-
1
-
-
0036997582
-
Rainfall-runoff modelling based on genetic programming
-
Babovic, V. and Keijzer, M.: Rainfall-runoff modeling based on genetic programming, Nord. Hydrol., 5, 331-346, 2002. (Pubitemid 36225582)
-
(2002)
Nordic Hydrology
, vol.33
, Issue.5
, pp. 331-346
-
-
Babovic, V.1
Keijzer, M.2
-
2
-
-
84867761315
-
Hillslope characteristics as controls of subsurface flow variability
-
doi:10.5194/hess-16-3699-2012
-
Bachmair, S. andWeiler, M.: Hillslope characteristics as controls of subsurface flow variability, Hydrol. Earth Syst. Sci., 16, 3699-3715, doi:10.5194/hess-16-3699-2012, 2012.
-
(2012)
Hydrol. Earth Syst. Sci.
, vol.16
, pp. 3699-3715
-
-
Bachmair, S.1
Weiler, M.2
-
3
-
-
84979424747
-
Forecasting environmental change
-
Beck, M.: Forecasting environmental change, J. Forecast., 10, 3-19, 1991.
-
(1991)
J. Forecast
, vol.10
, pp. 3-19
-
-
Beck, M.1
-
4
-
-
0034896615
-
How far can we go in distributed hydrological modelling?
-
Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1-12, doi:10.5194/hess-5-1-2001, 2001. (Pubitemid 32710654)
-
(2001)
Hydrology and Earth System Sciences
, vol.5
, Issue.1
, pp. 1-12
-
-
Beven, K.1
-
5
-
-
12144264770
-
Neural networks and M5 model trees in modelling water level-discharge relationship
-
DOI 10.1016/j.neucom.2004.04.016, PII S0925231204003315
-
Bhattacharya, B. and Solomatine, D.: Neural networks and M5 model trees in modelling water level-discharge relationship, Neurocomputing, 63, 381-396, 2005. (Pubitemid 40103871)
-
(2005)
Neurocomputing
, vol.63
, Issue.SPEC. ISS.
, pp. 381-396
-
-
Bhattacharya, B.1
Solomatine, D.P.2
-
6
-
-
29544433143
-
-
Wiley, New York, USA
-
Box, G. E. P., Hunter, J. S., and Hunter,W. G.: Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition, Wiley, New York, USA, 2005.
-
(2005)
Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition
-
-
Box, G.E.P.1
Hunter, J.S.2
Hunterw, G.3
-
7
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123-140, 1996. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
0035478854
-
Random Forests
-
Breiman, L.: Random forests, Mach. Learn., 45, 5-32, 2001.
-
(2001)
Mach. Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
0003802343
-
-
Wadsworth&Brooks, Pacific Grove, CA
-
Breiman, L., Friedman, J., Olsen, R., and Stone, C.: Classification and Regression Trees, Wadsworth&Brooks, Pacific Grove, CA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olsen, R.3
Stone, C.4
-
10
-
-
77956510727
-
Tree-based reinforcement learning for optimal water reservoir operation
-
doi:10.1029/2009WR008898
-
Castelletti, A., Galelli, S., Restelli, M., and Soncini-Sessa, R.: Tree-based reinforcement learning for optimal water reservoir operation, Water Resour. Res., 46, W09507, doi:10.1029/2009WR008898, 2010.
-
(2010)
Water Resour. Res
, vol.46
-
-
Castelletti, A.1
Galelli, S.2
Restelli, M.3
Soncini-Sessa, R.4
-
11
-
-
33646403804
-
PERT-Perfect Random Trees Ensembles
-
Cutler, A. and Guohua, Z.: PERT-Perfect Random Trees Ensembles, Comp. Sci. Stat., 33, 490-497, 2001.
-
(2001)
Comp. Sci. Stat.
, vol.33
, pp. 490-497
-
-
Cutler, A.1
Guohua, Z.2
-
12
-
-
0034136344
-
Inductive learning approaches to rainfall-runoff modelling
-
Dawson, C., Brown, M., and Wilby, R.: Inductive learning approaches to rainfall-runoff modelling, Int. J. Neural Syst., 10, 43-57, 2000.
-
(2000)
Int. J. Neural Syst
, vol.10
, pp. 43-57
-
-
Dawson, C.1
Brown, M.2
Wilby, R.3
-
13
-
-
80053403826
-
Ensemble methods in machine learning
-
Dietterich, T.: Ensemble methods in machine learning, Lect. Notes Comput Sc., 1857, 1-15, 2000.
-
(2000)
Lect. Notes Comput Sc.
, vol.1857
, pp. 1-15
-
-
Dietterich, T.1
-
14
-
-
77958183722
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 1: Concepts and methodology
-
doi:10.5194/hess-14-1931-2010
-
Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P.: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 1: Concepts and methodology, Hydrol. Earth Syst. Sci., 14, 1931-1941, doi:10.5194/hess-14-1931-2010, 2010a.
-
(2010)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 1931-1941
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
15
-
-
77958199170
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 2: Application
-
doi:10.5194/hess-14-1943-2010
-
Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P.: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 2: Application, Hydrol. Earth Syst. Sci., 14, 1943-1961, doi:10.5194/hess-14-1943-2010, 2011b.
-
(2011)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 1943-1961
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
16
-
-
84871477245
-
Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms
-
Erdal, H. and Karakurt, O.: Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms, J. Hydrol., 477, 119-128, 2013.
-
(2013)
J. Hydrol
, vol.477
, pp. 119-128
-
-
Erdal, H.1
Karakurt, O.2
-
17
-
-
80052251261
-
Variable selection for dynamic treatment regimes: A reinforcement learning approach
-
30 June-4 July 2008, Villeneuve d'Ascq, France
-
Fonteneau, R., Wehenkel, L., and Ernst, D.: Variable selection for dynamic treatment regimes: a reinforcement learning approach, in: Proceedings of the EuropeanWorkshop on Reinforcement Learning, 30 June-4 July 2008, Villeneuve d'Ascq, France, 2008.
-
(2008)
Proceedings of the EuropeanWorkshop on Reinforcement Learning
-
-
Fonteneau, R.1
Wehenkel, L.2
Ernst, D.3
-
18
-
-
0002978642
-
Experiments with a new boosting algorithm in
-
3-6 July 1996, Bari, Italy
-
Freund, Y. and Schapire, R.: Experiments with a new boosting algorithm, in: Proceedings of 13th International Conference on Mach. Learn., 3-6 July 1996, Bari, Italy, 148-146, 1996.
-
(1996)
Proceedings of 13th International Conference on Mach. Learn
, pp. 148-146
-
-
Freund, Y.1
Schapire, R.2
-
19
-
-
84896309162
-
Optimal real-time operation of multi-purpose urban reservoirs: A case study in Singapore
-
Pl.-ASCE doi:10.1061/(ASCE)WR.1943-5452.0000342 press
-
Galelli, S., Goedbloed, A., Schwanenberg, D., and van Overloop, D.: Optimal real-time operation of multi-purpose urban reservoirs: a case study in Singapore, J. Water Res. Pl.-ASCE, doi:10.1061/(ASCE)WR.1943-5452.0000342, in press, 2013.
-
(2013)
J. Water Res.
-
-
Galelli, S.1
Goedbloed, A.2
Schwanenberg, D.3
Van Overloop, D.4
-
20
-
-
2442476951
-
-
Ph.D. thesis, University of Lìege, Lìege, Belgium
-
Geurts, P.: Contributions to Decision Tree Induction: Bias/Variance Tradeoff and Time Series Classification, Ph.D. thesis, University of Lìege, Lìege, Belgium, 2002.
-
(2002)
Contributions to Decision Tree Induction: Bias/Variance Tradeoff and Time Series Classification
-
-
Geurts, P.1
-
21
-
-
33646430006
-
Extremely randomized trees
-
Geurts, P., Ernst, D., and Wehenkel, L.: Extremely randomized trees, Mach. Learn., 63, 3-42, 2006.
-
(2006)
Mach. Learn
, vol.63
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
22
-
-
62349086526
-
Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm
-
Hejazi, M. and Cai, X.: Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm, Adv. Water Resour., 32, 582-593, 2009.
-
(2009)
Adv. Water Resour
, vol.32
, pp. 582-593
-
-
Hejazi, M.1
Cai, X.2
-
23
-
-
85057943047
-
Random decision forests
-
ontreal, Quebec
-
Ho, T.: Random decision forests, in: Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 1, ontreal, Quebec, 278-282, 1995.
-
(1995)
Proceedings of the Third International Conference on Document Analysis and Recognition
, vol.1
, pp. 278-282
-
-
Ho, T.1
-
25
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
DOI 10.1029/95WR01955
-
Hsu, K., Gupta, H., and Sorooshian, S.: Artificial neural-network modeling of the rainfall-runoff process, Water Resour. Res., 31, 2517-2530, 1995. (Pubitemid 26475080)
-
(1995)
Water Resources Research
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Kuo-Lin Hsu1
Gupta, H.V.2
Sorooshian, S.3
-
26
-
-
17044442585
-
Développement d'un modele pluie-débit a base de logique floue
-
Hundecha, Y., Bardossy, A., and Theisen, H.: Development of a fuzzy logic-based rainfall-runoff model, Hydrolog. Sci. J., 46, 363-376, 2001. (Pubitemid 32550644)
-
(2001)
Hydrological Sciences Journal
, vol.46
, Issue.3
, pp. 363-376
-
-
Hundecha, Y.1
Bardossy, A.2
Theisen, H.-W.3
-
27
-
-
84867272604
-
A new measure for assessing the efficiency of hydrological data-driven forecasting models
-
Hwang, S., Ham, D., and Kim, J.: A new measure for assessing the efficiency of hydrological data-driven forecasting models, Hydrolog. Sci. J., 57, 1-18, 2012.
-
(2012)
Hydrolog. Sci. J.
, vol.57
, pp. 1-18
-
-
Hwang, S.1
Ham, D.2
Kim, J.3
-
28
-
-
0001815269
-
Constructing optimal binary decision trees in NP-Complete
-
Hyafil, L. and Rivest, R.: Constructing optimal binary decision trees in NP-Complete, Inform. Process. Lett., 5, 15-17, 1976.
-
(1976)
Inform. Process. Lett.
, vol.5
, pp. 15-17
-
-
Hyafil, L.1
Rivest, R.2
-
29
-
-
4544294829
-
Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis and modeling?
-
DOI 10.1029/2004WR003094
-
Iorgulescu, I. and Beven, K.: Nonparametric direct mapping of rainfall-runoff relationships: an alternative approach to data analysis and modeling?, Water Resour. Res., 40, W08403, doi:10.1029/2004WR003094, 2004. (Pubitemid 39247130)
-
(2004)
Water Resources Research
, vol.40
, Issue.8
-
-
Iorgulescu, I.1
Beven, K.J.2
-
30
-
-
0027790160
-
How much complexity is warranted in a rainfall-runoff model
-
Jakeman, A. and Hornberger, G.: How much complexity is warranted in a rainfall-runoff model, Water Resour. Res., 29, 2637-2649, 1993.
-
(1993)
Water Resour. Res
, vol.29
, pp. 2637-2649
-
-
Jakeman, A.1
Hornberger, G.2
-
31
-
-
80054975308
-
M5PrimeLab-M5' Regression Tree and Model Tree Toolbox for Matlab/Octave
-
Technical Report ver. 1.0.1
-
Jekabsons, G.: M5PrimeLab-M5' Regression Tree and Model Tree Toolbox for Matlab/Octave, Technical Report ver. 1.0.1, Faculty of Computer Science and Information Technology-Riga Technical University, Riga, Latvia, 2010.
-
(2010)
Faculty of Computer Science and Information Technology-Riga, Technical University, Riga, Latvia
-
-
Jekabsons, G.1
-
32
-
-
35048840898
-
Ensemble feature ranking
-
Jong, K., Mary, J., Cornúejols, A., Marchiori, E., and Sebag, M.: Ensemble feature ranking, in: Knowledge Discovery in Databases, Springer, 267-278, 2004. (Pubitemid 39740409)
-
(2004)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3202
, pp. 267-278
-
-
Jong, K.1
Mary, J.2
Cornuejols, A.3
Marchiori, E.4
Sebag, M.5
-
33
-
-
79960127215
-
Effect of pruning and smoothing while using M5 model tree technique for reservoir inflow prediction
-
Jothiprakash, V. and Kote, A.: Effect of pruning and smoothing while using M5 model tree technique for reservoir inflow prediction, J. Hydrol. Eng., 16, 563-574, 2011.
-
(2011)
J. Hydrol. Eng.
, vol.16
, pp. 563-574
-
-
Jothiprakash, V.1
Kote, A.2
-
34
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva, L. and Whitaker, C.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Mach. Learn., 51, 181-207, 2003.
-
(2003)
Mach. Learn
, vol.51
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.2
-
35
-
-
33646560948
-
A comparison of low flow regionalisation methods-catchment grouping
-
DOI 10.1016/j.jhydrol.2005.09.001, PII S002216940500435X
-
Laaha, G. and Bl̈oschl, G.: A comparison of low flow regionalisation methods-catchment grouping, J. Hydrol., 323, 193-214, 2006. (Pubitemid 43728887)
-
(2006)
Journal of Hydrology
, vol.323
, Issue.1-4
, pp. 193-214
-
-
Laaha, G.1
Bloschl, G.2
-
36
-
-
33746830757
-
Using support vector machines for long-term discharge prediction
-
DOI 10.1623/hysj.51.4.599
-
Lin, J.-Y., Cheng, C.-T., and Chau, K.-W.: Using support vector machines for long-term discharge prediction, Hydrolog. Sci. J., 51, 599-612, 2006. (Pubitemid 44178040)
-
(2006)
Hydrological Sciences Journal
, vol.51
, Issue.4
, pp. 599-612
-
-
Lin, J.-Y.1
Cheng, C.-T.2
Chau, K.-W.3
-
37
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
-
DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
-
Maier, H. and Dandy, G.: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environ. Model. Softw., 15, 101-124, 2000. (Pubitemid 30018318)
-
(2000)
Environmental Modelling and Software
, vol.15
, Issue.1
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
38
-
-
0001495905
-
Learning with continuous classes
-
16-18 November, Hobart, Australia
-
Quinlan, J.: Learning with continuous classes, in: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, 16-18 November, Hobart, Australia, 343-348, 1992.
-
(1992)
Proceedings of the 5th Australian Joint Conference on Artificial Intelligence
, pp. 343-348
-
-
Quinlan, J.1
-
39
-
-
0029659805
-
Estimation and validation of contemporaneous PARMA models for streamflow simulation
-
Rasmussen, P., Salas, J., Fagherazzi, L., Rassam, J., and Bobee, B.: Estimation and validation of contemporaneous PARMA models for streamflow simulation, Water Resour. Res., 32, 3151-3160, 1996.
-
(1996)
Water Resour. Res
, vol.32
, pp. 3151-3160
-
-
Rasmussen, P.1
Salas, J.2
Fagherazzi, L.3
Rassam, J.4
Bobee, B.5
-
40
-
-
47049100818
-
A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting
-
Romanowicz, R., Young, P., Beven, K., and Pappenberger, F.: A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting, Adv. Water Resour., 31, 1048-1056, 2008.
-
(2008)
Adv. Water Resour
, vol.31
, pp. 1048-1056
-
-
Romanowicz, R.1
Young, P.2
Beven, K.3
Pappenberger, F.4
-
41
-
-
79961221000
-
Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France
-
doi:10.5194/hess-15-2421-2011
-
Sauquet, E. and Catalogne, C.: Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France, Hydrol. Earth Syst. Sci., 15, 2421-2435, doi:10.5194/hess-15-2421-2011, 2011.
-
(2011)
Hydrol. Earth Syst. Sci
, vol.15
, pp. 2421-2435
-
-
Sauquet, E.1
Catalogne, C.2
-
42
-
-
69249099866
-
Visualisation of hidden neuron behaviour in a neural network rainfall-runoff model
-
edited by: Abrahart, R., See, L., and Solomatine, D Springer, Berlin, Heidelberg
-
See, L., Jain, A., Dawson, C., and Abrahart, R.: Visualisation of hidden neuron behaviour in a neural network rainfall-runoff model, in: Practical Hydroinformatics, vol. 68 of Water Science and Technology Library, edited by: Abrahart, R., See, L., and Solomatine, D., Springer, Berlin, Heidelberg, 87-99, 2008.
-
(2008)
Practical Hydroinformatics of Water Science and Technology Library
, vol.68
, pp. 87-99
-
-
See, L.1
Jain, A.2
Dawson, C.3
Abrahart, R.4
-
43
-
-
0023360150
-
Use of RORB and SWMM models to an urban catchment in Singapore
-
Selvalingam, S., Liong, S., and Manoharan, P.: Use of RORB and SWMM models to an urban catchment in Singapore, Adv. Water Resour., 10, 78-86, 1987.
-
(1987)
Adv. Water Resour
, vol.10
, pp. 78-86
-
-
Selvalingam, S.1
Liong, S.2
Manoharan, P.3
-
44
-
-
0036698155
-
Comparison of different forms of the Multi-layer Feed-Forward Neural Network method used for river flow forecasting
-
doi:10.5194/hess-6-671-2002
-
Shamseldin, A. Y., Nasr, A. E., and O'Connor, K. M.: Comparison of different forms of the Multi-layer Feed-Forward Neural Network method used for river flow forecasting, Hydrol. Earth Syst. Sci., 6, 671-684, doi:10.5194/hess-6-671-2002, 2002.
-
(2002)
Hydrol. Earth Syst. Sci.
, vol.6
, pp. 671-684
-
-
Shamseldin, A.Y.1
Nasr, A.E.2
O'Connor, K.M.3
-
45
-
-
66949175955
-
Predictive mapping of the natural flow regimes of France
-
Snelder, T., Lamouroux, N., Leathwick, J., Pella, H., Sauquet, E., and Shankar, U.: Predictive mapping of the natural flow regimes of France, J. Hydrol., 373, 57-67, 2009.
-
(2009)
J. Hydrol
, vol.373
, pp. 57-67
-
-
Snelder, T.1
Lamouroux, N.2
Leathwick, J.3
Pella, H.4
Sauquet, E.5
Shankar, U.6
-
46
-
-
0037565156
-
Model trees as an alternative to neural networks in rainfall-runoff modelling
-
Solomatine, D. and Dulal, K.: Model trees as an alternative to neural networks in rainfall-runoff modelling, Hydrolog. Sci. J., 48, 399-411, 2003.
-
(2003)
Hydrolog. Sci. J.
, vol.48
, pp. 399-411
-
-
Solomatine, D.1
Dulal, K.2
-
47
-
-
39449089195
-
Data-driven modelling: Some past experiences and new approaches
-
Solomatine, D. and Ostfeld, A.: Data-driven modelling: some past experiences and new approaches, J. Hydroinform., 10, 3-22, 2008.
-
(2008)
J. Hydroinform
, vol.10
, pp. 3-22
-
-
Solomatine, D.1
Ostfeld, A.2
-
48
-
-
10244261532
-
M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China
-
DOI 10.1061/(ASCE)1084-0699(2004)9:6(491)
-
Solomatine, D. and Xue, Y.: M5 model trees compared to neural networks: application to flood forecasting in the upper reach of the Huai River in China, J. Hydrol. Eng., 9, 491-501, 2004. (Pubitemid 39622310)
-
(2004)
Journal of Hydrologic Engineering
, vol.9
, Issue.6
, pp. 491-501
-
-
Solomatine, D.P.1
Xue, Y.2
-
49
-
-
34249775216
-
Development of a low-flow forecasting model using the M5 machine learning method
-
DOI 10.1623/hysj.52.3.466
-
Stravs, L. and Brilly, M.: Development of a low-flow forecasting model using the M5 machine learning method, Hydrolog. Sci. J., 52, 466-477, 2007. (Pubitemid 46851534)
-
(2007)
Hydrological Sciences Journal
, vol.52
, Issue.3
, pp. 466-477
-
-
Stravs, L.1
Brilly, M.2
-
50
-
-
77957694993
-
Low flows regionalization in North-Western Italy
-
Vezza, P., Comoglio, C., Rosso, M., and Viglione, A.: low flows regionalization in North-Western Italy, Water Resour. Manage., 24, 4049-4074, 2010.
-
(2010)
Water Resour. Manage
, vol.24
, pp. 4049-4074
-
-
Vezza, P.1
Comoglio, C.2
Rosso, M.3
Viglione, A.4
-
51
-
-
0001717058
-
Induction of model trees for predicting continuous classes in
-
Learn., Prague, Czech Republic
-
Wang, Y. and Witten, I.: Induction of model trees for predicting continuous classes, in: Proceedings of the European Conference on Mach. Learn., Prague, Czech Republic, 128-137, 1997.
-
(1997)
Proceedings of the European Conference on Mach
, pp. 128-137
-
-
Wang, Y.1
Witten, I.2
-
53
-
-
80053175870
-
Data mining methods for hydroclimatic forecasting
-
Wei,W. andWatkins Jr., D.: Data mining methods for hydroclimatic forecasting, Adv. Water Resour., 34, 1390-1400, 2011.
-
(2011)
Adv. Water Resour.
, vol.34
, pp. 1390-1400
-
-
Wei, W.1
Watkins, Jr.D.2
-
54
-
-
0002919951
-
-
John Wiley, Chichester
-
Wheater, H., Jakeman, A., and Beven, K.: Progress and Directions in Rainfall-Runoff Modelling, John Wiley, Chichester, 101-132, 1993.
-
(1993)
Progress and Directions in Rainfall-Runoff Modelling
, pp. 101-132
-
-
Wheater, H.1
Jakeman, A.2
Beven, K.3
-
55
-
-
77449124198
-
-
The World Bank-Environment and Social Development Department-East Asia and Pacific Region, Washington, DC available at last access: 15 January 2013
-
Xie, J.: Dealing with Water Scarcity in Singapore: Institutions, Strategies, and Enforcement, China: Addressing Water Scarcity Background Paper No. 4, The World Bank-Environment and Social Development Department-East Asia and Pacific Region, Washington, DC, available at: http://www.worldbank.org/ eapenvironment/ChinaWaterAAA (last access: 15 January 2013), 2006.
-
(2006)
Dealing with Water Scarcity in Singapore: Institutions, Strategies, and Enforcement, China: Addressing Water Scarcity Background Paper No. 4
-
-
Xie, J.1
-
56
-
-
59049084561
-
Data-based mechanistic and top-down modelling
-
Lugano, Suisse
-
Young, P.: Data-based mechanistic and top-down modelling, in: Proceedings of the First Biennial Meeting of the International Environmental Modelling&Software Society, Vol. I, Lugano, Suisse, 363-374, 2002.
-
(2002)
Proceedings of the First Biennial Meeting of the International Environmental Modelling&Software Society
, vol.1
, pp. 363-374
-
-
Young, P.1
-
57
-
-
0042732130
-
Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale
-
DOI 10.1002/hyp.1328
-
Young, P.: Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale, Hydrol. Process., 17, 2195-2217, 2003. (Pubitemid 37106051)
-
(2003)
Hydrological Processes
, vol.17
, Issue.11
, pp. 2195-2217
-
-
Young, P.1
-
59
-
-
84876567143
-
Hypothetico-inductive data-based mechanistic modeling of hydrological systems
-
Young, P.: Hypothetico-inductive data-based mechanistic modeling of hydrological systems,Water Resour. Res., 49, 915-935, 2013.
-
(2013)
Water Resour Res
, vol.49
, pp. 915-935
-
-
Young, P.1
-
60
-
-
0028667417
-
Data-based mechanistic modelling and the rainfall-flow non-linearity
-
Young, P. and Beven, K.: Data-based mechanistic modeling and the rainfall-flow nonlinearity, Environmetrics, 3, 335-363, 1994. (Pubitemid 290128)
-
(1994)
Environmetrics
, vol.5
, Issue.3
, pp. 335-363
-
-
Young, P.C.1
Bevan, K.J.2
-
61
-
-
0030721451
-
Recent advances in the data-based modelling and analysis of hydrological systems
-
DOI 10.1016/S0273-1223(97)00465-4, PII S0273122397004654
-
Young, P., Jakeman, A., and Post, D.: Recent advances in the databased modelling and analysis of hydrological systems, Water Sci.Technol., 36, 99-116, 1997. (Pubitemid 27507422)
-
(1997)
Water Science and Technology
, vol.36
, Issue.5
, pp. 99-116
-
-
Young, P.C.1
Jakeman, A.J.2
Post, D.A.3
|