-
1
-
-
1042263216
-
Degrees-of-freedom tests for smoothing splines
-
CANTONI, E. & HASTIE, T. J. (2002). Degrees-of-freedom tests for smoothing splines. Biometrika 89, 251-63.
-
(2002)
Biometrika
, vol.89
, pp. 251-263
-
-
Cantoni, E.1
Hastie, T.J.2
-
2
-
-
0000439838
-
Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models
-
COX, D.,KOH, E.,WAHBA, G. & YANDELL, B. S. (1988). Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models. Ann. Statist. 16, 113-9.
-
(1988)
Ann. Statist
, vol.16
, pp. 113-119
-
-
Cox, D.1
Koh, E.2
Wahba, G.3
Yandell, B.S.4
-
3
-
-
15844423998
-
Exact likelihood ratio tests for penalized splines
-
CRAINICEANU, C., RUPPERT, D., CLAESKENS, G. & WAND, M. P. (2005). Exact likelihood ratio tests for penalized splines. Biometrika 92, 91-103.
-
(2005)
Biometrika
, vol.92
, pp. 91-103
-
-
Crainiceanu, C.1
Ruppert, D.2
Claeskens, G.3
Wand, M.P.4
-
4
-
-
0001008882
-
Algorithm as 155: The distribution of a linear combination of χ2 random variables
-
DAVIES, R. B. (1980). Algorithm as 155: The distribution of a linear combination of χ2 random variables. Appl. Statist. 29, 323-33.
-
(1980)
Appl. Statist
, vol.29
, pp. 323-333
-
-
Davies, R.B.1
-
7
-
-
0001507590
-
Computing the distribution of quadratic forms in normal variables
-
IMHOF, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika 48, 419-26.
-
(1961)
Biometrika
, vol.48
, pp. 419-426
-
-
Imhof, J.P.1
-
8
-
-
34250956889
-
Eine neue Herleitung des Esponentialgesetzes in der Wahrscheinlichkeitsrechnung
-
LINDEBERG, J. W. (1922). Eine neue Herleitung des Esponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z. 15, 211-25.
-
(1922)
Math. Z
, vol.15
, pp. 211-225
-
-
Lindeberg, J.W.1
-
9
-
-
3042552049
-
Hypothesis testing in smoothing spline models
-
LIU, A. & WANG, Y. (2004). Hypothesis testing in smoothing spline models. J. Statist. Comp. Simul. 74, 581-97.
-
(2004)
J. Statist. Comp. Simul
, vol.74
, pp. 581-597
-
-
Liu, A.1
Wang, Y.2
-
10
-
-
58549103276
-
A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables
-
LIU, H., TANG, Y. & ZHANG, H. H. (2009). A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Comp. Statist. Data Anal. 53, 853-6.
-
(2009)
Comp. Statist. Data Anal
, vol.53
, pp. 853-856
-
-
Liu, H.1
Tang, Y.2
Zhang, H.H.3
-
11
-
-
84857058351
-
Coverage properties of confidence intervals for generalized additive model components
-
MARRA, G. & WOOD, S. N. (2012). Coverage properties of confidence intervals for generalized additive model components. Scand. J. Statist. 39, 53-74.
-
(2012)
Scand. J. Statist
, vol.39
, pp. 53-74
-
-
Marra, G.1
Wood, S.N.2
-
12
-
-
80052788256
-
Testing for cubic smoothing splines under dependent data
-
NUMMI, T., PAN, J., SIREN, T. & LIU, K. (2011). Testing for cubic smoothing splines under dependent data. Biometrics 67, 871-5.
-
(2011)
Biometrics
, vol.67
, pp. 871-875
-
-
Nummi, T.1
Pan, J.2
Siren, T.3
Liu, K.4
-
13
-
-
33845606053
-
Bayesian confidence intervals for smoothing splines
-
NYCHKA, D. (1988). Bayesian confidence intervals for smoothing splines. J. Am. Statist. Assoc. 83, 1134-43.
-
(1988)
J. Am. Statist. Assoc
, vol.83
, pp. 1134-1143
-
-
Nychka, D.1
-
14
-
-
84863304598
-
-
R DEVELOPMENT CORE TEAM Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0
-
R DEVELOPMENT CORE TEAM (2012). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0, http://www.R-project.org.
-
(2012)
R: A Language and Environment for Statistical Computing. Vienna
-
-
-
15
-
-
0000989367
-
Probability content of regions under spherical normal distributions, IV: The distribution of homogeneous and non-homogeneous quadratic functions of normal variables
-
RUBEN, H. (1962). Probability content of regions under spherical normal distributions, IV: The distribution of homogeneous and non-homogeneous quadratic functions of normal variables. Ann. Math. Statist. 33, 542-70.
-
(1962)
Ann. Math. Statist
, vol.33
, pp. 542-570
-
-
Ruben, H.1
-
17
-
-
40249103367
-
Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models
-
SCHEIPL, F., GREVEN, S. & K?UCHENHOFF, H. (2008). Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comp. Statist. Data Anal. 52, 3283-99.
-
(2008)
Comp. Statist. Data Anal
, vol.52
, pp. 3283-3299
-
-
Scheipl, F.1
Greven, S.2
Kuchenhoff, H.3
-
18
-
-
0000939344
-
Bayesian 'confidence intervals' for the cross-validated smoothing spline
-
WAHBA, G. (1983). Bayesian 'confidence intervals' for the cross-validated smoothing spline. J. R. Statist. Soc. B 45, 133-50.
-
(1983)
J. R. Statist. Soc
, vol.45
, pp. 133-150
-
-
Wahba, G.1
-
21
-
-
78650862532
-
Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
-
WOOD, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Statist. Soc. B 73, 3-36.
-
(2011)
J. R. Statist. Soc
, vol.73
, pp. 3-36
-
-
Wood, S.N.1
-
22
-
-
0141767032
-
Hypothesis testing in semiparametric additive mixed models
-
ZHANG, D. & LIN, X. (2003). Hypothesis testing in semiparametric additive mixed models. Biostatistics 4, 57-74.
-
(2003)
Biostatistics
, vol.4
, pp. 57-74
-
-
Zhang, D.1
Lin, X.2
|