메뉴 건너뛰기




Volumn 20, Issue 7, 2016, Pages 2611-2628

Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECISION TREES; LEARNING SYSTEMS; NEURAL NETWORKS; REGRESSION ANALYSIS; SPLINES; STREAM FLOW;

EID: 84978162106     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-20-2611-2016     Document Type: Article
Times cited : (192)

References (66)
  • 1
    • 34648849221 scopus 로고    scopus 로고
    • Neural network modelling of nonlinear hydrological relationships
    • Abrahart, R. J., and See, L. M. Neural network modelling of nonlinear hydrological relationships. Hydrol. Earth Syst. Sci., 11, 1563-1579, doi: 10.5194/hess-11-1563-2007, 2007
    • (2007) Hydrol. Earth Syst. Sci , vol.11 , pp. 1563-1579
    • Abrahart, R.J.1    See, L.M.2
  • 3
    • 79960459595 scopus 로고    scopus 로고
    • The water resource implications of planned development in the Lake Tana catchment
    • Alemayehu, T., McCartney, M., and Kebede, S. The water resource implications of planned development in the Lake Tana catchment. Ethiopia, Ecohydrol. Hydrobiol., 10, 211-221, doi: 10.2478/v10104-011-0023-6, 2010
    • (2010) Ethiopia Ecohydrol. Hydrobiol , vol.10 , pp. 211-221
    • Alemayehu, T.1    McCartney, M.2    Kebede, S.3
  • 4
    • 33645158824 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks technique: A blue nile catchment case study
    • Antar, M. A., Elassiouti, I., and Allam, M. N. rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study. Hydrol. Process., 20, 1201-1216, doi: 10.1002/hyp.5932, 2006
    • (2006) Hydrol. Process , vol.20 , pp. 1201-1216
    • Antar, M.A.1    Elassiouti, I.2    Allam, M.N.3
  • 5
    • 34548498867 scopus 로고    scopus 로고
    • Neural networks for real time catchment flow modeling, and prediction
    • Aqil, M., Kita, I., Yano, A., and Nishiyama, S. Neural Networks for Real Time Catchment Flow Modeling, and Prediction. Water Resour. Manage., 21, 1781-1796, doi: 10.1007/s11269-006-9127-y, 2007
    • (2007) Water Resour. Manage , vol.21 , pp. 1781-1796
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 6
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • Asefa, T., Kemblowski, M., McKee, M., and Khalil, A. Multi-time scale stream flow predictions: The support vector machines approach. J. Hydrol., 318, 7-16, doi: 10.1016/j.jhydrol.2005.06.001, 2006
    • (2006) J. Hydrol , vol.318 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn., 45, 5-32, 2001
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 0030465032 scopus 로고    scopus 로고
    • Modeling of land surface evaporation by four schemes, and comparison with FIFE observations
    • Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan, Q. Y., Ek, M., and Betts, A. Modeling of land surface evaporation by four schemes, and comparison with FIFE observations. J. Geophys. Res., 101, 7251-7268, doi: 10.1029/95JD02165, 1996
    • (1996) J. Geophys. Res , vol.101 , pp. 7251-7268
    • Chen, F.1    Mitchell, K.2    Schaake, J.3    Xue, Y.4    Pan, H.-L.5    Koren, V.6    Duan, Q.Y.7    Ek, M.8    Betts, A.9
  • 11
    • 0037903280 scopus 로고    scopus 로고
    • Modelling, and forecasting of hydrological variables using artificial neural networks: The Kafue River sub-basin
    • Chibanga, R., Berlamont, J., and Vandewalle, J. Modelling, and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrolog. Sci. J., 48, 363-379, doi: 10.1623/hysj.48.3.363.45282, 2003
    • (2003) Hydrolog. Sci. J. , vol.48 , pp. 363-379
    • Chibanga, R.1    Berlamont, J.2    Vandewalle, J.3
  • 12
    • 48649094422 scopus 로고    scopus 로고
    • Do Nash values have value? Discussion, and alternate proposals
    • Criss, R. E., and Winston, W. E. Do Nash values have value? Discussion, and alternate proposals. Hydrol. Process., 22, 2723-2725, doi: 10.1002/hyp.7072, 2008
    • (2008) Hydrol. Process , vol.22 , pp. 2723-2725
    • Criss, R.E.1    Winston, W.E.2
  • 14
    • 53849113979 scopus 로고    scopus 로고
    • Multiobjective training of artificial neural networks for rainfall-runoff modeling
    • De Vos, N. J., and Rientjes, T. H. M. Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour. Res., 44, W08434, doi: 10.1029/2007WR006734, 2008
    • (2008) Water Resour. Res , vol.44 , pp. W08434
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 15
    • 1442314273 scopus 로고    scopus 로고
    • Implementation of noah land surface model advances in the national centers for environmental prediction operational mesoscale eta model
    • Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi: 10.1029/2002JD003296, 2003
    • (2003) J. Geophys. Res , vol.108 , pp. 8851
    • Ek, M.B.1    Mitchell, K.E.2    Lin, Y.3    Rogers, E.4    Grunmann, P.5    Koren, V.6    Gayno, G.7    Tarpley, J.D.8
  • 16
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology -part 1: Concepts, and methodology
    • Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology -Part 1: Concepts, and methodology. Hydrol. Earth Syst. Sci., 14, 1931-1941, doi: 10.5194/hess-14-1931-2010, 2010a
    • (2010) Hydrol. Earth Syst. Sci , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 17
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology -Part 2: Application
    • Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology -Part 2: Application. Hydrol. Earth Syst. Sci., 14, 1943-1961, doi: 10.5194/hess-14-1943-2010, 2010b
    • (2010) Hydrol. Earth Syst. Sci , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 18
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat., 19, 1-67, 1991
    • (1991) Ann. Stat , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 19
    • 84880153684 scopus 로고    scopus 로고
    • Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
    • Galelli, S., and Castelletti, A. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling. Hydrol. Earth Syst. Sci., 17, 2669-2684, doi: 10.5194/hess-17-2669-2013, 2013a
    • (2013) Hydrol. Earth Syst. Sci , vol.17 , pp. 2669-2684
    • Galelli, S.1    Castelletti, A.2
  • 20
    • 84880684699 scopus 로고    scopus 로고
    • Tree-based iterative input variable selection for hydrological modeling
    • Galelli, S., and Castelletti, A. Tree-based iterative input variable selection for hydrological modeling. Water Resour. Res., 49, 4295-4310, doi: 10.1002/wrcr.20339, 2013b
    • (2013) Water Resour. Res , vol.49 , pp. 4295-4310
    • Galelli, S.1    Castelletti, A.2
  • 21
    • 84964720489 scopus 로고    scopus 로고
    • Land use/cover dynamics in ribb watershed north western Ethiopia
    • Garede, N. M., and Minale, A. S. Land Use/Cover Dynamics in Ribb Watershed. North Western Ethiopia, J. Nat. Sci. Res., 4, 9-16, 2014
    • (2014) J. Nat. Sci. Res , vol.4 , pp. 9-16
    • Garede, N.M.1    Minale, A.S.2
  • 22
    • 1642414601 scopus 로고    scopus 로고
    • Over-parameterisation a major obstacle to the use of artificial neural networks in hydrology?
    • Gaume, E., and Gosset, R. Over-parameterisation. a major obstacle to the use of artificial neural networks in hydrology?, Hydrol. Earth Syst. Sci., 7, 693-706, doi: 10.5194/hess-7-693-2003, 2003
    • (2003) Hydrol. Earth Syst. Sci , vol.7 , pp. 693-706
    • Gaume, E.1    Gosset, R.2
  • 23
    • 78649785023 scopus 로고    scopus 로고
    • Forest cover, and stream flow in a headwater of the blue nile: Complementing observational data analysis with community perception
    • Gebrehiwot, S. G., Taye, A., and Bishop, K. Forest Cover, and Stream Flow in a Headwater of the Blue Nile: Complementing Observational Data Analysis with Community Perception. Ambio, 39, 284-294, doi: 10.1007/s13280-010-0047-y, 2010
    • (2010) Ambio , vol.39 , pp. 284-294
    • Gebrehiwot, S.G.1    Taye, A.2    Bishop, K.3
  • 24
    • 0022812388 scopus 로고
    • Methods for evaluating the regional hydrologic impacts of global climatic changes
    • Gleick, P. H. Methods for evaluating the regional hydrologic impacts of global climatic changes. J. Hydrol., 88, 97-116, doi: 10.1016/0022-1694(86)90199-X, 1986
    • (1986) J. Hydrol , vol.88 , pp. 97-116
    • Gleick, P.H.1
  • 25
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • Han, D., Kwong, T., and Li, S. Uncertainties in real-time flood forecasting with neural networks. Hydrol. Process., 21, 223-228, doi: 10.1002/hyp.6184, 2007
    • (2007) Hydrol. Process , vol.21 , pp. 223-228
    • Han, D.1    Kwong, T.2    Li, S.3
  • 26
    • 84896707401 scopus 로고    scopus 로고
    • Updated high-resolution grids of monthly climatic observations-The CRU TS3.10 dataset
    • Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol., 34, 623-642, doi: 10.1002/joc.3711, 2014
    • (2014) Int. J. Climatol , vol.34 , pp. 623-642
    • Harris, I.1    Jones, P.D.2    Osborn, T.J.3    Lister, D.H.4
  • 27
    • 84972488102 scopus 로고
    • Generalized additive models
    • Hastie, T., and Tibshirani, R. Generalized Additive Models. Stat. Sci., 1, 297-310, 1986
    • (1986) Stat. Sci , vol.1 , pp. 297-310
    • Hastie, T.1    Tibshirani, R.2
  • 30
    • 4544294829 scopus 로고    scopus 로고
    • Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis, and modeling?
    • Iorgulescu, I., and Beven, K. J. Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis, and modeling? Water Resour. Res., 40, W08403, doi: 10.1029/2004WR003094, 2004
    • (2004) Water Resour. Res , vol.40 , pp. W08403
    • Iorgulescu, I.1    Beven, K.J.2
  • 31
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain, A., Sudheer, K. P., and Srinivasulu, S. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Process., 18, 571-581, doi: 10.1002/hyp.5502, 2004
    • (2004) Hydrol. Process , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 34
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic, and hydroclimatic model validation
    • Legates, D. R., and McCabe Jr., G. J. Evaluating the use of "goodness-of-fit" measures in hydrologic, and hydroclimatic model validation. Water Resour. Res., 35, 233-241, 1999
    • (1999) Water Resour. Res , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 35
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random
    • Liaw, A., and Wiener, M. Classification, and regression by random-Forest. R News, 2, 18-22, 2002
    • (2002) Forest. R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 36
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J.-Y., Cheng, C.-T., and Chau, K.-W. Using support vector machines for long-term discharge prediction. Hydrolog. Sci. J., 51, 599-612, doi: 10.1623/hysj.51.4.599, 2006
    • (2006) Hydrolog. Sci. J. , vol.51 , pp. 599-612
    • Lin, J.-Y.1    Cheng, C.-T.2    Chau, K.-W.3
  • 37
    • 33646539843 scopus 로고    scopus 로고
    • A meteorological distribution system for high-resolution terrestrial modeling (micromet
    • Liston, G. E., and Elder, K. A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet). J. Hydrometeorol., 7, 217-234, doi: 10.1175/JHM486.1, 2006
    • (2006) J. Hydrometeorol , vol.7 , pp. 217-234
    • Liston, G.E.1    Elder, K.2
  • 38
    • 79956302151 scopus 로고    scopus 로고
    • Monthly rainfall-runoff modelling using artificial neural networks
    • Machado, F., Mine, M., Kaviski, E., and Fill, H. Monthly rainfall-runoff modelling using artificial neural networks. Hydrolog. Sci. J., 56, 349-361, doi: 10.1080/02626667.2011.559949, 2011
    • (2011) Hydrolog. Sci. J. , vol.56 , pp. 349-361
    • Machado, F.1    Mine, M.2    Kaviski, E.3    Fill, H.4
  • 39
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status, and future directions
    • Maier, H. R., Jain, A., Dandy, G. C., and Sudheer, K. P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status, and future directions. Environ. Model. Softw., 25, 891-909, doi: 10.1016/j.envsoft.2010.02.003, 2010
    • (2010) Environ. Model. Softw , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 40
    • 33845595318 scopus 로고    scopus 로고
    • A bounded version of the Nash-sutcliffe criterion for better model assessment on large sets of basins. in IAHS-AISH publication
    • available at last access: 10 February 2016
    • Mathevet, T., Michel, C., Andreassian, V., and Perrin, C. A bounded version of the Nash-sutcliffe criterion for better model assessment on large sets of basins. in IAHS-AISH publication, International Association of Hydrological Sciences, 211-219, available at: http://cat.inist.fr/?aModele=afficheN& cpsidt=18790113 (last access: 10 February 2016), 2006
    • (2006) International Association of Hydrological Sciences , vol.211-219
    • Mathevet, T.1    Michel, C.2    Andreassian, V.3    Perrin, C.4
  • 41
    • 70649107951 scopus 로고    scopus 로고
    • Hydrological modelling of Ethiopian catchments using limited data
    • Mekonnen, M. A., Wörman, A., Dargahi, B., and Gebeyehu, A. Hydrological modelling of Ethiopian catchments using limited data. Hydrol. Process., 23, 3401-3408, doi: 10.1002/hyp.7470, 2009
    • (2009) Hydrol. Process , vol.23 , pp. 3401-3408
    • Mekonnen, M.A.1    Wörman, A.2    Dargahi, B.3    Gebeyehu, A.4
  • 44
    • 34447500396 scopus 로고    scopus 로고
    • Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
    • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T. ASABE, 50, 885-900, 2007
    • (2007) T. ASABE , vol.50 , pp. 885-900
    • Moriasi, D.N.1    Arnold, J.G.2    Van Liew, M.W.3    Bingner, R.L.4    Harmel, R.D.5    Veith, T.L.6
  • 45
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part i -A discussion of principles
    • Nash, J. E., and Sutcliffe, J. V. River flow forecasting through conceptual models part I -A discussion of principles. J. Hydrol., 10, 282-290, doi: 10.1016/0022-1694(70)90255-6, 1970
    • (1970) J. Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 46
    • 84856218849 scopus 로고    scopus 로고
    • A review of efficiency criteria suitable for evaluating low-flow simulations
    • Pushpalatha, R., Perrin, C., Moine, N. L., and Andréassian, V. A review of efficiency criteria suitable for evaluating low-flow simulations. J. Hydrol., 420-421, 171-182, doi: 10.1016/j.jhydrol.2011.11.055, 2012
    • (2012) J. Hydrol , vol.420-421 , pp. 171-182
    • Pushpalatha, R.1    Perrin, C.2    Moine, N.L.3    Andréassian, V.4
  • 49
    • 79959714640 scopus 로고    scopus 로고
    • Changes in land cover rainfall, and stream flow in upper gilgel abbay catchment, blue nile basin ?Ethiopia
    • Rientjes, T. H. M., Haile, A. T., Kebede, E., Mannaerts, C. M. M., Habib, E., and Steenhuis, T. S. Changes in land cover. rainfall, and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin -Ethiopia, Hydrol. Earth Syst. Sci., 15, 1979-1989, doi: 10.5194/hess-15-1979-2011, 2011
    • (2011) Hydrol Earth Syst. Sci , vol.15 , pp. 1979-1989
    • Rientjes, T.H.M.1    Haile, A.T.2    Kebede, E.3    Mannaerts, C.M.M.4    Habib, E.5    Steenhuis, T.S.6
  • 51
    • 34547136487 scopus 로고    scopus 로고
    • Do Nash values have value?
    • Schaefli, B., and Gupta, H. V. Do Nash values have value? Hydrol. Process., 21, 2075-2080, doi: 10.1002/hyp.6825, 2007
    • (2007) Hydrol. Process , vol.21 , pp. 2075-2080
    • Schaefli, B.1    Gupta, H.V.2
  • 52
    • 34249844193 scopus 로고    scopus 로고
    • Hydroinformatics: Computational intelligence, and technological developments in water science applications -Editorial
    • See, L., Solomatine, D., Abrahart, R., and Toth, E. Hydroinformatics: computational intelligence, and technological developments in water science applications -Editorial. Hydrolog. Sci. J., 52, 391-396, doi: 10.1623/hysj.52.3.391, 2007
    • (2007) Hydrolog. Sci. J. , vol.52 , pp. 391-396
    • See, L.1    Solomatine, D.2    Abrahart, R.3    Toth, E.4
  • 53
    • 77949580283 scopus 로고    scopus 로고
    • Swat model application, and prediction uncertainty analysis in the lake tana basin
    • Setegn, S. G., Srinivasan, R., Melesse, A. M., and Dargahi, B. SWAT model application, and prediction uncertainty analysis in the Lake Tana Basin. Ethiopia, Hydrol. Process., 24, 357-367, doi: 10.1002/hyp.7457, 2009
    • (2009) Ethiopia Hydrol. Process , vol.24 , pp. 357-367
    • Setegn, S.G.1    Srinivasan, R.2    Melesse, A.M.3    Dargahi, B.4
  • 55
    • 33746906726 scopus 로고    scopus 로고
    • Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling
    • Sheffield, J., Goteti, G., and Wood, E. F. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Climate, 19, 3088-3111, doi: 10.1175/JCLI3790.1, 2006
    • (2006) J. Climate , vol.19 , pp. 3088-3111
    • Sheffield, J.1    Goteti, G.2    Wood, E.F.3
  • 56
    • 84941994267 scopus 로고    scopus 로고
    • Climate agriculture, and hunger: Statistical prediction of undernourishment using nonlinear regression, and data-mining techniques
    • Shortridge, J. E., Falconi, S. M., Zaitchik, B. F., and Guikema, S. D. Climate. agriculture, and hunger: statistical prediction of undernourishment using nonlinear regression, and data-mining techniques, J. Appl. Stat., 42, 2367-2390, doi: 10.1080/02664763.2015.1032216, 2015
    • (2015) J. Appl. Stat , vol.42 , pp. 2367-2390
    • Shortridge, J.E.1    Falconi, S.M.2    Zaitchik, B.F.3    Guikema, S.D.4
  • 57
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences, and new approaches
    • Solomatine, D. P., and Ostfeld, A. Data-driven modelling: some past experiences, and new approaches. J. Hydroinform., 10, 3-22, doi: 10.2166/hydro.2008.015, 2008
    • (2008) J. Hydroinform , vol.10 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 58
    • 0019227508 scopus 로고
    • Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated, and heteroscedastic error cases
    • Sorooshian, S., and Dracup, J. A. Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated, and heteroscedastic error cases. Water Resour. Res., 16, 430-442, doi: 10.1029/WR016i002p00430, 1980
    • (1980) Water Resour. Res , vol.16 , pp. 430-442
    • Sorooshian, S.1    Dracup, J.A.2
  • 60
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer, K. P., and Jain, A. Explaining the internal behaviour of artificial neural network river flow models. Hydrol. Process., 18, 833-844, doi: 10.1002/hyp.5517, 2004
    • (2004) Hydrol. Process , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 61
    • 84869464525 scopus 로고    scopus 로고
    • Critical review of swat applications in the upper nile basin countries
    • Van Griensven, A., Ndomba, P., Yalew, S., and Kilonzo, F. Critical review of SWAT applications in the upper Nile basin countries. Hydrol. Earth Syst. Sci., 16, 3371-3381, doi: 10.5194/hess-16-3371-2012, 2012
    • (2012) Hydrol. Earth Syst. Sci , vol.16 , pp. 3371-3381
    • Van Griensven, A.1    Ndomba, P.2    Yalew, S.3    Kilonzo, F.4
  • 63
    • 27744600558 scopus 로고    scopus 로고
    • Uncertainty in water resource model parameters used for climate change impact assessment
    • Wilby, R. L. Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Process., 19, 3201-3219, doi: 10.1002/hyp.5819, 2005
    • (2005) Hydrol. Process , vol.19 , pp. 3201-3219
    • Wilby, R.L.1
  • 64
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J., and Dawson, C. W. Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrolog. Sci. J., 48, 163-181, doi: 10.1623/hysj.48.2.163.44699, 2003
    • (2003) Hydrolog. Sci. J. , vol.48 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 65
    • 78650862532 scopus 로고    scopus 로고
    • Fast stable restricted maximum likelihood, and marginal likelihood estimation of semiparametric generalized linear models
    • Wood, S. N. Fast stable restricted maximum likelihood, and marginal likelihood estimation of semiparametric generalized linear models. J. Roy. Stat. Soc. B, 73, 3-36, doi: 10.1111/j.1467-9868.2010.00749.x, 2011
    • (2011) J. Roy. Stat. Soc. B , vol.73 , pp. 3-36
    • Wood, S.N.1
  • 66
    • 84874762668 scopus 로고    scopus 로고
    • On p-values for smooth components of an extended generalized additive model
    • Wood, S. N. On p-values for smooth components of an extended generalized additive model. Biometrika, 100, 221-228 doi: 10.1093/biomet/ass048, 2012
    • (2012) Biometrika , vol.100 , pp. 221-228
    • Wood, S.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.