메뉴 건너뛰기




Volumn 40, Issue 8, 2004, Pages

Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis and modeling?

Author keywords

Andrews Experimental Forest Watershed; Input to output mapping; Nonparametric methods; Rainfall runoff modeling; Regression trees

Indexed keywords

ALGORITHMS; CATCHMENTS; CORRELATION METHODS; HYDROLOGY; MAPPING; MATHEMATICAL MODELS; RAIN;

EID: 4544294829     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2004WR003094     Document Type: Article
Times cited : (48)

References (32)
  • 1
    • 0033762270 scopus 로고    scopus 로고
    • Uniqueness of place and the representation of hydrological processes
    • Beven, K. J. (2000), Uniqueness of place and the representation of hydrological processes, Hydrol. Earth Syst. Sci., 4, 203-213.
    • (2000) Hydrol. Earth Syst. Sci. , vol.4 , pp. 203-213
    • Beven, K.J.1
  • 2
    • 67049137556 scopus 로고    scopus 로고
    • Towards a coherent philosophy for modeling the environment
    • Beven, K. (2002), Towards a coherent philosophy for modeling the environment, Proc. R. Soc. London, Ser. A, 458, 2465-2484.
    • (2002) Proc. R. Soc. London, Ser. A , vol.458 , pp. 2465-2484
    • Beven, K.1
  • 3
    • 1542541345 scopus 로고    scopus 로고
    • Comment on "Bayesian recursive parameter estimation for hydrologie models" by M. Thiemann et al.
    • doi:10.1029/2001WR001183
    • Beven, K. J., and P. C. Young (2003), Comment on "Bayesian recursive parameter estimation for hydrologie models" by M. Thiemann et al., Water Resour. Res., 39(5), 1116, doi:10.1029/2001WR001183.
    • (2003) Water Resour. Res. , vol.39 , Issue.5 , pp. 1116
    • Beven, K.J.1    Young, P.C.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996), Bagging predictors, Mach. Learning, 24(2), 123-140.
    • (1996) Mach. Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001a), Random forests, Mach. Learning, 45(1), 5-32.
    • (2001) Mach. Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0035575477 scopus 로고    scopus 로고
    • Using iterated bagging to debias regressions
    • Breiman, L. (2001b), Using iterated bagging to debias regressions, Mach. Learning, 45(3), 261-277.
    • (2001) Mach. Learning , vol.45 , Issue.3 , pp. 261-277
    • Breiman, L.1
  • 9
    • 4544344281 scopus 로고    scopus 로고
    • Multivariate seasonal period model rejection within the generalised likelihood uncertainty estimation procedure
    • edited by Q. Duan et al., AGU, Washington, D. C.
    • Freer, J. E., K. J. Beven, and N. E. Peters (2003), Multivariate seasonal period model rejection within the generalised likelihood uncertainty estimation procedure, in Calibration of Watershed Models, Water Sci. Appl. Ser., vol. 6, edited by Q. Duan et al., pp. 69-87, AGU, Washington, D. C.
    • (2003) Calibration of Watershed Models, Water Sci. Appl. Ser. , vol.6 , pp. 69-87
    • Freer, J.E.1    Beven, K.J.2    Peters, N.E.3
  • 10
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H. (1991), Multivariate adaptive regression splines, Ann. Stat., 19(1), 1-67.
    • (1991) Ann. Stat. , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 11
    • 0004067283 scopus 로고
    • Flexible metric nearest neighbour classification
    • Dep. of Stat., Stanford Univ., Stanford, Calif.
    • Friedman, J. H. (1994), Flexible metric nearest neighbour classification, Tech. Rep. 113, 32 pp., Dep. of Stat., Stanford Univ., Stanford, Calif.
    • (1994) Tech. Rep. , vol.113
    • Friedman, J.H.1
  • 12
    • 0026105482 scopus 로고
    • An iterative growing and pruning algorithm for classification tree design
    • Gelfand, S. B., C. S. Ravishankar, and E. J. Delp (1991), An iterative growing and pruning algorithm for classification tree design, IEEE Trans. Pattern Anal Mach. Intell., 13(2), 163-174.
    • (1991) IEEE Trans. Pattern Anal Mach. Intell. , vol.13 , Issue.2 , pp. 163-174
    • Gelfand, S.B.1    Ravishankar, C.S.2    Delp, E.J.3
  • 13
    • 0031922634 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information
    • Gupta, H. V., S. Sorooshian, and P. O. Yapo (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res., 34(4), 751-763.
    • (1998) Water Resour. Res. , vol.34 , Issue.4 , pp. 751-763
    • Gupta, H.V.1    Sorooshian, S.2    Yapo, P.O.3
  • 14
    • 0017468507 scopus 로고
    • Water flux in soil and subsoil in a steep forested slope
    • Harr, R. D. (1977), Water flux in soil and subsoil in a steep forested slope, J. Hydrol., 33, 37-58.
    • (1977) J. Hydrol. , vol.33 , pp. 37-58
    • Harr, R.D.1
  • 15
    • 0020141594 scopus 로고
    • Streamflow changes after logging 130-year-old Douglas fir in two small watersheds
    • Harr, R. D., A. Levno, and R. Mersereau (1982), Streamflow changes after logging 130-year-old Douglas fir in two small watersheds, Water Resour. Res., 18(3), 637-644.
    • (1982) Water Resour. Res. , vol.18 , Issue.3 , pp. 637-644
    • Harr, R.D.1    Levno, A.2    Mersereau, R.3
  • 16
    • 0022264619 scopus 로고
    • Shenandoah watershed study: A calibration of a topography-based, variable contributing area hydrological model to a small forested catchment
    • Hornberger, G. M., K. J. Beven, B. J. Cosby, and D. E. Sappington (1985), Shenandoah watershed study: A calibration of a topography-based, variable contributing area hydrological model to a small forested catchment, Water Resour. Res., 21(12), 1841-1850.
    • (1985) Water Resour. Res. , vol.21 , Issue.12 , pp. 1841-1850
    • Hornberger, G.M.1    Beven, K.J.2    Cosby, B.J.3    Sappington, D.E.4
  • 17
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis
    • doi:10.1029/2001WR000795
    • Hsu, K., H. V. Gupta, X. Gao, S. Sorooshian, and B. Imam (2002), Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38(12), 1302, doi:10.1029/2001WR000795.
    • (2002) Water Resour. Res. , vol.38 , Issue.12 , pp. 1302
    • Hsu, K.1    Gupta, H.V.2    Gao, X.3    Sorooshian, S.4    Imam, B.5
  • 18
    • 0027790160 scopus 로고
    • How much complexity is warranted in a rainfall-runoff model?
    • Jakeman, A. J., and G. M. Hornberger (1993), How much complexity is warranted in a rainfall-runoff model?, Water Resour. Res., 29(8), 2637-2649.
    • (1993) Water Resour. Res. , vol.29 , Issue.8 , pp. 2637-2649
    • Jakeman, A.J.1    Hornberger, G.M.2
  • 19
    • 0029663892 scopus 로고    scopus 로고
    • Peak flow responses to clear- cutting and roads in small and large basins, western Cascades, Oregon
    • Jones, J. A., and G. E. Grant (1996), Peak flow responses to clear- cutting and roads in small and large basins, western Cascades, Oregon, Water Resour. Res., 32(4), 959-974.
    • (1996) Water Resour. Res. , vol.32 , Issue.4 , pp. 959-974
    • Jones, J.A.1    Grant, G.E.2
  • 20
    • 1542442449 scopus 로고    scopus 로고
    • Semidistributed hydrological modeling: A "saturation path" perspective on TOPMODEL and VIC
    • doi:10.1029/2003WR002122
    • Kavetski, D., G. Kuczera, and S. W. Franks (2003), Semidistributed hydrological modeling: A "saturation path" perspective on TOPMODEL and VIC, Water Resour. Res., 39(9), 1246, doi:10.1029/2003WR002122.
    • (2003) Water Resour. Res. , vol.39 , Issue.9 , pp. 1246
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 21
    • 0002649011 scopus 로고
    • Hydrograph modeling strategies
    • edited by R. Peel, M. Chisholm, and P. Haggett, Heinemann Educ., London
    • Kirkby, M. J. (1975), Hydrograph modeling strategies, in Processes in Physical and Human Geography, edited by R. Peel, M. Chisholm, and P. Haggett, pp. 69-90, Heinemann Educ., London.
    • (1975) Processes in Physical and Human Geography , pp. 69-90
    • Kirkby, M.J.1
  • 23
    • 0037592119 scopus 로고
    • Non-parametric regression for learning
    • Cent, for Interdisciplinary Res., Univ. of Bielefeld, Bielefeld, Germany
    • Schaal, S. (1994), Non-parametric regression for learning, in Proceedings of the Conference on Adaptive Behaviour and Learning, pp. 123-133, Cent, for Interdisciplinary Res., Univ. of Bielefeld, Bielefeld, Germany.
    • (1994) Proceedings of the Conference on Adaptive Behaviour and Learning , pp. 123-133
    • Schaal, S.1
  • 25
    • 0019227508 scopus 로고
    • Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases
    • Sorooshian, S., and J. A. Dracup (1980), Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resour. Res., 16(2), 430-442.
    • (1980) Water Resour. Res. , vol.16 , Issue.2 , pp. 430-442
    • Sorooshian, S.1    Dracup, J.A.2
  • 26
    • 0028322711 scopus 로고
    • Parameter uncertainty and interaction in complex environmental models
    • Spear, R. C., T. M. Grieb, and N. Shang (1994), Parameter uncertainty and interaction in complex environmental models, Water Resour. Res., 30(11), 3159-3169.
    • (1994) Water Resour. Res. , vol.30 , Issue.11 , pp. 3159-3169
    • Spear, R.C.1    Grieb, T.M.2    Shang, N.3
  • 27
    • 0033307330 scopus 로고    scopus 로고
    • Globally optimal fuzzy decision trees for classification and regression
    • Suárez, A., and J. F. Lutsko (1999), Globally optimal fuzzy decision trees for classification and regression, IEEE Trans. Pattern Anal. Mach. Intell., 21, 1297-1311.
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , pp. 1297-1311
    • Suárez, A.1    Lutsko, J.F.2
  • 28
    • 0037442971 scopus 로고    scopus 로고
    • Towards reduced uncertainty in conceptual rainfall-runoff modeling: Dynamic identifiability analysis
    • Wagener, T., N. McIntyre, M. J. Lees, H. S. Wheater, and H. V. Gupta (2003), Towards reduced uncertainty in conceptual rainfall-runoff modeling: Dynamic identifiability analysis, Hydrol. Processes, 17(2), 455-476.
    • (2003) Hydrol. Processes , vol.17 , Issue.2 , pp. 455-476
    • Wagener, T.1    McIntyre, N.2    Lees, M.J.3    Wheater, H.S.4    Gupta, H.V.5
  • 29
    • 4544336102 scopus 로고    scopus 로고
    • Simulation of water balance and forest treatment effects at the H. J. Andrews experimental forest
    • Pac. Northwest Natl. Lab., Richland, Wash.
    • Waichler, S. R., M. S. Wigmosta, and B. C. Temple (2002), Simulation of water balance and forest treatment effects at the H. J. Andrews experimental forest, Tech. Rep. PNWD-3180, 97 pp., Pac. Northwest Natl. Lab., Richland, Wash.
    • (2002) Tech. Rep. PNWD-3180
    • Waichler, S.R.1    Wigmosta, M.S.2    Temple, B.C.3
  • 30
    • 0028667763 scopus 로고
    • A distributed hydrology vegetation model for complex terrain
    • Wigmosta, M. S., L. V. Vail, and D. P. Lettenmaier (1994), A distributed hydrology vegetation model for complex terrain, Water Resour. Res., 30(6), 1665-1679.
    • (1994) Water Resour. Res. , vol.30 , Issue.6 , pp. 1665-1679
    • Wigmosta, M.S.1    Vail, L.V.2    Lettenmaier, D.P.3
  • 31
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
    • Yapo, P. O., H. V. Gupta, and S. Sorooshian (1996), Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data, J. Hydrol., 181, 23-48.
    • (1996) J. Hydrol. , vol.181 , pp. 23-48
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3
  • 32
    • 0001891299 scopus 로고    scopus 로고
    • Data-based mechanistic modeling and validation of rainfall-flow processes
    • edited by M. G. Anderson and P. D. Bates, John Wiley, Hoboken, N. J.
    • Young, P. C. (2001), Data-based mechanistic modeling and validation of rainfall-flow processes, in Model Validation: Perspectives in Hydrological Science, edited by M. G. Anderson and P. D. Bates, pp. 117-161, John Wiley, Hoboken, N. J.
    • (2001) Model Validation: Perspectives in Hydrological Science , pp. 117-161
    • Young, P.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.