-
2
-
-
84898645712
-
Lipid droplet biogenesis
-
2 Wilfling, F., et al. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29 (2014), 39–45.
-
(2014)
Curr. Opin. Cell Biol.
, vol.29
, pp. 39-45
-
-
Wilfling, F.1
-
3
-
-
84961189674
-
Targeting fat: mechanisms of protein localization to lipid droplets
-
Published online March 16, 2016
-
3 Kory, N., et al. Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol., 2016, 10.1016/j.tcb.2016.02.007 Published online March 16, 2016.
-
(2016)
Trends Cell Biol.
-
-
Kory, N.1
-
4
-
-
84930655630
-
Expanding roles for lipid droplets
-
4 Welte, M.A., Expanding roles for lipid droplets. Curr. Biol. 25 (2015), R470–R481.
-
(2015)
Curr. Biol.
, vol.25
, pp. R470-R481
-
-
Welte, M.A.1
-
5
-
-
84863237087
-
Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets
-
5 Suzuki, M., et al. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol. Biol. Cell 23 (2012), 800–810.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 800-810
-
-
Suzuki, M.1
-
6
-
-
84883350018
-
Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets
-
6 Salloum, S., et al. Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog., 9, 2013, e1003513.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003513
-
-
Salloum, S.1
-
7
-
-
84873660610
-
Autophagy in human health and disease
-
7 Choi, A.M., et al. Autophagy in human health and disease. N. Engl. J. Med. 368 (2013), 651–662.
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 651-662
-
-
Choi, A.M.1
-
8
-
-
77951214016
-
Mammalian autophagy: core molecular machinery and signaling regulation
-
8 Yang, Z., Klionsky, D.J., Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22 (2010), 124–131.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 124-131
-
-
Yang, Z.1
Klionsky, D.J.2
-
9
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
9 Singh, R., et al. Autophagy regulates lipid metabolism. Nature 458 (2009), 1131–1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
-
10
-
-
84863229947
-
Loss of autophagy in hypothalamic POMC neurons impairs lipolysis
-
10 Kaushik, S., et al. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13 (2012), 258–265.
-
(2012)
EMBO Rep.
, vol.13
, pp. 258-265
-
-
Kaushik, S.1
-
11
-
-
79958030075
-
Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase
-
11 Ouimet, M., et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 13 (2011), 655–667.
-
(2011)
Cell Metab.
, vol.13
, pp. 655-667
-
-
Ouimet, M.1
-
12
-
-
84891791144
-
Autophagosomes contribute to intracellular lipid distribution in enterocytes
-
12 Khaldoun, S.A., et al. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol. Biol. Cell 25 (2014), 118–132.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 118-132
-
-
Khaldoun, S.A.1
-
13
-
-
84864884124
-
Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells
-
13 Kaini, R.R., et al. Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells. Prostate 72 (2012), 1412–1422.
-
(2012)
Prostate
, vol.72
, pp. 1412-1422
-
-
Kaini, R.R.1
-
14
-
-
84892536117
-
Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
-
14 van Zutphen, T., et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25 (2014), 290–301.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 290-301
-
-
van Zutphen, T.1
-
15
-
-
78751624556
-
Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection
-
15 Nguyen, L.N., et al. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genet. Biol. 48 (2011), 217–224.
-
(2011)
Fungal Genet. Biol.
, vol.48
, pp. 217-224
-
-
Nguyen, L.N.1
-
16
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
16 Liu, L., et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14 (2012), 177–185.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
-
17
-
-
84911934836
-
ARFGAP1 is dynamically associated with lipid droplets in hepatocytes
-
17 Gannon, J., et al. ARFGAP1 is dynamically associated with lipid droplets in hepatocytes. PLoS ONE, 9, 2014, e111309.
-
(2014)
PLoS ONE
, vol.9
, pp. e111309
-
-
Gannon, J.1
-
18
-
-
84862313783
-
The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans
-
18 Yang, L., et al. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J. Lipid Res. 53 (2012), 1245–1253.
-
(2012)
J. Lipid Res.
, vol.53
, pp. 1245-1253
-
-
Yang, L.1
-
19
-
-
84864818294
-
Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets
-
19 Zhang, P., et al. Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol. Cell. Proteomics 11 (2012), 317–328.
-
(2012)
Mol. Cell. Proteomics
, vol.11
, pp. 317-328
-
-
Zhang, P.1
-
20
-
-
8744267532
-
Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes
-
20 Brasaemle, D.L., et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279 (2004), 46835–46842.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 46835-46842
-
-
Brasaemle, D.L.1
-
21
-
-
0942287191
-
Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic
-
21 Liu, P., et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279 (2004), 3787–3792.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 3787-3792
-
-
Liu, P.1
-
22
-
-
68049105101
-
Rab GTPases as coordinators of vesicle traffic
-
22 Stenmark, H., Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10 (2009), 513–525.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 513-525
-
-
Stenmark, H.1
-
23
-
-
3242877218
-
Rab7 is required for the normal progression of the autophagic pathway in mammalian cells
-
23 Gutierrez, M.G., et al. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117 (2004), 2687–2697.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 2687-2697
-
-
Gutierrez, M.G.1
-
24
-
-
84929606449
-
The small GTPase Rab7 as a central regulator of hepatocellular lipophagy
-
24 Schroeder, B., et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61 (2015), 1896–1907.
-
(2015)
Hepatology
, vol.61
, pp. 1896-1907
-
-
Schroeder, B.1
-
25
-
-
84883028352
-
β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation
-
25 Lizaso, A., et al. β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 9 (2013), 1228–1243.
-
(2013)
Autophagy
, vol.9
, pp. 1228-1243
-
-
Lizaso, A.1
-
26
-
-
84979775189
-
Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase
-
26 Bouchez, I., et al. Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase. Biol Open 4 (2015), 764–775.
-
(2015)
Biol Open
, vol.4
, pp. 764-775
-
-
Bouchez, I.1
-
27
-
-
84901381389
-
The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17
-
27 Jiang, P., et al. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25 (2014), 1327–1337.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1327-1337
-
-
Jiang, P.1
-
28
-
-
84957827632
-
Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance
-
28 Liu, Y., et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci. Rep., 6, 2016, 20453.
-
(2016)
Sci. Rep.
, vol.6
, pp. 20453
-
-
Liu, Y.1
-
29
-
-
73449117508
-
Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice
-
29 Baerga, R., et al. Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5 (2009), 1118–1130.
-
(2009)
Autophagy
, vol.5
, pp. 1118-1130
-
-
Baerga, R.1
-
30
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
30 Singh, R., et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119 (2009), 3329–3339.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
-
31
-
-
84930182353
-
Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis
-
31 Kaushik, S., Cuervo, A.M., Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17 (2015), 759–770.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 759-770
-
-
Kaushik, S.1
Cuervo, A.M.2
-
32
-
-
84964495084
-
AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA
-
32 Kaushik, S., Cuervo, A.M., AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12 (2016), 432–438.
-
(2016)
Autophagy
, vol.12
, pp. 432-438
-
-
Kaushik, S.1
Cuervo, A.M.2
-
33
-
-
84913592131
-
Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation
-
33 Schneider, J.L., et al. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 20 (2014), 417–432.
-
(2014)
Cell Metab.
, vol.20
, pp. 417-432
-
-
Schneider, J.L.1
-
34
-
-
84955384729
-
Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver
-
34 Martinez-Lopez, N., et al. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab. 23 (2016), 113–127.
-
(2016)
Cell Metab.
, vol.23
, pp. 113-127
-
-
Martinez-Lopez, N.1
-
35
-
-
84896542255
-
Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis
-
35 Dupont, N., et al. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 24 (2014), 609–620.
-
(2014)
Curr. Biol.
, vol.24
, pp. 609-620
-
-
Dupont, N.1
-
36
-
-
84891748139
-
A current perspective of autophagosome biogenesis
-
36 Shibutani, S.T., Yoshimori, T., A current perspective of autophagosome biogenesis. Cell Res. 24 (2014), 58–68.
-
(2014)
Cell Res.
, vol.24
, pp. 58-68
-
-
Shibutani, S.T.1
Yoshimori, T.2
-
37
-
-
84939209368
-
Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis
-
37 Shpilka, T., et al. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 34 (2015), 2117–2131.
-
(2015)
EMBO J.
, vol.34
, pp. 2117-2131
-
-
Shpilka, T.1
-
38
-
-
84978924646
-
Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation
-
38 Velazquez, A.P., et al. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J. Cell Biol. 212 (2016), 621–631.
-
(2016)
J. Cell Biol.
, vol.212
, pp. 621-631
-
-
Velazquez, A.P.1
-
39
-
-
84864536869
-
Autophagy in alcohol-induced liver diseases
-
39 Dolganiuc, A., et al. Autophagy in alcohol-induced liver diseases. Alcohol. Clin. Exp. Res. 36 (2012), 1301–1308.
-
(2012)
Alcohol. Clin. Exp. Res.
, vol.36
, pp. 1301-1308
-
-
Dolganiuc, A.1
-
40
-
-
84952652160
-
Function of autophagy in nonalcoholic fatty liver disease
-
40 Czaja, M.J., Function of autophagy in nonalcoholic fatty liver disease. Dig. Dis. Sci. 61 (2016), 1304–1313.
-
(2016)
Dig. Dis. Sci.
, vol.61
, pp. 1304-1313
-
-
Czaja, M.J.1
-
41
-
-
84952927680
-
Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice
-
41 Chen, R., et al. Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice. Eur. J. Pharmacol. 770 (2016), 126–133.
-
(2016)
Eur. J. Pharmacol.
, vol.770
, pp. 126-133
-
-
Chen, R.1
-
42
-
-
84945119035
-
Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy
-
42 Ji, G., et al. Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy. Lipids Health Dis., 14, 2015, 134.
-
(2015)
Lipids Health Dis.
, vol.14
, pp. 134
-
-
Ji, G.1
-
43
-
-
84919781522
-
Autophagy regulates sphingolipid levels in the liver
-
43 Alexaki, A., et al. Autophagy regulates sphingolipid levels in the liver. J. Lipid Res. 55 (2014), 2521–2531.
-
(2014)
J. Lipid Res.
, vol.55
, pp. 2521-2531
-
-
Alexaki, A.1
-
44
-
-
33847332202
-
Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance
-
44 Holland, W.L., et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5 (2007), 167–179.
-
(2007)
Cell Metab.
, vol.5
, pp. 167-179
-
-
Holland, W.L.1
-
45
-
-
84860482342
-
A ceramide-centric view of insulin resistance
-
45 Chavez, J.A., Summers, S.A., A ceramide-centric view of insulin resistance. Cell Metab. 15 (2012), 585–594.
-
(2012)
Cell Metab.
, vol.15
, pp. 585-594
-
-
Chavez, J.A.1
Summers, S.A.2
-
46
-
-
84869005229
-
The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism
-
46 Xiong, X., et al. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J. Biol. Chem. 287 (2012), 39107–39114.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 39107-39114
-
-
Xiong, X.1
-
47
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
47 Settembre, C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15 (2013), 647–658.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 647-658
-
-
Settembre, C.1
-
48
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
48 Yang, L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11 (2010), 467–478.
-
(2010)
Cell Metab.
, vol.11
, pp. 467-478
-
-
Yang, L.1
-
49
-
-
84884763666
-
Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD
-
49 Ma, D., et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol. Endocrinol. 27 (2013), 1643–1654.
-
(2013)
Mol. Endocrinol.
, vol.27
, pp. 1643-1654
-
-
Ma, D.1
-
50
-
-
84872057896
-
Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
-
50 Kim, K.H., et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19 (2013), 83–92.
-
(2013)
Nat. Med.
, vol.19
, pp. 83-92
-
-
Kim, K.H.1
-
51
-
-
84925324049
-
Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
51 Rambold, A.S., et al. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32 (2015), 678–692.
-
(2015)
Dev. Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
-
52
-
-
78049467743
-
Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice
-
52 Ding, W.X., et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139 (2010), 1740–1752.
-
(2010)
Gastroenterology
, vol.139
, pp. 1740-1752
-
-
Ding, W.X.1
-
53
-
-
85012097747
-
Autophagy protects against CYP2E1/chronic ethanol-induced hepatotoxicity
-
53 Lu, Y., Cederbaum, A.I., Autophagy protects against CYP2E1/chronic ethanol-induced hepatotoxicity. Biomolecules 5 (2015), 2659–2674.
-
(2015)
Biomolecules
, vol.5
, pp. 2659-2674
-
-
Lu, Y.1
Cederbaum, A.I.2
-
54
-
-
77954230819
-
Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress
-
54 Wang, Y., et al. Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology 52 (2010), 266–277.
-
(2010)
Hepatology
, vol.52
, pp. 266-277
-
-
Wang, Y.1
-
55
-
-
77149158139
-
Future therapeutic directions in reverse cholesterol transport
-
55 Khera, A.V., Rader, D.J., Future therapeutic directions in reverse cholesterol transport. Curr. Atheroscler. Rep. 12 (2010), 73–81.
-
(2010)
Curr. Atheroscler. Rep.
, vol.12
, pp. 73-81
-
-
Khera, A.V.1
Rader, D.J.2
-
56
-
-
84955100816
-
Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice
-
56 Wang, L., et al. Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis., 7, 2016, e2055.
-
(2016)
Cell Death Dis.
, vol.7
, pp. e2055
-
-
Wang, L.1
-
57
-
-
84906319549
-
Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
-
57 Huang, S.C., et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15 (2014), 846–855.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 846-855
-
-
Huang, S.C.1
-
58
-
-
84927641793
-
Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization
-
58 Liu, K., et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 11 (2015), 271–284.
-
(2015)
Autophagy
, vol.11
, pp. 271-284
-
-
Liu, K.1
-
59
-
-
84889663497
-
Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation
-
59 Xu, X., et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18 (2013), 816–830.
-
(2013)
Cell Metab.
, vol.18
, pp. 816-830
-
-
Xu, X.1
-
60
-
-
84962171692
-
Autophagy is dispensable for macrophage mediated lipid homeostasis in adipose tissue
-
60 Grijalva, A., et al. Autophagy is dispensable for macrophage mediated lipid homeostasis in adipose tissue. Diabetes 65 (2016), 967–980.
-
(2016)
Diabetes
, vol.65
, pp. 967-980
-
-
Grijalva, A.1
-
61
-
-
84859444880
-
Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues
-
61 Hernandez-Gea, V., et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142 (2012), 938–946.
-
(2012)
Gastroenterology
, vol.142
, pp. 938-946
-
-
Hernandez-Gea, V.1
-
62
-
-
81355161371
-
A role for autophagy during hepatic stellate cell activation
-
62 Thoen, L.F., et al. A role for autophagy during hepatic stellate cell activation. J. Hepatol. 55 (2011), 1353–1360.
-
(2011)
J. Hepatol.
, vol.55
, pp. 1353-1360
-
-
Thoen, L.F.1
|