메뉴 건너뛰기




Volumn 73, Issue 1, 2011, Pages 3-36

Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models

Author keywords

Adaptive smoothing; Generalized additive mixed model; Generalized additive model; Generalized cross validation; Marginal likelihood; Model selection; Penalized generalized linear model; Penalized regression splines; Restricted maximum likelihood; Scalar on function regression; Stable computation

Indexed keywords


EID: 78650862532     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2010.00749.x     Document Type: Article
Times cited : (4991)

References (65)
  • 2
    • 0002431823 scopus 로고
    • A time series approach to numerical differentiation
    • Anderssen, R. S. and Bloomfield, P. (1974) A time series approach to numerical differentiation. Technometrics, 16, 69-75.
    • (1974) Technometrics , vol.16 , pp. 69-75
    • Anderssen, R.S.1    Bloomfield, P.2
  • 3
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 9-25.
    • (1993) J. Am. Statist. Ass. , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 4
    • 78650913234 scopus 로고    scopus 로고
    • BayesX 1.5.0. University of Munich, Munich. (Available from.)
    • Brezger, A., Kneib, T. and Lang, S. (2007) BayesX 1.5.0. University of Munich, Munich. (Available from.)
    • (2007)
    • Brezger, A.1    Kneib, T.2    Lang, S.3
  • 5
    • 26444547624 scopus 로고    scopus 로고
    • Generalized structured additive regression based on Bayesian P-splines
    • Brezger, A. and Lang, S. (2006) Generalized structured additive regression based on Bayesian P-splines. Computnl Statist. Data Anal., 50, 967-991.
    • (2006) Computnl Statist. Data Anal. , vol.50 , pp. 967-991
    • Brezger, A.1    Lang, S.2
  • 7
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross validation
    • Craven, P. and Wahba, G. (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross validation. Numer. Math., 31, 377-403.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 8
    • 0348186338 scopus 로고    scopus 로고
    • Statistical Models
    • Cambridge: Cambridge University Press.
    • Davison, A. C. (2003) Statistical Models. Cambridge: Cambridge University Press.
    • (2003)
    • Davison, A.C.1
  • 9
    • 3142563983 scopus 로고    scopus 로고
    • Mixed Models: Theory and Applications
    • Hoboken: Wiley.
    • Demidenko, E. (2004) Mixed Models: Theory and Applications. Hoboken: Wiley.
    • (2004)
    • Demidenko, E.1
  • 10
    • 26644471757 scopus 로고    scopus 로고
    • Series evaluation of Tweedie exponential dispersion model densities
    • Dunn, P. K. and Smith, G. K. (2005) Series evaluation of Tweedie exponential dispersion model densities. Statist. Comput., 15, 267-280.
    • (2005) Statist. Comput. , vol.15 , pp. 267-280
    • Dunn, P.K.1    Smith, G.K.2
  • 11
    • 0018115641 scopus 로고
    • Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information
    • Efron, B. and Hinkley, D. V. (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika, 65, 457-487.
    • (1978) Biometrika , vol.65 , pp. 457-487
    • Efron, B.1    Hinkley, D.V.2
  • 12
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • Eilers, P. H. C. and Marx, B. D. (1996) Flexible smoothing with B-splines and penalties. Statist. Sci., 11, 89-121.
    • (1996) Statist. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 13
    • 0036921859 scopus 로고    scopus 로고
    • Generalized linear additive smooth structures
    • Eilers, P. H. C. and Marx, B. D. (2002) Generalized linear additive smooth structures. J. Computnl Graph. Statist., 11, 758-783.
    • (2002) J. Computnl Graph. Statist. , vol.11 , pp. 758-783
    • Eilers, P.H.C.1    Marx, B.D.2
  • 14
    • 2542635673 scopus 로고    scopus 로고
    • Principal component estimation of functional logistic regression: discussion of two different approaches
    • Escabias, M., Aguilera, A. M. and Valderrama, M. J. (2004) Principal component estimation of functional logistic regression: discussion of two different approaches. Nonparam. Statist., 16, 365-384.
    • (2004) Nonparam. Statist. , vol.16 , pp. 365-384
    • Escabias, M.1    Aguilera, A.M.2    Valderrama, M.J.3
  • 15
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression for space time data: a Bayesian perspective
    • Fahrmeir, L., Kneib, T. and Lang, S. (2004) Penalized structured additive regression for space time data: a Bayesian perspective. Statist. Sin., 14, 731-761.
    • (2004) Statist. Sin. , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 16
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian inference for generalized additive mixed models based on Markov random field priors
    • Fahrmeir, L. and Lang, S. (2001) Bayesian inference for generalized additive mixed models based on Markov random field priors. Appl. Statist., 50, 201-220.
    • (2001) Appl. Statist. , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 17
    • 0004236492 scopus 로고    scopus 로고
    • Matrix Computations
    • 3rd edn. Baltimore: Johns Hopkins University Press.
    • Golub, G. H. and van Loan, C. F. (1996) Matrix Computations, 3rd edn. Baltimore: Johns Hopkins University Press.
    • (1996)
    • Golub, G.H.1    van Loan, C.F.2
  • 18
    • 0003780150 scopus 로고
    • Nonparametric Regression and Generalized Linear Models
    • London: Chapman and Hall.
    • Green, P. J. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models. London: Chapman and Hall.
    • (1994)
    • Green, P.J.1    Silverman, B.W.2
  • 19
    • 0000457666 scopus 로고
    • Cross validating non-Gaussian data
    • Gu, C. (1992) Cross validating non-Gaussian data. J. Computnl Graph. Statist., 1, 169-179.
    • (1992) J. Computnl Graph. Statist. , vol.1 , pp. 169-179
    • Gu, C.1
  • 20
    • 0003965801 scopus 로고    scopus 로고
    • Smoothing Spline ANOVA Models
    • New York: Springer.
    • Gu, C. (2002) Smoothing Spline ANOVA Models. New York: Springer.
    • (2002)
    • Gu, C.1
  • 21
    • 0036975172 scopus 로고    scopus 로고
    • Penalized likelihood regression: general formulation and efficient approximation
    • Gu, C. and Kim, Y.-J. (2002) Penalized likelihood regression: general formulation and efficient approximation. Can. J. Statist., 30, 619-628.
    • (2002) Can. J. Statist. , vol.30 , pp. 619-628
    • Gu, C.1    Kim, Y.2
  • 22
    • 15844409557 scopus 로고    scopus 로고
    • Theory for penalised spline regression
    • Hall, P. and Opsomer, J. D. (2005) Theory for penalised spline regression. Biometrika, 92, 105-118.
    • (2005) Biometrika , vol.92 , pp. 105-118
    • Hall, P.1    Opsomer, J.D.2
  • 23
    • 84909719647 scopus 로고
    • How far are automatically chosen regression smoothing parameters from their optimum?
    • Härdle, W., Hall, P. and Marron, J. S. (1988) How far are automatically chosen regression smoothing parameters from their optimum? J. Am. Statist. Ass., 83, 86-95.
    • (1988) J. Am. Statist. Ass. , vol.83 , pp. 86-95
    • Härdle, W.1    Hall, P.2    Marron, J.S.3
  • 24
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • Harville, D. A. (1977) Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Statist. Ass., 72, 320-338.
    • (1977) J. Am. Statist. Ass. , vol.72 , pp. 320-338
    • Harville, D.A.1
  • 25
    • 0004182522 scopus 로고    scopus 로고
    • Matrix Algebra from a Statistician's Perspective
    • New York: Springer.
    • Harville, D. A. (1997) Matrix Algebra from a Statistician's Perspective. New York: Springer.
    • (1997)
    • Harville, D.A.1
  • 26
    • 84972488102 scopus 로고
    • Generalized additive models (with discussion)
    • Hastie, T. and Tibshirani, R. (1986) Generalized additive models (with discussion). Statist. Sci., 1, 297-318.
    • (1986) Statist. Sci. , vol.1 , pp. 297-318
    • Hastie, T.1    Tibshirani, R.2
  • 27
    • 0003598526 scopus 로고
    • Generalized Additive Models
    • London: Chapman and Hall.
    • Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. London: Chapman and Hall.
    • (1990)
    • Hastie, T.1    Tibshirani, R.2
  • 28
    • 0001257006 scopus 로고
    • Varying-coefficient models (with discussion)
    • Hastie, T. and Tibshirani, R. (1993) Varying-coefficient models (with discussion). J. R. Statist. Soc. B, 55, 757-796.
    • (1993) J. R. Statist. Soc. B , vol.55 , pp. 757-796
    • Hastie, T.1    Tibshirani, R.2
  • 29
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
    • Hurvich, C. M., Simonoff, J. S. and Tsai, C.-L. (1998) Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Statist. Soc. B, 60, 271-293.
    • (1998) J. R. Statist. Soc. B , vol.60 , pp. 271-293
    • Hurvich, C.M.1    Simonoff, J.S.2    Tsai, C.3
  • 30
    • 0030816163 scopus 로고    scopus 로고
    • Two data sets of near infrared spectra
    • Kalivas, J. H. (1997) Two data sets of near infrared spectra. Chemometr. Intell. Lab. Syst., 37, 255-259.
    • (1997) Chemometr. Intell. Lab. Syst. , vol.37 , pp. 255-259
    • Kalivas, J.H.1
  • 31
    • 5444237700 scopus 로고    scopus 로고
    • A note on smoothing parameter selection for penalized spline smoothing
    • Kauermann, G. (2005) A note on smoothing parameter selection for penalized spline smoothing. J. Statist. Planng Inf., 127, 53-69.
    • (2005) J. Statist. Planng Inf. , vol.127 , pp. 53-69
    • Kauermann, G.1
  • 32
    • 62849127605 scopus 로고    scopus 로고
    • Some asymptotic results on generalized penalized spline smoothing
    • Kauermann, G., Krivobokova, T. and Fahrmeir, L. (2009) Some asymptotic results on generalized penalized spline smoothing. J. R. Statist. Soc. B, 71, 487-503.
    • (2009) J. R. Statist. Soc. B , vol.71 , pp. 487-503
    • Kauermann, G.1    Krivobokova, T.2    Fahrmeir, L.3
  • 33
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation of stochastic processes and smoothing by splines
    • Kimeldorf, G. and Wahba, G. (1970) A correspondence between Bayesian estimation of stochastic processes and smoothing by splines. Ann. Math. Statist., 41, 495-502.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 495-502
    • Kimeldorf, G.1    Wahba, G.2
  • 34
    • 0001355852 scopus 로고
    • The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters
    • Kohn, R., Ansley, C. F. and Tharm, D. (1991) The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters. J. Am. Statist. Ass., 86, 1042-1050.
    • (1991) J. Am. Statist. Ass. , vol.86 , pp. 1042-1050
    • Kohn, R.1    Ansley, C.F.2    Tharm, D.3
  • 36
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982) Random-effects models for longitudinal data. Biometrics, 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 38
    • 0032493547 scopus 로고    scopus 로고
    • Direct generalized additive modeling with penalized likelihood
    • Marx, B. D. and Eilers, P. H. (1998) Direct generalized additive modeling with penalized likelihood. Computnl Statist. Data Anal., 28, 193-209.
    • (1998) Computnl Statist. Data Anal. , vol.28 , pp. 193-209
    • Marx, B.D.1    Eilers, P.H.2
  • 39
    • 0033079479 scopus 로고    scopus 로고
    • Generalized linear regression on sampled signals and curves: a P-spline approach
    • Marx, B. D. and Eilers, P. H. (1999) Generalized linear regression on sampled signals and curves: a P-spline approach. Technometrics, 41, 1-13.
    • (1999) Technometrics , vol.41 , pp. 1-13
    • Marx, B.D.1    Eilers, P.H.2
  • 40
    • 0013199458 scopus 로고    scopus 로고
    • Numerical Methods of Statistics
    • Cambridge: Cambridge University Press.
    • Monahan, J. F. (2001) Numerical Methods of Statistics. Cambridge: Cambridge University Press.
    • (2001)
    • Monahan, J.F.1
  • 42
    • 0003982971 scopus 로고    scopus 로고
    • Numerical Optimization
    • 2nd edn. New York: Springer.
    • Nocedal, J. and Wright, S. J. (2006) Numerical Optimization, 2nd edn. New York: Springer.
    • (2006)
    • Nocedal, J.1    Wright, S.J.2
  • 43
    • 0038182862 scopus 로고
    • Discussion on 'Some aspects of the spline smoothing approach to non-parametric regression curve fitting' (by B. W. Silverman)
    • Parker, R. L. and Rice, J. A. (1985) Discussion on 'Some aspects of the spline smoothing approach to non-parametric regression curve fitting' (by B. W. Silverman). J. R. Statist. Soc. B, 47, 40-42.
    • (1985) J. R. Statist. Soc. B , vol.47 , pp. 40-42
    • Parker, R.L.1    Rice, J.A.2
  • 44
    • 77956889208 scopus 로고
    • Recovery of interblock information when block sizes are unequal
    • Patterson, H. D. and Thompson, R. (1971) Recovery of interblock information when block sizes are unequal. Biometrika, 58, 545-554.
    • (1971) Biometrika , vol.58 , pp. 545-554
    • Patterson, H.D.1    Thompson, R.2
  • 45
    • 0004130505 scopus 로고    scopus 로고
    • Functional Data Analysis
    • New York: Springer.
    • Ramsay, J. O. and Silverman, B. W. (2005) Functional Data Analysis. New York: Springer.
    • (2005)
    • Ramsay, J.O.1    Silverman, B.W.2
  • 46
    • 84863304598 scopus 로고    scopus 로고
    • R 2.8.1: a Language and Environment for Statistical Computing
    • R Development Core Team Vienna: R Foundation for Statistical Computing.
    • R Development Core Team (2008) R 2.8.1: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
    • (2008)
  • 47
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • Reiss, P. T. and Ogden, R. T. (2007) Functional principal component regression and functional partial least squares. J. Am. Statist. Ass., 102, 984-996.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 984-996
    • Reiss, P.T.1    Ogden, R.T.2
  • 48
    • 62849093921 scopus 로고    scopus 로고
    • Smoothing parameter selection for a class of semiparametric linear models
    • Reiss, P. T. and Ogden, R. T. (2009) Smoothing parameter selection for a class of semiparametric linear models. J. R. Statist. Soc. B, 71, 505-523.
    • (2009) J. R. Statist. Soc. B , vol.71 , pp. 505-523
    • Reiss, P.T.1    Ogden, R.T.2
  • 49
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)
    • Rue, H., Martino, S. and Chopin, N. (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. R. Statist. Soc. B, 71, 319-392.
    • (2009) J. R. Statist. Soc. B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 50
    • 0012891890 scopus 로고    scopus 로고
    • Semiparametric Regression
    • Cambridge: Cambridge University Press.
    • Ruppert, D., Wand, M. P. and Carroll, R. J. (2003) Semiparametric Regression. Cambridge: Cambridge University Press.
    • (2003)
    • Ruppert, D.1    Wand, M.P.2    Carroll, R.J.3
  • 51
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion)
    • Silverman, B. W. (1985) Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion). J. R. Statist. Soc. B, 47, 1-52.
    • (1985) J. R. Statist. Soc. B , vol.47 , pp. 1-52
    • Silverman, B.W.1
  • 52
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modeling with implicit variable selection by likelihood-based boosting
    • Tutz, G. and Binder, H. (2006) Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics, 62, 961-971.
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 53
    • 0002801707 scopus 로고
    • Statistics: Applications and New Directions: Proc. Indian Statistical Institute Golden Jubilee Int. Conf
    • eds J. K. Ghosh and, J. Roy) - Calcutta: Indian Statistical Institute.
    • Tweedie, M. C. K. (1984) An index which distinguishes between some important exponential families. In Statistics: Applications and New Directions: Proc. Indian Statistical Institute Golden Jubilee Int. Conf. (eds J. K. Ghosh and J. Roy), pp. 579-604. Calcutta: Indian Statistical Institute.
    • (1984) An index which distinguishes between some important exponential families , pp. 579-604
    • Tweedie, M.C.K.1
  • 54
    • 0003895851 scopus 로고    scopus 로고
    • Modern Applied Statistics with S
    • 4th edn. New York: Springer.
    • Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S, 4th edn. New York: Springer.
    • (2002)
    • Venables, W.N.1    Ripley, B.D.2
  • 56
    • 0000939344 scopus 로고
    • Bayesian ''confidence intervals'' for the cross-validated smoothing spline
    • Wahba, G. (1983) Bayesian ''confidence intervals'' for the cross-validated smoothing spline. J. R. Statist. Soc. B, 45, 133-150.
    • (1983) J. R. Statist. Soc. B , vol.45 , pp. 133-150
    • Wahba, G.1
  • 57
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
    • Wahba, G. (1985) A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Statist., 13, 1378-1402.
    • (1985) Ann. Statist. , vol.13 , pp. 1378-1402
    • Wahba, G.1
  • 58
    • 0003466536 scopus 로고
    • Spline Models for Observational Data
    • Philadelphia: Society for Industrial and Applied Mathematics.
    • Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
    • (1990)
    • Wahba, G.1
  • 59
    • 0000620787 scopus 로고
    • A completely automatic French curve: fitting spline functions by cross-validation
    • Wahba, G. and Wold, S. (1975) A completely automatic French curve: fitting spline functions by cross-validation. Communs Statist. Theor. Meth., 4, 125-141.
    • (1975) Communs Statist. Theor. Meth. , vol.4 , pp. 125-141
    • Wahba, G.1    Wold, S.2
  • 60
    • 0004199147 scopus 로고
    • Fundamentals of Matrix Computations
    • New York: Wiley.
    • Watkins, D. S. (1991) Fundamentals of Matrix Computations. New York: Wiley.
    • (1991)
    • Watkins, D.S.1
  • 62
    • 0141576514 scopus 로고    scopus 로고
    • Thin plate regression splines
    • Wood, S. N. (2003) Thin plate regression splines. J. R. Statist. Soc. B, 65, 95-114.
    • (2003) J. R. Statist. Soc. B , vol.65 , pp. 95-114
    • Wood, S.N.1
  • 63
    • 4944226585 scopus 로고    scopus 로고
    • Stable and efficient multiple smoothing parameter estimation for generalized additive models
    • Wood, S. N. (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Statist. Ass., 99, 673-686.
    • (2004) J. Am. Statist. Ass. , vol.99 , pp. 673-686
    • Wood, S.N.1
  • 64
    • 85153659511 scopus 로고    scopus 로고
    • Generalized Additive Models: an Introduction with R
    • Boca Raton: CRC-Chapman and Hall.
    • Wood, S. N. (2006) Generalized Additive Models: an Introduction with R. Boca Raton: CRC-Chapman and Hall.
    • (2006)
    • Wood, S.N.1
  • 65
    • 42149179133 scopus 로고    scopus 로고
    • Fast stable direct fitting and smoothness selection for generalized additive models
    • Wood, S. N. (2008) Fast stable direct fitting and smoothness selection for generalized additive models. J. R. Statist. Soc. B, 70, 495-518.
    • (2008) J. R. Statist. Soc. B , vol.70 , pp. 495-518
    • Wood, S.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.