메뉴 건너뛰기




Volumn 17, Issue 7, 2013, Pages 2669-2684

Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL REQUIREMENTS; COMPUTATIONALLY EFFICIENT; DATA-DRIVEN APPROACH; DATA-DRIVEN MODELLING; MULTIPLE LINEAR REGRESSIONS; PHYSICAL INTERPRETATION; PREDICTION CAPABILITY; PREDICTIVE CAPABILITIES;

EID: 84880153684     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-17-2669-2013     Document Type: Article
Times cited : (99)

References (61)
  • 1
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall-runoff modelling based on genetic programming
    • Babovic, V. and Keijzer, M.: Rainfall-runoff modeling based on genetic programming, Nord. Hydrol., 5, 331-346, 2002. (Pubitemid 36225582)
    • (2002) Nordic Hydrology , vol.33 , Issue.5 , pp. 331-346
    • Babovic, V.1    Keijzer, M.2
  • 2
    • 84867761315 scopus 로고    scopus 로고
    • Hillslope characteristics as controls of subsurface flow variability
    • doi:10.5194/hess-16-3699-2012
    • Bachmair, S. andWeiler, M.: Hillslope characteristics as controls of subsurface flow variability, Hydrol. Earth Syst. Sci., 16, 3699-3715, doi:10.5194/hess-16-3699-2012, 2012.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , pp. 3699-3715
    • Bachmair, S.1    Weiler, M.2
  • 3
    • 84979424747 scopus 로고
    • Forecasting environmental change
    • Beck, M.: Forecasting environmental change, J. Forecast., 10, 3-19, 1991.
    • (1991) J. Forecast , vol.10 , pp. 3-19
    • Beck, M.1
  • 4
    • 0034896615 scopus 로고    scopus 로고
    • How far can we go in distributed hydrological modelling?
    • Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1-12, doi:10.5194/hess-5-1-2001, 2001. (Pubitemid 32710654)
    • (2001) Hydrology and Earth System Sciences , vol.5 , Issue.1 , pp. 1-12
    • Beven, K.1
  • 5
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modelling water level-discharge relationship
    • DOI 10.1016/j.neucom.2004.04.016, PII S0925231204003315
    • Bhattacharya, B. and Solomatine, D.: Neural networks and M5 model trees in modelling water level-discharge relationship, Neurocomputing, 63, 381-396, 2005. (Pubitemid 40103871)
    • (2005) Neurocomputing , vol.63 , Issue.SPEC. ISS. , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors, Mach. Learn., 24, 123-140, 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L.: Random forests, Mach. Learn., 45, 5-32, 2001.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 77956510727 scopus 로고    scopus 로고
    • Tree-based reinforcement learning for optimal water reservoir operation
    • doi:10.1029/2009WR008898
    • Castelletti, A., Galelli, S., Restelli, M., and Soncini-Sessa, R.: Tree-based reinforcement learning for optimal water reservoir operation, Water Resour. Res., 46, W09507, doi:10.1029/2009WR008898, 2010.
    • (2010) Water Resour. Res , vol.46
    • Castelletti, A.1    Galelli, S.2    Restelli, M.3    Soncini-Sessa, R.4
  • 11
    • 33646403804 scopus 로고    scopus 로고
    • PERT-Perfect Random Trees Ensembles
    • Cutler, A. and Guohua, Z.: PERT-Perfect Random Trees Ensembles, Comp. Sci. Stat., 33, 490-497, 2001.
    • (2001) Comp. Sci. Stat. , vol.33 , pp. 490-497
    • Cutler, A.1    Guohua, Z.2
  • 12
    • 0034136344 scopus 로고    scopus 로고
    • Inductive learning approaches to rainfall-runoff modelling
    • Dawson, C., Brown, M., and Wilby, R.: Inductive learning approaches to rainfall-runoff modelling, Int. J. Neural Syst., 10, 43-57, 2000.
    • (2000) Int. J. Neural Syst , vol.10 , pp. 43-57
    • Dawson, C.1    Brown, M.2    Wilby, R.3
  • 13
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Dietterich, T.: Ensemble methods in machine learning, Lect. Notes Comput Sc., 1857, 1-15, 2000.
    • (2000) Lect. Notes Comput Sc. , vol.1857 , pp. 1-15
    • Dietterich, T.1
  • 14
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 1: Concepts and methodology
    • doi:10.5194/hess-14-1931-2010
    • Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P.: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 1: Concepts and methodology, Hydrol. Earth Syst. Sci., 14, 1931-1941, doi:10.5194/hess-14-1931-2010, 2010a.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 15
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 2: Application
    • doi:10.5194/hess-14-1943-2010
    • Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P.: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 2: Application, Hydrol. Earth Syst. Sci., 14, 1943-1961, doi:10.5194/hess-14-1943-2010, 2011b.
    • (2011) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 16
    • 84871477245 scopus 로고    scopus 로고
    • Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms
    • Erdal, H. and Karakurt, O.: Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms, J. Hydrol., 477, 119-128, 2013.
    • (2013) J. Hydrol , vol.477 , pp. 119-128
    • Erdal, H.1    Karakurt, O.2
  • 17
    • 80052251261 scopus 로고    scopus 로고
    • Variable selection for dynamic treatment regimes: A reinforcement learning approach
    • 30 June-4 July 2008, Villeneuve d'Ascq, France
    • Fonteneau, R., Wehenkel, L., and Ernst, D.: Variable selection for dynamic treatment regimes: a reinforcement learning approach, in: Proceedings of the EuropeanWorkshop on Reinforcement Learning, 30 June-4 July 2008, Villeneuve d'Ascq, France, 2008.
    • (2008) Proceedings of the EuropeanWorkshop on Reinforcement Learning
    • Fonteneau, R.1    Wehenkel, L.2    Ernst, D.3
  • 19
    • 84896309162 scopus 로고    scopus 로고
    • Optimal real-time operation of multi-purpose urban reservoirs: A case study in Singapore
    • Pl.-ASCE doi:10.1061/(ASCE)WR.1943-5452.0000342 press
    • Galelli, S., Goedbloed, A., Schwanenberg, D., and van Overloop, D.: Optimal real-time operation of multi-purpose urban reservoirs: a case study in Singapore, J. Water Res. Pl.-ASCE, doi:10.1061/(ASCE)WR.1943-5452.0000342, in press, 2013.
    • (2013) J. Water Res.
    • Galelli, S.1    Goedbloed, A.2    Schwanenberg, D.3    Van Overloop, D.4
  • 22
    • 62349086526 scopus 로고    scopus 로고
    • Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm
    • Hejazi, M. and Cai, X.: Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm, Adv. Water Resour., 32, 582-593, 2009.
    • (2009) Adv. Water Resour , vol.32 , pp. 582-593
    • Hejazi, M.1    Cai, X.2
  • 25
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • DOI 10.1029/95WR01955
    • Hsu, K., Gupta, H., and Sorooshian, S.: Artificial neural-network modeling of the rainfall-runoff process, Water Resour. Res., 31, 2517-2530, 1995. (Pubitemid 26475080)
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Kuo-Lin Hsu1    Gupta, H.V.2    Sorooshian, S.3
  • 26
    • 17044442585 scopus 로고    scopus 로고
    • Développement d'un modele pluie-débit a base de logique floue
    • Hundecha, Y., Bardossy, A., and Theisen, H.: Development of a fuzzy logic-based rainfall-runoff model, Hydrolog. Sci. J., 46, 363-376, 2001. (Pubitemid 32550644)
    • (2001) Hydrological Sciences Journal , vol.46 , Issue.3 , pp. 363-376
    • Hundecha, Y.1    Bardossy, A.2    Theisen, H.-W.3
  • 27
    • 84867272604 scopus 로고    scopus 로고
    • A new measure for assessing the efficiency of hydrological data-driven forecasting models
    • Hwang, S., Ham, D., and Kim, J.: A new measure for assessing the efficiency of hydrological data-driven forecasting models, Hydrolog. Sci. J., 57, 1-18, 2012.
    • (2012) Hydrolog. Sci. J. , vol.57 , pp. 1-18
    • Hwang, S.1    Ham, D.2    Kim, J.3
  • 28
    • 0001815269 scopus 로고
    • Constructing optimal binary decision trees in NP-Complete
    • Hyafil, L. and Rivest, R.: Constructing optimal binary decision trees in NP-Complete, Inform. Process. Lett., 5, 15-17, 1976.
    • (1976) Inform. Process. Lett. , vol.5 , pp. 15-17
    • Hyafil, L.1    Rivest, R.2
  • 29
    • 4544294829 scopus 로고    scopus 로고
    • Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis and modeling?
    • DOI 10.1029/2004WR003094
    • Iorgulescu, I. and Beven, K.: Nonparametric direct mapping of rainfall-runoff relationships: an alternative approach to data analysis and modeling?, Water Resour. Res., 40, W08403, doi:10.1029/2004WR003094, 2004. (Pubitemid 39247130)
    • (2004) Water Resources Research , vol.40 , Issue.8
    • Iorgulescu, I.1    Beven, K.J.2
  • 30
    • 0027790160 scopus 로고
    • How much complexity is warranted in a rainfall-runoff model
    • Jakeman, A. and Hornberger, G.: How much complexity is warranted in a rainfall-runoff model, Water Resour. Res., 29, 2637-2649, 1993.
    • (1993) Water Resour. Res , vol.29 , pp. 2637-2649
    • Jakeman, A.1    Hornberger, G.2
  • 33
    • 79960127215 scopus 로고    scopus 로고
    • Effect of pruning and smoothing while using M5 model tree technique for reservoir inflow prediction
    • Jothiprakash, V. and Kote, A.: Effect of pruning and smoothing while using M5 model tree technique for reservoir inflow prediction, J. Hydrol. Eng., 16, 563-574, 2011.
    • (2011) J. Hydrol. Eng. , vol.16 , pp. 563-574
    • Jothiprakash, V.1    Kote, A.2
  • 34
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L. and Whitaker, C.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Mach. Learn., 51, 181-207, 2003.
    • (2003) Mach. Learn , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 35
    • 33646560948 scopus 로고    scopus 로고
    • A comparison of low flow regionalisation methods-catchment grouping
    • DOI 10.1016/j.jhydrol.2005.09.001, PII S002216940500435X
    • Laaha, G. and Bl̈oschl, G.: A comparison of low flow regionalisation methods-catchment grouping, J. Hydrol., 323, 193-214, 2006. (Pubitemid 43728887)
    • (2006) Journal of Hydrology , vol.323 , Issue.1-4 , pp. 193-214
    • Laaha, G.1    Bloschl, G.2
  • 36
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • DOI 10.1623/hysj.51.4.599
    • Lin, J.-Y., Cheng, C.-T., and Chau, K.-W.: Using support vector machines for long-term discharge prediction, Hydrolog. Sci. J., 51, 599-612, 2006. (Pubitemid 44178040)
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.-Y.1    Cheng, C.-T.2    Chau, K.-W.3
  • 37
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • Maier, H. and Dandy, G.: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environ. Model. Softw., 15, 101-124, 2000. (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 39
    • 0029659805 scopus 로고    scopus 로고
    • Estimation and validation of contemporaneous PARMA models for streamflow simulation
    • Rasmussen, P., Salas, J., Fagherazzi, L., Rassam, J., and Bobee, B.: Estimation and validation of contemporaneous PARMA models for streamflow simulation, Water Resour. Res., 32, 3151-3160, 1996.
    • (1996) Water Resour. Res , vol.32 , pp. 3151-3160
    • Rasmussen, P.1    Salas, J.2    Fagherazzi, L.3    Rassam, J.4    Bobee, B.5
  • 40
    • 47049100818 scopus 로고    scopus 로고
    • A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting
    • Romanowicz, R., Young, P., Beven, K., and Pappenberger, F.: A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting, Adv. Water Resour., 31, 1048-1056, 2008.
    • (2008) Adv. Water Resour , vol.31 , pp. 1048-1056
    • Romanowicz, R.1    Young, P.2    Beven, K.3    Pappenberger, F.4
  • 41
    • 79961221000 scopus 로고    scopus 로고
    • Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France
    • doi:10.5194/hess-15-2421-2011
    • Sauquet, E. and Catalogne, C.: Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France, Hydrol. Earth Syst. Sci., 15, 2421-2435, doi:10.5194/hess-15-2421-2011, 2011.
    • (2011) Hydrol. Earth Syst. Sci , vol.15 , pp. 2421-2435
    • Sauquet, E.1    Catalogne, C.2
  • 42
    • 69249099866 scopus 로고    scopus 로고
    • Visualisation of hidden neuron behaviour in a neural network rainfall-runoff model
    • edited by: Abrahart, R., See, L., and Solomatine, D Springer, Berlin, Heidelberg
    • See, L., Jain, A., Dawson, C., and Abrahart, R.: Visualisation of hidden neuron behaviour in a neural network rainfall-runoff model, in: Practical Hydroinformatics, vol. 68 of Water Science and Technology Library, edited by: Abrahart, R., See, L., and Solomatine, D., Springer, Berlin, Heidelberg, 87-99, 2008.
    • (2008) Practical Hydroinformatics of Water Science and Technology Library , vol.68 , pp. 87-99
    • See, L.1    Jain, A.2    Dawson, C.3    Abrahart, R.4
  • 43
    • 0023360150 scopus 로고
    • Use of RORB and SWMM models to an urban catchment in Singapore
    • Selvalingam, S., Liong, S., and Manoharan, P.: Use of RORB and SWMM models to an urban catchment in Singapore, Adv. Water Resour., 10, 78-86, 1987.
    • (1987) Adv. Water Resour , vol.10 , pp. 78-86
    • Selvalingam, S.1    Liong, S.2    Manoharan, P.3
  • 44
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of the Multi-layer Feed-Forward Neural Network method used for river flow forecasting
    • doi:10.5194/hess-6-671-2002
    • Shamseldin, A. Y., Nasr, A. E., and O'Connor, K. M.: Comparison of different forms of the Multi-layer Feed-Forward Neural Network method used for river flow forecasting, Hydrol. Earth Syst. Sci., 6, 671-684, doi:10.5194/hess-6-671-2002, 2002.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , pp. 671-684
    • Shamseldin, A.Y.1    Nasr, A.E.2    O'Connor, K.M.3
  • 46
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine, D. and Dulal, K.: Model trees as an alternative to neural networks in rainfall-runoff modelling, Hydrolog. Sci. J., 48, 399-411, 2003.
    • (2003) Hydrolog. Sci. J. , vol.48 , pp. 399-411
    • Solomatine, D.1    Dulal, K.2
  • 47
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences and new approaches
    • Solomatine, D. and Ostfeld, A.: Data-driven modelling: some past experiences and new approaches, J. Hydroinform., 10, 3-22, 2008.
    • (2008) J. Hydroinform , vol.10 , pp. 3-22
    • Solomatine, D.1    Ostfeld, A.2
  • 48
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China
    • DOI 10.1061/(ASCE)1084-0699(2004)9:6(491)
    • Solomatine, D. and Xue, Y.: M5 model trees compared to neural networks: application to flood forecasting in the upper reach of the Huai River in China, J. Hydrol. Eng., 9, 491-501, 2004. (Pubitemid 39622310)
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.6 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 49
    • 34249775216 scopus 로고    scopus 로고
    • Development of a low-flow forecasting model using the M5 machine learning method
    • DOI 10.1623/hysj.52.3.466
    • Stravs, L. and Brilly, M.: Development of a low-flow forecasting model using the M5 machine learning method, Hydrolog. Sci. J., 52, 466-477, 2007. (Pubitemid 46851534)
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.3 , pp. 466-477
    • Stravs, L.1    Brilly, M.2
  • 51
    • 0001717058 scopus 로고    scopus 로고
    • Induction of model trees for predicting continuous classes in
    • Learn., Prague, Czech Republic
    • Wang, Y. and Witten, I.: Induction of model trees for predicting continuous classes, in: Proceedings of the European Conference on Mach. Learn., Prague, Czech Republic, 128-137, 1997.
    • (1997) Proceedings of the European Conference on Mach , pp. 128-137
    • Wang, Y.1    Witten, I.2
  • 53
    • 80053175870 scopus 로고    scopus 로고
    • Data mining methods for hydroclimatic forecasting
    • Wei,W. andWatkins Jr., D.: Data mining methods for hydroclimatic forecasting, Adv. Water Resour., 34, 1390-1400, 2011.
    • (2011) Adv. Water Resour. , vol.34 , pp. 1390-1400
    • Wei, W.1    Watkins, Jr.D.2
  • 57
    • 0042732130 scopus 로고    scopus 로고
    • Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale
    • DOI 10.1002/hyp.1328
    • Young, P.: Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale, Hydrol. Process., 17, 2195-2217, 2003. (Pubitemid 37106051)
    • (2003) Hydrological Processes , vol.17 , Issue.11 , pp. 2195-2217
    • Young, P.1
  • 59
    • 84876567143 scopus 로고    scopus 로고
    • Hypothetico-inductive data-based mechanistic modeling of hydrological systems
    • Young, P.: Hypothetico-inductive data-based mechanistic modeling of hydrological systems,Water Resour. Res., 49, 915-935, 2013.
    • (2013) Water Resour Res , vol.49 , pp. 915-935
    • Young, P.1
  • 60
    • 0028667417 scopus 로고
    • Data-based mechanistic modelling and the rainfall-flow non-linearity
    • Young, P. and Beven, K.: Data-based mechanistic modeling and the rainfall-flow nonlinearity, Environmetrics, 3, 335-363, 1994. (Pubitemid 290128)
    • (1994) Environmetrics , vol.5 , Issue.3 , pp. 335-363
    • Young, P.C.1    Bevan, K.J.2
  • 61
    • 0030721451 scopus 로고    scopus 로고
    • Recent advances in the data-based modelling and analysis of hydrological systems
    • DOI 10.1016/S0273-1223(97)00465-4, PII S0273122397004654
    • Young, P., Jakeman, A., and Post, D.: Recent advances in the databased modelling and analysis of hydrological systems, Water Sci.Technol., 36, 99-116, 1997. (Pubitemid 27507422)
    • (1997) Water Science and Technology , vol.36 , Issue.5 , pp. 99-116
    • Young, P.C.1    Jakeman, A.J.2    Post, D.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.