Bosi, E.1
-
20
-
-
77949493599
-
Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5
-
[20] Caton, PW, Nayuni, NK, Kieswich, J, Khan, NQ, Yaqoob, MM, Corder, R, Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 205 (2010), 97–106.
-
(2010)
J Endocrinol
, vol.205
, pp. 97-106
-
-
Caton, P.W.1
Nayuni, N.K.2
Kieswich, J.3
Khan, N.Q.4
Yaqoob, M.M.5
Corder, R.6
-
21
-
-
84555188488
-
Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin
-
[21] Zheng, Z, Chen, H, Li, J, Li, T, Zheng, B, Zheng, Y, et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes 61 (2012), 217–228.
-
(2012)
Diabetes
, vol.61
, pp. 217-228
-
-
Zheng, Z.1
Chen, H.2
Li, J.3
Li, T.4
Zheng, B.5
Zheng, Y.6
-
22
-
-
84873947174
-
Synergistic effects of metformin, resveratrol, and hydroxymethylbutyrate on insulin sensitivity
-
[22] Bruckbauer, A, Zemel, MB, Synergistic effects of metformin, resveratrol, and hydroxymethylbutyrate on insulin sensitivity. Diabetes Metab Syndr Obes 6 (2013), 93–102.
-
(2013)
Diabetes Metab Syndr Obes
, vol.6
, pp. 93-102
-
-
Bruckbauer, A.1
Zemel, M.B.2
-
23
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
[23] Foretz, M, Hébrard, S, Leclerc, J, Zarrinpashneh, E, Soty, M, Mithieux, G, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120 (2010), 2355–2369.
-
(2010)
J Clin Invest
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hébrard, S.2
Leclerc, J.3
Zarrinpashneh, E.4
Soty, M.5
Mithieux, G.6
-
24
-
-
84908425556
-
Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes
-
[24] Liang, C, Curry, BJ, Brown, PL, Zemel, MB, Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. J Nutr Metab, 2014, 2014, 239750.
-
(2014)
J Nutr Metab
, vol.2014
, pp. 239750
-
-
Liang, C.1
Curry, B.J.2
Brown, P.L.3
Zemel, M.B.4
-
25
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
[25] Hou, X, Xu, S, Maitland-Toolan, KA, Sato, K, Jiang, B, Ido, Y, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283 (2008), 20015–20026.
-
(2008)
J Biol Chem
, vol.283
, pp. 20015-20026
-
-
Hou, X.1
Xu, S.2
Maitland-Toolan, K.A.3
Sato, K.4
Jiang, B.5
Ido, Y.6
-
26
-
-
65649098029
-
Phosphorylation of IRS proteins, insulin action, and insulin resistance
-
[26] Boura-Halfon, S, Zick, Y, Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296 (2009), E581–E591.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
, pp. E581-E591
-
-
Boura-Halfon, S.1
Zick, Y.2
-
27
-
-
61749095297
-
SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes
-
[27] Yoshizaki, T, Milne, JC, Imamura, T, Schenk, S, Sonoda, N, Babendure, JL, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 29 (2009), 1363–1374.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 1363-1374
-
-
Yoshizaki, T.1
Milne, J.C.2
Imamura, T.3
Schenk, S.4
Sonoda, N.5
Babendure, J.L.6
-
28
-
-
84880775951
-
Inhibition of the TNF-α-induced serine phosphorylation of IRS-1 at 636/639 by AICAR
-
[28] Shibata, T, Takaguri, A, Ichihara, K, Satoh, K, Inhibition of the TNF-α-induced serine phosphorylation of IRS-1 at 636/639 by AICAR. J Pharmacol Sci 122 (2013), 93–102.
-
(2013)
J Pharmacol Sci
, vol.122
, pp. 93-102
-
-
Shibata, T.1
Takaguri, A.2
Ichihara, K.3
Satoh, K.4
-
29
-
-
27844547130
-
The phosphorylation of Ser 318 of insulin receptor substrate 1 is not per se inhibitory in skeletal muscle cells but is necessary to trigger the attenuation of the insulin-stimulated signal *
-
[29] Weigert, C, Hennige, AM, Brischmann, T, Beck, A, Moeschel, K, Scha, M, et al. The phosphorylation of Ser 318 of insulin receptor substrate 1 is not per se inhibitory in skeletal muscle cells but is necessary to trigger the attenuation of the insulin-stimulated signal *. J Biol Chem 280 (2005), 37393–37399.
-
(2005)
J Biol Chem
, vol.280
, pp. 37393-37399
-
-
Weigert, C.1
Hennige, A.M.2
Brischmann, T.3
Beck, A.4
Moeschel, K.5
Scha, M.6
-
30
-
-
33847616879
-
C-reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser307 and Ser 612 in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport
-
[30] D'Alessandris, C, Lauro, R, Presta, I, Sesti, G, C-reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser307 and Ser 612 in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport. Diabetologia 50 (2007), 840–849.
-
(2007)
Diabetologia
, vol.50
, pp. 840-849
-
-
D'Alessandris, C.1
Lauro, R.2
Presta, I.3
Sesti, G.4
-
31
-
-
20044364733
-
Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion
-
[31] Prada, PO, Zecchin, HG, Gasparetti, AL, Torsoni, MA, Ueno, M, Hirata, AE, et al. Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 146 (2005), 1576–1587.
-
(2005)
Endocrinology
, vol.146
, pp. 1576-1587
-
-
Prada, P.O.1
Zecchin, H.G.2
Gasparetti, A.L.3
Torsoni, M.A.4
Ueno, M.5
Hirata, A.E.6
-
32
-
-
84891797370
-
Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis
-
[32] Von Wilamowitz-Moellendorff, A, Hunter, RW, García-Rocha, M, Kang, L, López-Soldado, I, Lantier, L, et al. Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes 62 (2013), 4070–4082.
-
(2013)
Diabetes
, vol.62
, pp. 4070-4082
-
-
Von Wilamowitz-Moellendorff, A.1
Hunter, R.W.2
García-Rocha, M.3
Kang, L.4
López-Soldado, I.5
Lantier, L.6
-
33
-
-
84948129361
-
Molecular pathophysiology of hepatic glucose production
-
[33] Sharabi, K, Tavares, CDJ, Rines, AK, Puigserver, P, Molecular pathophysiology of hepatic glucose production. Mol Aspects Med 46 (2015), 21–33.
-
(2015)
Mol Aspects Med
, vol.46
, pp. 21-33
-
-
Sharabi, K.1
Tavares, C.D.J.2
Rines, A.K.3
Puigserver, P.4
-
34
-
-
57749094239
-
AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver
-
[34] Horike, N, Sakoda, H, Kushiyama, A, Ono, H, Fujishiro, M, Kamata, H, et al. AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver. J Biol Chem 283 (2008), 33902–33910.
-
(2008)
J Biol Chem
, vol.283
, pp. 33902-33910
-
-
Horike, N.1
Sakoda, H.2
Kushiyama, A.3
Ono, H.4
Fujishiro, M.5
Kamata, H.6
-
35
-
-
65349177200
-
AMPK: an emerging drug target for diabetes and the metabolic syndrome
-
[35] Zhang, BB, Zhou, G, Li, C, AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9 (2009), 407–416.
-
(2009)
Cell Metab
, vol.9
, pp. 407-416
-
-
Zhang, B.B.1
Zhou, G.2
Li, C.3
-
36
-
-
84944397757
-
Interaction between metformin and leucine in reducing hyperlipidemia and hepatic lipid accumulation in diet-induced obese mice
-
[36] Fu, L, Bruckbauer, A, Li, F, Cao, Q, Cui, X, Wu, R, et al. Interaction between metformin and leucine in reducing hyperlipidemia and hepatic lipid accumulation in diet-induced obese mice. Metabolism 64 (2015), 1426–1434.
-
(2015)
Metabolism
, vol.64
, pp. 1426-1434
-
-
Fu, L.1
Bruckbauer, A.2
Li, F.3
Cao, Q.4
Cui, X.5
Wu, R.6
-
37
-
-
84857040428
-
Caenorhabditis elegans as a model for obesity research
-
[37] Zheng, J, Greenway, FL, Caenorhabditis elegans as a model for obesity research. Int J Obes (Lond) 36 (2012), 186–194.
-
(2012)
Int J Obes (Lond)
, vol.36
, pp. 186-194
-
-
Zheng, J.1
Greenway, F.L.2
-
38
-
-
79960752604
-
High glucose diets shorten lifespan of Caenorhabditis elegans via ectopic apoptosis induction
-
[38] Choi, SS, High glucose diets shorten lifespan of Caenorhabditis elegans via ectopic apoptosis induction. Nutr Res Pract, 5, 2011, 214.
-
(2011)
Nutr Res Pract
, vol.5
, pp. 214
-
-
Choi, S.S.1
-
39
-
-
70350365865
-
C elegans as model for the study of high glucose-mediated life span reduction
-
[39] Schlotterer, A, Kukudov, G, Bozorgmehr, F, Hutter, H, Du, X, Oikonomou, D, et al. C elegans as model for the study of high glucose-mediated life span reduction. Diabetes 58 (2009), 2450–2456.
-
(2009)
Diabetes
, vol.58
, pp. 2450-2456
-
-
Schlotterer, A.1
Kukudov, G.2
Bozorgmehr, F.3
Hutter, H.4
Du, X.5
Oikonomou, D.6
-
40
-
-
70350365110
-
Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression
-
[40] Lee, S-J, Murphy, CT, Kenyon, C, Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab 10 (2009), 379–391.
-
(2009)
Cell Metab
, vol.10
, pp. 379-391
-
-
Lee, S.-J.1
Murphy, C.T.2
Kenyon, C.3
-
41
-
-
84866617367
-
Determination of the tolerable upper intake level of leucine in acute dietary studies in young men
-
[41] Elango, R, Chapman, K, Rafii, M, Ball, RO, Pencharz, PB, Determination of the tolerable upper intake level of leucine in acute dietary studies in young men. Am J Clin Nutr 96 (2012), 759–767.
-
(2012)
Am J Clin Nutr
, vol.96
, pp. 759-767
-
-
Elango, R.1
Chapman, K.2
Rafii, M.3
Ball, R.O.4
Pencharz, P.B.5
-
42
-
-
78650381848
-
Determination of metformin in human plasma and urine by high-performance liquid chromatography using small sample volume and conventional octadecyl silane column
-
[42] Gabr, RQ, Padwal, RS, Brocks, DR, Determination of metformin in human plasma and urine by high-performance liquid chromatography using small sample volume and conventional octadecyl silane column. J Pharm Pharm Sci 13 (2010), 486–494.
-
(2010)
J Pharm Pharm Sci
, vol.13
, pp. 486-494
-
-
Gabr, R.Q.1
Padwal, R.S.2
Brocks, D.R.3
-
43
-
-
84922844480
-
Metformin action: concentrations matter
-
[43] He, L, Wondisford, FE, Metformin action: concentrations matter. Cell Metab 21 (2015), 159–162.
-
(2015)
Cell Metab
, vol.21
, pp. 159-162
-
-
He, L.1
Wondisford, F.E.2
-
44
-
-
78650931836
-
Metformin activates AMP kinase through inhibition of AMP deaminase
-
[44] Ouyang, J, Parakhia, RA, Ochs, RS, Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 286 (2011), 1–11.
-
(2011)
J Biol Chem
, vol.286
, pp. 1-11
-
-
Ouyang, J.1
Parakhia, R.A.2
Ochs, R.S.3
-
45
-
-
84880054521
-
Metformin increases mitochondrial energy formation in L6 muscle cell cultures
-
[45] Vytla, VS, Ochs, RS, Metformin increases mitochondrial energy formation in L6 muscle cell cultures. J Biol Chem 288 (2013), 20369–20377.
-
(2013)
J Biol Chem
, vol.288
, pp. 20369-20377
-
-
Vytla, V.S.1
Ochs, R.S.2
-
46
-
-
9144271181
-
AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells
-
[46] Zang, M, Zuccollo, A, Hou, X, Nagata, D, Walsh, K, Herscovitz, H, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem 279 (2004), 47898–47905.
-
(2004)
J Biol Chem
, vol.279
, pp. 47898-47905
-
-
Zang, M.1
Zuccollo, A.2
Hou, X.3
Nagata, D.4
Walsh, K.5
Herscovitz, H.6
-
47
-
-
79953691133
-
Metformin sensitizes insulin signaling through AMPK-mediated PTEN down-regulation in preadipocyte 3T3-L1 cells
-
[47] Lee, SK, Lee, JO, Kim, JH, Kim, SJ, You, GY, Moon, JW, et al. Metformin sensitizes insulin signaling through AMPK-mediated PTEN down-regulation in preadipocyte 3T3-L1 cells. J Cell Biochem 112 (2011), 1259–1267.
-
(2011)
J Cell Biochem
, vol.112
, pp. 1259-1267
-
-
Lee, S.K.1
Lee, J.O.2
Kim, J.H.3
Kim, S.J.4
You, G.Y.5
Moon, J.W.6
-
48
-
-
0034659785
-
Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
-
[48] Owen, MR, Doran, E, Halestrap, AP, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:Pt 3 (2000), 607–614.
-
(2000)
Biochem J
, vol.348
, pp. 607-614
-
-
Owen, M.R.1
Doran, E.2
Halestrap, A.P.3
-
49
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
[49] Woods, A, Johnstone, SR, Dickerson, K, Leiper, FC, Fryer, LGD, Neumann, D, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13 (2003), 2004–2008.
-
(2003)
Curr Biol
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
Leiper, F.C.4
Fryer, L.G.D.5
Neumann, D.6
-
50
-
-
84885168009
-
AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
-
[50] Gowans, GJ, Hawley, SA, Ross, FA, Hardie, DG, AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18 (2013), 556–566.
-
(2013)
Cell Metab
, vol.18
, pp. 556-566
-
-
Gowans, G.J.1
Hawley, S.A.2
Ross, F.A.3
Hardie, D.G.4
|