메뉴 건너뛰기




Volumn 27, Issue 10, 2016, Pages 696-705

Regulation and Functions of Autophagic Lipolysis

Author keywords

autophagy; lipid droplet; lipophagy; liver; macrophage; perilipin

Indexed keywords

FAT DROPLET; LIPID; TRIACYLGLYCEROL LIPASE; PERILIPIN 1;

EID: 84977610757     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2016.06.003     Document Type: Review
Times cited : (106)

References (62)
  • 2
    • 84898645712 scopus 로고    scopus 로고
    • Lipid droplet biogenesis
    • 2 Wilfling, F., et al. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29 (2014), 39–45.
    • (2014) Curr. Opin. Cell Biol. , vol.29 , pp. 39-45
    • Wilfling, F.1
  • 3
    • 84961189674 scopus 로고    scopus 로고
    • Targeting fat: mechanisms of protein localization to lipid droplets
    • Published online March 16, 2016
    • 3 Kory, N., et al. Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol., 2016, 10.1016/j.tcb.2016.02.007 Published online March 16, 2016.
    • (2016) Trends Cell Biol.
    • Kory, N.1
  • 4
    • 84930655630 scopus 로고    scopus 로고
    • Expanding roles for lipid droplets
    • 4 Welte, M.A., Expanding roles for lipid droplets. Curr. Biol. 25 (2015), R470–R481.
    • (2015) Curr. Biol. , vol.25 , pp. R470-R481
    • Welte, M.A.1
  • 5
    • 84863237087 scopus 로고    scopus 로고
    • Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets
    • 5 Suzuki, M., et al. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol. Biol. Cell 23 (2012), 800–810.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 800-810
    • Suzuki, M.1
  • 6
    • 84883350018 scopus 로고    scopus 로고
    • Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets
    • 6 Salloum, S., et al. Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog., 9, 2013, e1003513.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003513
    • Salloum, S.1
  • 7
    • 84873660610 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • 7 Choi, A.M., et al. Autophagy in human health and disease. N. Engl. J. Med. 368 (2013), 651–662.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 651-662
    • Choi, A.M.1
  • 8
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: core molecular machinery and signaling regulation
    • 8 Yang, Z., Klionsky, D.J., Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22 (2010), 124–131.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 124-131
    • Yang, Z.1    Klionsky, D.J.2
  • 9
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • 9 Singh, R., et al. Autophagy regulates lipid metabolism. Nature 458 (2009), 1131–1135.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 10
    • 84863229947 scopus 로고    scopus 로고
    • Loss of autophagy in hypothalamic POMC neurons impairs lipolysis
    • 10 Kaushik, S., et al. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13 (2012), 258–265.
    • (2012) EMBO Rep. , vol.13 , pp. 258-265
    • Kaushik, S.1
  • 11
    • 79958030075 scopus 로고    scopus 로고
    • Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase
    • 11 Ouimet, M., et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 13 (2011), 655–667.
    • (2011) Cell Metab. , vol.13 , pp. 655-667
    • Ouimet, M.1
  • 12
    • 84891791144 scopus 로고    scopus 로고
    • Autophagosomes contribute to intracellular lipid distribution in enterocytes
    • 12 Khaldoun, S.A., et al. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol. Biol. Cell 25 (2014), 118–132.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 118-132
    • Khaldoun, S.A.1
  • 13
    • 84864884124 scopus 로고    scopus 로고
    • Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells
    • 13 Kaini, R.R., et al. Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells. Prostate 72 (2012), 1412–1422.
    • (2012) Prostate , vol.72 , pp. 1412-1422
    • Kaini, R.R.1
  • 14
    • 84892536117 scopus 로고    scopus 로고
    • Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
    • 14 van Zutphen, T., et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25 (2014), 290–301.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 290-301
    • van Zutphen, T.1
  • 15
    • 78751624556 scopus 로고    scopus 로고
    • Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection
    • 15 Nguyen, L.N., et al. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genet. Biol. 48 (2011), 217–224.
    • (2011) Fungal Genet. Biol. , vol.48 , pp. 217-224
    • Nguyen, L.N.1
  • 16
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • 16 Liu, L., et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14 (2012), 177–185.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 177-185
    • Liu, L.1
  • 17
    • 84911934836 scopus 로고    scopus 로고
    • ARFGAP1 is dynamically associated with lipid droplets in hepatocytes
    • 17 Gannon, J., et al. ARFGAP1 is dynamically associated with lipid droplets in hepatocytes. PLoS ONE, 9, 2014, e111309.
    • (2014) PLoS ONE , vol.9 , pp. e111309
    • Gannon, J.1
  • 18
    • 84862313783 scopus 로고    scopus 로고
    • The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans
    • 18 Yang, L., et al. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J. Lipid Res. 53 (2012), 1245–1253.
    • (2012) J. Lipid Res. , vol.53 , pp. 1245-1253
    • Yang, L.1
  • 19
    • 84864818294 scopus 로고    scopus 로고
    • Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets
    • 19 Zhang, P., et al. Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol. Cell. Proteomics 11 (2012), 317–328.
    • (2012) Mol. Cell. Proteomics , vol.11 , pp. 317-328
    • Zhang, P.1
  • 20
    • 8744267532 scopus 로고    scopus 로고
    • Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes
    • 20 Brasaemle, D.L., et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279 (2004), 46835–46842.
    • (2004) J. Biol. Chem. , vol.279 , pp. 46835-46842
    • Brasaemle, D.L.1
  • 21
    • 0942287191 scopus 로고    scopus 로고
    • Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic
    • 21 Liu, P., et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279 (2004), 3787–3792.
    • (2004) J. Biol. Chem. , vol.279 , pp. 3787-3792
    • Liu, P.1
  • 22
    • 68049105101 scopus 로고    scopus 로고
    • Rab GTPases as coordinators of vesicle traffic
    • 22 Stenmark, H., Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10 (2009), 513–525.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 513-525
    • Stenmark, H.1
  • 23
    • 3242877218 scopus 로고    scopus 로고
    • Rab7 is required for the normal progression of the autophagic pathway in mammalian cells
    • 23 Gutierrez, M.G., et al. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117 (2004), 2687–2697.
    • (2004) J. Cell Sci. , vol.117 , pp. 2687-2697
    • Gutierrez, M.G.1
  • 24
    • 84929606449 scopus 로고    scopus 로고
    • The small GTPase Rab7 as a central regulator of hepatocellular lipophagy
    • 24 Schroeder, B., et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61 (2015), 1896–1907.
    • (2015) Hepatology , vol.61 , pp. 1896-1907
    • Schroeder, B.1
  • 25
    • 84883028352 scopus 로고    scopus 로고
    • β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation
    • 25 Lizaso, A., et al. β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 9 (2013), 1228–1243.
    • (2013) Autophagy , vol.9 , pp. 1228-1243
    • Lizaso, A.1
  • 26
    • 84979775189 scopus 로고    scopus 로고
    • Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase
    • 26 Bouchez, I., et al. Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase. Biol Open 4 (2015), 764–775.
    • (2015) Biol Open , vol.4 , pp. 764-775
    • Bouchez, I.1
  • 27
    • 84901381389 scopus 로고    scopus 로고
    • The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17
    • 27 Jiang, P., et al. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25 (2014), 1327–1337.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 1327-1337
    • Jiang, P.1
  • 28
    • 84957827632 scopus 로고    scopus 로고
    • Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance
    • 28 Liu, Y., et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci. Rep., 6, 2016, 20453.
    • (2016) Sci. Rep. , vol.6 , pp. 20453
    • Liu, Y.1
  • 29
    • 73449117508 scopus 로고    scopus 로고
    • Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice
    • 29 Baerga, R., et al. Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5 (2009), 1118–1130.
    • (2009) Autophagy , vol.5 , pp. 1118-1130
    • Baerga, R.1
  • 30
    • 70449448312 scopus 로고    scopus 로고
    • Autophagy regulates adipose mass and differentiation in mice
    • 30 Singh, R., et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119 (2009), 3329–3339.
    • (2009) J. Clin. Invest. , vol.119 , pp. 3329-3339
    • Singh, R.1
  • 31
    • 84930182353 scopus 로고    scopus 로고
    • Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis
    • 31 Kaushik, S., Cuervo, A.M., Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17 (2015), 759–770.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 759-770
    • Kaushik, S.1    Cuervo, A.M.2
  • 32
    • 84964495084 scopus 로고    scopus 로고
    • AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA
    • 32 Kaushik, S., Cuervo, A.M., AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12 (2016), 432–438.
    • (2016) Autophagy , vol.12 , pp. 432-438
    • Kaushik, S.1    Cuervo, A.M.2
  • 33
    • 84913592131 scopus 로고    scopus 로고
    • Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation
    • 33 Schneider, J.L., et al. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 20 (2014), 417–432.
    • (2014) Cell Metab. , vol.20 , pp. 417-432
    • Schneider, J.L.1
  • 34
    • 84955384729 scopus 로고    scopus 로고
    • Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver
    • 34 Martinez-Lopez, N., et al. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab. 23 (2016), 113–127.
    • (2016) Cell Metab. , vol.23 , pp. 113-127
    • Martinez-Lopez, N.1
  • 35
    • 84896542255 scopus 로고    scopus 로고
    • Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis
    • 35 Dupont, N., et al. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 24 (2014), 609–620.
    • (2014) Curr. Biol. , vol.24 , pp. 609-620
    • Dupont, N.1
  • 36
    • 84891748139 scopus 로고    scopus 로고
    • A current perspective of autophagosome biogenesis
    • 36 Shibutani, S.T., Yoshimori, T., A current perspective of autophagosome biogenesis. Cell Res. 24 (2014), 58–68.
    • (2014) Cell Res. , vol.24 , pp. 58-68
    • Shibutani, S.T.1    Yoshimori, T.2
  • 37
    • 84939209368 scopus 로고    scopus 로고
    • Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis
    • 37 Shpilka, T., et al. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 34 (2015), 2117–2131.
    • (2015) EMBO J. , vol.34 , pp. 2117-2131
    • Shpilka, T.1
  • 38
    • 84978924646 scopus 로고    scopus 로고
    • Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation
    • 38 Velazquez, A.P., et al. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J. Cell Biol. 212 (2016), 621–631.
    • (2016) J. Cell Biol. , vol.212 , pp. 621-631
    • Velazquez, A.P.1
  • 39
    • 84864536869 scopus 로고    scopus 로고
    • Autophagy in alcohol-induced liver diseases
    • 39 Dolganiuc, A., et al. Autophagy in alcohol-induced liver diseases. Alcohol. Clin. Exp. Res. 36 (2012), 1301–1308.
    • (2012) Alcohol. Clin. Exp. Res. , vol.36 , pp. 1301-1308
    • Dolganiuc, A.1
  • 40
    • 84952652160 scopus 로고    scopus 로고
    • Function of autophagy in nonalcoholic fatty liver disease
    • 40 Czaja, M.J., Function of autophagy in nonalcoholic fatty liver disease. Dig. Dis. Sci. 61 (2016), 1304–1313.
    • (2016) Dig. Dis. Sci. , vol.61 , pp. 1304-1313
    • Czaja, M.J.1
  • 41
    • 84952927680 scopus 로고    scopus 로고
    • Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice
    • 41 Chen, R., et al. Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice. Eur. J. Pharmacol. 770 (2016), 126–133.
    • (2016) Eur. J. Pharmacol. , vol.770 , pp. 126-133
    • Chen, R.1
  • 42
    • 84945119035 scopus 로고    scopus 로고
    • Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy
    • 42 Ji, G., et al. Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy. Lipids Health Dis., 14, 2015, 134.
    • (2015) Lipids Health Dis. , vol.14 , pp. 134
    • Ji, G.1
  • 43
    • 84919781522 scopus 로고    scopus 로고
    • Autophagy regulates sphingolipid levels in the liver
    • 43 Alexaki, A., et al. Autophagy regulates sphingolipid levels in the liver. J. Lipid Res. 55 (2014), 2521–2531.
    • (2014) J. Lipid Res. , vol.55 , pp. 2521-2531
    • Alexaki, A.1
  • 44
    • 33847332202 scopus 로고    scopus 로고
    • Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance
    • 44 Holland, W.L., et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5 (2007), 167–179.
    • (2007) Cell Metab. , vol.5 , pp. 167-179
    • Holland, W.L.1
  • 45
    • 84860482342 scopus 로고    scopus 로고
    • A ceramide-centric view of insulin resistance
    • 45 Chavez, J.A., Summers, S.A., A ceramide-centric view of insulin resistance. Cell Metab. 15 (2012), 585–594.
    • (2012) Cell Metab. , vol.15 , pp. 585-594
    • Chavez, J.A.1    Summers, S.A.2
  • 46
    • 84869005229 scopus 로고    scopus 로고
    • The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism
    • 46 Xiong, X., et al. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J. Biol. Chem. 287 (2012), 39107–39114.
    • (2012) J. Biol. Chem. , vol.287 , pp. 39107-39114
    • Xiong, X.1
  • 47
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • 47 Settembre, C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15 (2013), 647–658.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 647-658
    • Settembre, C.1
  • 48
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • 48 Yang, L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11 (2010), 467–478.
    • (2010) Cell Metab. , vol.11 , pp. 467-478
    • Yang, L.1
  • 49
    • 84884763666 scopus 로고    scopus 로고
    • Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD
    • 49 Ma, D., et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol. Endocrinol. 27 (2013), 1643–1654.
    • (2013) Mol. Endocrinol. , vol.27 , pp. 1643-1654
    • Ma, D.1
  • 50
    • 84872057896 scopus 로고    scopus 로고
    • Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
    • 50 Kim, K.H., et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19 (2013), 83–92.
    • (2013) Nat. Med. , vol.19 , pp. 83-92
    • Kim, K.H.1
  • 51
    • 84925324049 scopus 로고    scopus 로고
    • Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
    • 51 Rambold, A.S., et al. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32 (2015), 678–692.
    • (2015) Dev. Cell , vol.32 , pp. 678-692
    • Rambold, A.S.1
  • 52
    • 78049467743 scopus 로고    scopus 로고
    • Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice
    • 52 Ding, W.X., et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139 (2010), 1740–1752.
    • (2010) Gastroenterology , vol.139 , pp. 1740-1752
    • Ding, W.X.1
  • 53
    • 85012097747 scopus 로고    scopus 로고
    • Autophagy protects against CYP2E1/chronic ethanol-induced hepatotoxicity
    • 53 Lu, Y., Cederbaum, A.I., Autophagy protects against CYP2E1/chronic ethanol-induced hepatotoxicity. Biomolecules 5 (2015), 2659–2674.
    • (2015) Biomolecules , vol.5 , pp. 2659-2674
    • Lu, Y.1    Cederbaum, A.I.2
  • 54
    • 77954230819 scopus 로고    scopus 로고
    • Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress
    • 54 Wang, Y., et al. Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology 52 (2010), 266–277.
    • (2010) Hepatology , vol.52 , pp. 266-277
    • Wang, Y.1
  • 55
    • 77149158139 scopus 로고    scopus 로고
    • Future therapeutic directions in reverse cholesterol transport
    • 55 Khera, A.V., Rader, D.J., Future therapeutic directions in reverse cholesterol transport. Curr. Atheroscler. Rep. 12 (2010), 73–81.
    • (2010) Curr. Atheroscler. Rep. , vol.12 , pp. 73-81
    • Khera, A.V.1    Rader, D.J.2
  • 56
    • 84955100816 scopus 로고    scopus 로고
    • Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice
    • 56 Wang, L., et al. Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis., 7, 2016, e2055.
    • (2016) Cell Death Dis. , vol.7 , pp. e2055
    • Wang, L.1
  • 57
    • 84906319549 scopus 로고    scopus 로고
    • Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
    • 57 Huang, S.C., et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15 (2014), 846–855.
    • (2014) Nat. Immunol. , vol.15 , pp. 846-855
    • Huang, S.C.1
  • 58
    • 84927641793 scopus 로고    scopus 로고
    • Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization
    • 58 Liu, K., et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 11 (2015), 271–284.
    • (2015) Autophagy , vol.11 , pp. 271-284
    • Liu, K.1
  • 59
    • 84889663497 scopus 로고    scopus 로고
    • Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation
    • 59 Xu, X., et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18 (2013), 816–830.
    • (2013) Cell Metab. , vol.18 , pp. 816-830
    • Xu, X.1
  • 60
    • 84962171692 scopus 로고    scopus 로고
    • Autophagy is dispensable for macrophage mediated lipid homeostasis in adipose tissue
    • 60 Grijalva, A., et al. Autophagy is dispensable for macrophage mediated lipid homeostasis in adipose tissue. Diabetes 65 (2016), 967–980.
    • (2016) Diabetes , vol.65 , pp. 967-980
    • Grijalva, A.1
  • 61
    • 84859444880 scopus 로고    scopus 로고
    • Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues
    • 61 Hernandez-Gea, V., et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142 (2012), 938–946.
    • (2012) Gastroenterology , vol.142 , pp. 938-946
    • Hernandez-Gea, V.1
  • 62
    • 81355161371 scopus 로고    scopus 로고
    • A role for autophagy during hepatic stellate cell activation
    • 62 Thoen, L.F., et al. A role for autophagy during hepatic stellate cell activation. J. Hepatol. 55 (2011), 1353–1360.
    • (2011) J. Hepatol. , vol.55 , pp. 1353-1360
    • Thoen, L.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.