-
1
-
-
84888367601
-
The biophysics and cell biology of lipid droplets
-
Thiam A.R., et al. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 2013, 14:775-786.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 775-786
-
-
Thiam, A.R.1
-
2
-
-
84861913952
-
Lipid droplets and cellular lipid metabolism
-
Walther T.C., Farese R.V. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 2012, 81:687-714.
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 687-714
-
-
Walther, T.C.1
Farese, R.V.2
-
3
-
-
84898645712
-
Lipid droplet biogenesis
-
Wilfling F., et al. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 2014, 29:39-45.
-
(2014)
Curr. Opin. Cell Biol.
, vol.29
, pp. 39-45
-
-
Wilfling, F.1
-
4
-
-
84930655630
-
Expanding roles for lipid droplets
-
Welte M.A. Expanding roles for lipid droplets. Curr. Biol. 2015, 25:R470-R481.
-
(2015)
Curr. Biol.
, vol.25
, pp. R470-R481
-
-
Welte, M.A.1
-
5
-
-
84904647870
-
Cytosolic lipid droplets: from mechanisms of fat storage to disease
-
Gross D.A., Silver D.L. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit. Rev. Biochem. Mol. Biol. 2014, 49:304-326.
-
(2014)
Crit. Rev. Biochem. Mol. Biol.
, vol.49
, pp. 304-326
-
-
Gross, D.A.1
Silver, D.L.2
-
7
-
-
84938699454
-
Lipid droplet-organelle interactions: emerging roles in lipid metabolism
-
Barbosa A.D., et al. Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr. Opin. Cell Biol. 2015, 35:91-97.
-
(2015)
Curr. Opin. Cell Biol.
, vol.35
, pp. 91-97
-
-
Barbosa, A.D.1
-
8
-
-
34147152663
-
Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic
-
Bartz R., et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 2007, 48:837-847.
-
(2007)
J. Lipid Res.
, vol.48
, pp. 837-847
-
-
Bartz, R.1
-
9
-
-
0037113954
-
The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition
-
Tauchi-Sato K., et al. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J. Biol. Chem. 2002, 277:44507-44512.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44507-44512
-
-
Tauchi-Sato, K.1
-
10
-
-
79960933880
-
A role for phosphatidic acid in the formation of 'supersized' lipid droplets
-
Fei W., et al. A role for phosphatidic acid in the formation of 'supersized' lipid droplets. PLoS Genet. 2011, 7:e1002201.
-
(2011)
PLoS Genet.
, vol.7
-
-
Fei, W.1
-
11
-
-
84939469873
-
Protein crowding is a determinant of lipid droplet composition
-
Kory N., et al. Protein crowding is a determinant of lipid droplet composition. Dev. Cell 2015, 34:351-363.
-
(2015)
Dev. Cell
, vol.34
, pp. 351-363
-
-
Kory, N.1
-
12
-
-
84875326507
-
Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets
-
Wilfling F., et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 2013, 24:384-399.
-
(2013)
Dev. Cell
, vol.24
, pp. 384-399
-
-
Wilfling, F.1
-
13
-
-
21444437133
-
S3-12, adipophilin, and TIP47 package lipid in adipocytes
-
Wolins N.E., et al. S3-12, adipophilin, and TIP47 package lipid in adipocytes. J. Biol. Chem. 2005, 280:19146-19155.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 19146-19155
-
-
Wolins, N.E.1
-
14
-
-
84866143955
-
Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets
-
Hsieh K., et al. Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets. J. Cell Sci. 2012, 125:4067-4076.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 4067-4076
-
-
Hsieh, K.1
-
15
-
-
84895764551
-
Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains
-
Kassan A., et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 2013, 203:985-1001.
-
(2013)
J. Cell Biol.
, vol.203
, pp. 985-1001
-
-
Kassan, A.1
-
16
-
-
84898715853
-
Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting
-
Wilfling F., et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 2014, 3:e01607.
-
(2014)
Elife
, vol.3
-
-
Wilfling, F.1
-
17
-
-
84862908504
-
Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites
-
Gong J., et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell Biol. 2011, 195:953-963.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 953-963
-
-
Gong, J.1
-
18
-
-
83355173216
-
FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation
-
Jambunathan S., et al. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS ONE 2011, 6:e28614.
-
(2011)
PLoS ONE
, vol.6
-
-
Jambunathan, S.1
-
19
-
-
8744267532
-
Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes
-
Brasaemle D.L., et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 2004, 279:46835-46842.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 46835-46842
-
-
Brasaemle, D.L.1
-
20
-
-
81055148267
-
The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics
-
Bouchoux J., et al. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol. Cell 2011, 103:499-517.
-
(2011)
Biol. Cell
, vol.103
, pp. 499-517
-
-
Bouchoux, J.1
-
21
-
-
33748598240
-
The lipid-droplet proteome reveals that droplets are a protein-storage depot
-
Cermelli S., et al. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 2006, 16:1783-1795.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1783-1795
-
-
Cermelli, S.1
-
22
-
-
84930685744
-
Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge
-
D'Aquila T., et al. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLoS ONE 2015, 10:e0126823.
-
(2015)
PLoS ONE
, vol.10
-
-
D'Aquila, T.1
-
23
-
-
84863230656
-
Identification of the major functional proteins of prokaryotic lipid droplets
-
Ding Y., et al. Identification of the major functional proteins of prokaryotic lipid droplets. J. Lipid Res. 2012, 53:399-411.
-
(2012)
J. Lipid Res.
, vol.53
, pp. 399-411
-
-
Ding, Y.1
-
24
-
-
84875367136
-
Protein correlation profiles identify lipid droplet proteins with high confidence
-
Krahmer N., et al. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell Proteomics 2013, 12:1115-1126.
-
(2013)
Mol. Cell Proteomics
, vol.12
, pp. 1115-1126
-
-
Krahmer, N.1
-
25
-
-
84864818294
-
Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets
-
Zhang P., et al. Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol. Cell Proteomics 2012, 11:317-328.
-
(2012)
Mol. Cell Proteomics
, vol.11
, pp. 317-328
-
-
Zhang, P.1
-
26
-
-
84904011588
-
High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation
-
Currie E., et al. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J. Lipid Res. 2014, 55:1465-1477.
-
(2014)
J. Lipid Res.
, vol.55
, pp. 1465-1477
-
-
Currie, E.1
-
27
-
-
1642565185
-
Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7
-
Fujimoto Y., et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim. Biophys. Acta 2004, 1644:47-59.
-
(2004)
Biochim. Biophys. Acta
, vol.1644
, pp. 47-59
-
-
Fujimoto, Y.1
-
28
-
-
71749098785
-
Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl)
-
Granneman J.G., et al. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J. Biol. Chem. 2009, 284:34538-34544.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 34538-34544
-
-
Granneman, J.G.1
-
29
-
-
79953160438
-
Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase
-
Granneman J.G., et al. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J. Biol. Chem. 2011, 286:5126-5135.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 5126-5135
-
-
Granneman, J.G.1
-
30
-
-
0037477829
-
Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation of adipocytes
-
Sztalryd C., et al. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation of adipocytes. J. Cell Biol. 2002, 161:1103.
-
(2002)
J. Cell Biol.
, vol.161
, pp. 1103
-
-
Sztalryd, C.1
-
31
-
-
84922269099
-
The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis
-
Pollak N.M., et al. The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis. J. Biol. Chem. 2015, 290:1295-1306.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 1295-1306
-
-
Pollak, N.M.1
-
32
-
-
79960398841
-
Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae
-
Jacquier N., et al. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 2011, 124:2424-2437.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 2424-2437
-
-
Jacquier, N.1
-
33
-
-
0019069651
-
Organelle relationships in cultured 3T3-L1 preadipocytes
-
Novikoff A.B., et al. Organelle relationships in cultured 3T3-L1 preadipocytes. J. Cell Biol. 1980, 87:180-196.
-
(1980)
J. Cell Biol.
, vol.87
, pp. 180-196
-
-
Novikoff, A.B.1
-
34
-
-
33847755111
-
Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity
-
Tarnopolsky M.A., et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292:R1271-R12718.
-
(2007)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.292
, pp. R1271-R12718
-
-
Tarnopolsky, M.A.1
-
35
-
-
33747380991
-
An intimate collaboration between peroxisomes and lipid bodies
-
Binns D., et al. An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 2006, 173:719-731.
-
(2006)
J. Cell Biol.
, vol.173
, pp. 719-731
-
-
Binns, D.1
-
36
-
-
0346874342
-
Proteomic characterization of the human centrosome by protein correlation profiling
-
Andersen J.S., et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003, 426:570-574.
-
(2003)
Nature
, vol.426
, pp. 570-574
-
-
Andersen, J.S.1
-
37
-
-
0029069574
-
Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes
-
Blanchette-Mackie E.J., et al. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 1995, 36:1211-1226.
-
(1995)
J. Lipid Res.
, vol.36
, pp. 1211-1226
-
-
Blanchette-Mackie, E.J.1
-
38
-
-
0037040958
-
Membrane protein topology of oleosin is constrained by its long hydrophobic domain
-
Abell B.M., et al. Membrane protein topology of oleosin is constrained by its long hydrophobic domain. J. Biol. Chem. 2002, 277:8602-8610.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 8602-8610
-
-
Abell, B.M.1
-
39
-
-
0031201009
-
Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting
-
Abell B.M., et al. Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 1997, 9:1481-1493.
-
(1997)
Plant Cell
, vol.9
, pp. 1481-1493
-
-
Abell, B.M.1
-
40
-
-
84872472046
-
Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1
-
Stevanovic A., Thiele C. Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1. J. Lipid Res. 2013, 54:503-513.
-
(2013)
J. Lipid Res.
, vol.54
, pp. 503-513
-
-
Stevanovic, A.1
Thiele, C.2
-
41
-
-
84860311914
-
The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake
-
Poppelreuther M., et al. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J. Lipid Res. 2012, 53:888-900.
-
(2012)
J. Lipid Res.
, vol.53
, pp. 888-900
-
-
Poppelreuther, M.1
-
42
-
-
33845977414
-
Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2
-
Stone S.J., et al. Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2. J. Biol. Chem. 2006, 281:40273-40282.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 40273-40282
-
-
Stone, S.J.1
-
43
-
-
70749126722
-
Hydrophobic and basic domains target proteins to lipid droplets
-
Ingelmo-Torres M., et al. Hydrophobic and basic domains target proteins to lipid droplets. Traffic 2009, 10:1785-1801.
-
(2009)
Traffic
, vol.10
, pp. 1785-1801
-
-
Ingelmo-Torres, M.1
-
44
-
-
46749130169
-
Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets
-
Zehmer J.K., et al. Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J. Cell Sci. 2008, 12:1852-1860.
-
(2008)
J. Cell Sci.
, vol.12
, pp. 1852-1860
-
-
Zehmer, J.K.1
-
45
-
-
33746959419
-
Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets
-
Turró S., et al. Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 2006, 7:1254-1269.
-
(2006)
Traffic
, vol.7
, pp. 1254-1269
-
-
Turró, S.1
-
46
-
-
34548412267
-
Regulated expression by PPARalpha and unique localization of 17beta-hydroxysteroid dehydrogenase type 11 protein in mouse intestine and liver
-
Yokoi Y., et al. Regulated expression by PPARalpha and unique localization of 17beta-hydroxysteroid dehydrogenase type 11 protein in mouse intestine and liver. FEBS J. 2007, 274:4837-4847.
-
(2007)
FEBS J.
, vol.274
, pp. 4837-4847
-
-
Yokoi, Y.1
-
47
-
-
54249166513
-
Identification and characterization of the ER/lipid droplet-targeting sequence in 17beta-hydroxysteroid dehydrogenase type 11
-
Horiguchi Y., et al. Identification and characterization of the ER/lipid droplet-targeting sequence in 17beta-hydroxysteroid dehydrogenase type 11. Arch. Biochem. Biophys. 2008, 479:121-130.
-
(2008)
Arch. Biochem. Biophys.
, vol.479
, pp. 121-130
-
-
Horiguchi, Y.1
-
48
-
-
77951245602
-
The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase
-
Gruber A., et al. The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J. Biol. Chem. 2008, 285:12289-12298.
-
(2008)
J. Biol. Chem.
, vol.285
, pp. 12289-12298
-
-
Gruber, A.1
-
49
-
-
84945931739
-
Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring
-
Boeszoermenyi A., et al. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring. J. Biol. Chem. 2015, 290:26361-26372.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 26361-26372
-
-
Boeszoermenyi, A.1
-
50
-
-
70350400618
-
Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets
-
Zehmer J.K., et al. Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J. Cell Sci. 2009, 122:3694-3702.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 3694-3702
-
-
Zehmer, J.K.1
-
51
-
-
69449095908
-
Coatomer-dependent protein delivery to lipid droplets
-
Soni K.G., et al. Coatomer-dependent protein delivery to lipid droplets. J. Cell Sci. 2009, 122:1834-1841.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 1834-1841
-
-
Soni, K.G.1
-
52
-
-
56849110119
-
COPI complex is a regulator of lipid homeostasis
-
Beller M., et al. COPI complex is a regulator of lipid homeostasis. PLoS Biol. 2008, 6:e292.
-
(2008)
PLoS Biol.
, vol.6
-
-
Beller, M.1
-
53
-
-
25144470244
-
Arf1-dependent PLD is localized to oleic acid-induced lipid droplets in NIH3T3 cells
-
Nakamura N., et al. Arf1-dependent PLD is localized to oleic acid-induced lipid droplets in NIH3T3 cells. Biochem. Biophys. Res. Commun. 2005, 335:117-123.
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.335
, pp. 117-123
-
-
Nakamura, N.1
-
54
-
-
44449095056
-
Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
-
Guo Y., et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008, 453:657-661.
-
(2008)
Nature
, vol.453
, pp. 657-661
-
-
Guo, Y.1
-
55
-
-
84885459411
-
Targeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes
-
Bouvet S., et al. Targeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes. J. Cell Sci. 2013, 126:4794-4805.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 4794-4805
-
-
Bouvet, S.1
-
56
-
-
84882290578
-
COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function
-
Thiam A.R., et al. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:13244-13249.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 13244-13249
-
-
Thiam, A.R.1
-
57
-
-
84930916570
-
ELMOD2 is anchored to lipid droplets by palmitoylation and regulates ATGL recruitment
-
Suzuki M., et al. ELMOD2 is anchored to lipid droplets by palmitoylation and regulates ATGL recruitment. Mol. Biol. Cell 2015, 26:2333-2342.
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 2333-2342
-
-
Suzuki, M.1
-
58
-
-
21644459401
-
Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane
-
Ozeki S., et al. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci. 2005, 118:2601-2611.
-
(2005)
J. Cell Sci.
, vol.118
, pp. 2601-2611
-
-
Ozeki, S.1
-
59
-
-
7044235790
-
Thermodynamics of lipid-peptide interactions
-
Seelig J. Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta 2004, 1666:40-50.
-
(2004)
Biochim. Biophys. Acta
, vol.1666
, pp. 40-50
-
-
Seelig, J.1
-
60
-
-
0342378042
-
Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes
-
Terzi E., et al. Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes. Biochemistry 1997, 36:14845-14852.
-
(1997)
Biochemistry
, vol.36
, pp. 14845-14852
-
-
Terzi, E.1
-
61
-
-
0033516703
-
An amphipathic alpha-helix at a membrane interface. A structural study using a novel X-ray diffraction method
-
Hristova K., et al. An amphipathic alpha-helix at a membrane interface. A structural study using a novel X-ray diffraction method. J. Mol. Biol. 1999, 290:99-117.
-
(1999)
J. Mol. Biol.
, vol.290
, pp. 99-117
-
-
Hristova, K.1
-
62
-
-
80053927108
-
Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase
-
Krahmer N., et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab. 2011, 14:504-515.
-
(2011)
Cell Metab.
, vol.14
, pp. 504-515
-
-
Krahmer, N.1
-
63
-
-
0016761879
-
Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates
-
Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J. Biol. Chem. 1975, 250:3359-3367.
-
(1975)
J. Biol. Chem.
, vol.250
, pp. 3359-3367
-
-
Sundler, R.1
Akesson, B.2
-
64
-
-
0000749205
-
The function of cytidine coenzymes in the biosynthesis of phospholipides
-
Kennedy E.P., Weiss S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 1956, 222:193-214.
-
(1956)
J. Biol. Chem.
, vol.222
, pp. 193-214
-
-
Kennedy, E.P.1
Weiss, S.B.2
-
65
-
-
84876414053
-
The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site
-
Huang H.K., et al. The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site. J. Mol. Biol. 2013, 425:1546-1564.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 1546-1564
-
-
Huang, H.K.1
-
66
-
-
84892648364
-
Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix
-
Lee J., et al. Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix. J. Biol. Chem. 2014, 289:1742-1755.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 1742-1755
-
-
Lee, J.1
-
67
-
-
0033531947
-
Enzymatic and cellular characterization of a catalytic fragment of CTP:phosphocholine cytidylyltransferase alpha
-
Friesen J.A., et al. Enzymatic and cellular characterization of a catalytic fragment of CTP:phosphocholine cytidylyltransferase alpha. J. Biol. Chem. 1999, 274:13384-13389.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 13384-13389
-
-
Friesen, J.A.1
-
68
-
-
84902578766
-
Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease
-
Payne F., et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8901-8906.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 8901-8906
-
-
Payne, F.1
-
69
-
-
84937963352
-
Nuclear-localized CTP:phosphocholine cytidylyltransferase alpha regulates phosphatidylcholine synthesis required for lipid droplet biogenesis
-
Aitchison A.J., et al. Nuclear-localized CTP:phosphocholine cytidylyltransferase alpha regulates phosphatidylcholine synthesis required for lipid droplet biogenesis. Mol. Biol. Cell 2015, 26:2927-2938.
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 2927-2938
-
-
Aitchison, A.J.1
-
70
-
-
84873350695
-
Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature
-
Vamparys L., et al. Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature. Biophys. J. 2013, 104:585-593.
-
(2013)
Biophys. J.
, vol.104
, pp. 585-593
-
-
Vamparys, L.1
-
71
-
-
0031010020
-
Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes
-
Arnold R.S., et al. Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes. Biochemistry 1997, 36:6149-6156.
-
(1997)
Biochemistry
, vol.36
, pp. 6149-6156
-
-
Arnold, R.S.1
-
72
-
-
20444420133
-
Oxysterols inhibit phosphatidylcholine synthesis via ERK docking and phosphorylation of CTP:phosphocholine cytidylyltransferase
-
Agassandian M., et al. Oxysterols inhibit phosphatidylcholine synthesis via ERK docking and phosphorylation of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 2005, 280:21577-21587.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 21577-21587
-
-
Agassandian, M.1
-
73
-
-
41849111245
-
Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes
-
Arrese E.L., et al. Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes. Arch. Biochem. Biophys. 2008, 473:42-47.
-
(2008)
Arch. Biochem. Biophys.
, vol.473
, pp. 42-47
-
-
Arrese, E.L.1
-
74
-
-
66349128492
-
PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores
-
Bickel P.E., et al. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim. Biophys. Acta 2009, 1791:419-440.
-
(2009)
Biochim. Biophys. Acta
, vol.1791
, pp. 419-440
-
-
Bickel, P.E.1
-
75
-
-
66149107375
-
TIP47 functions in the biogenesis of lipid droplets
-
Bulankina A.V., et al. TIP47 functions in the biogenesis of lipid droplets. J. Cell Biol. 2009, 185:641-655.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 641-655
-
-
Bulankina, A.V.1
-
76
-
-
20544457076
-
Hydrophobic sequences target and anchor perilipin A to lipid droplets
-
Subramanian V., et al. Hydrophobic sequences target and anchor perilipin A to lipid droplets. J. Lipid Res. 2004, 45:1983-1991.
-
(2004)
J. Lipid Res.
, vol.45
, pp. 1983-1991
-
-
Subramanian, V.1
-
77
-
-
84922480806
-
Structural and functional assessment of perilipin 2 lipid binding domain(s)
-
Najt C.P., et al. Structural and functional assessment of perilipin 2 lipid binding domain(s). Biochemistry 2014, 53:7051-7066.
-
(2014)
Biochemistry
, vol.53
, pp. 7051-7066
-
-
Najt, C.P.1
-
78
-
-
0038054286
-
A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins
-
Bussell R., Eliezer D. A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J. Mol. Biol. 2003, 329:763-778.
-
(2003)
J. Mol. Biol.
, vol.329
, pp. 763-778
-
-
Bussell, R.1
Eliezer, D.2
-
79
-
-
0026523122
-
The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function
-
Segrest J.P., et al. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res. 1992, 33:141-166.
-
(1992)
J. Lipid Res.
, vol.33
, pp. 141-166
-
-
Segrest, J.P.1
-
80
-
-
79958827096
-
The adipophilin C terminus is a self-folding membrane-binding domain that is important for milk lipid secretion
-
Chong B.M., et al. The adipophilin C terminus is a self-folding membrane-binding domain that is important for milk lipid secretion. J. Biol. Chem. 2011, 286:23254-23265.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 23254-23265
-
-
Chong, B.M.1
-
81
-
-
3142640798
-
Structure of a lipid droplet protein; the PAT family member TIP47
-
Hickenbottom S.J., et al. Structure of a lipid droplet protein; the PAT family member TIP47. Structure 2004, 12:1199-1207.
-
(2004)
Structure
, vol.12
, pp. 1199-1207
-
-
Hickenbottom, S.J.1
-
82
-
-
33745751795
-
Recruitment of TIP47 to lipid droplets is controlled by the putative hydrophobic cleft
-
Ohsaki Y., et al. Recruitment of TIP47 to lipid droplets is controlled by the putative hydrophobic cleft. Biochem. Biophys. Res. Commun. 2006, 347:279-287.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.347
, pp. 279-287
-
-
Ohsaki, Y.1
-
83
-
-
36649009407
-
Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover
-
Listenberger L.L., et al. Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J. Lipid Res. 2007, 48:2751-2761.
-
(2007)
J. Lipid Res.
, vol.48
, pp. 2751-2761
-
-
Listenberger, L.L.1
-
84
-
-
33749058310
-
A proposed model of fat packaging by exchangeable lipid droplet proteins
-
Wolins N.E., et al. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 2006, 580:5484-5491.
-
(2006)
FEBS Lett.
, vol.580
, pp. 5484-5491
-
-
Wolins, N.E.1
-
85
-
-
84881133830
-
The minor allele of the missense polymorphism Ser251Pro in perilipin 2 (PLIN2) disrupts an α-helix, affects lipolysis, and is associated with reduced plasma triglyceride concentration in humans
-
Magné J., et al. The minor allele of the missense polymorphism Ser251Pro in perilipin 2 (PLIN2) disrupts an α-helix, affects lipolysis, and is associated with reduced plasma triglyceride concentration in humans. FASEB J. 2013, 27:3090-3099.
-
(2013)
FASEB J.
, vol.27
, pp. 3090-3099
-
-
Magné, J.1
-
86
-
-
79952000272
-
Perilipin deficiency and autosomal dominant partial lipodystrophy
-
Gandotra S., et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N. Engl. J. Med. 2011, 364:740-748.
-
(2011)
N. Engl. J. Med.
, vol.364
, pp. 740-748
-
-
Gandotra, S.1
-
87
-
-
80053406177
-
Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5)
-
Gandotra S., et al. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J. Biol. Chem. 2011, 286:34998-35006.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 34998-35006
-
-
Gandotra, S.1
-
88
-
-
84920019338
-
Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy
-
Kozusko K., et al. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy. Diabetes 2015, 64:299-310.
-
(2015)
Diabetes
, vol.64
, pp. 299-310
-
-
Kozusko, K.1
-
89
-
-
33846956769
-
A general amphipathic alpha-helical motif for sensing membrane curvature
-
Drin G., et al. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 2007, 14:138-146.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 138-146
-
-
Drin, G.1
-
90
-
-
22744442219
-
ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif
-
Bigay J., et al. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 2005, 24:2244-2253.
-
(2005)
EMBO J.
, vol.24
, pp. 2244-2253
-
-
Bigay, J.1
-
91
-
-
0026783771
-
Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet
-
Egan J.J., et al. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:8537-8541.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 8537-8541
-
-
Egan, J.J.1
-
92
-
-
84869489094
-
Lipid droplets control the maternal histone supply of Drosophila embryos
-
Li Z., et al. Lipid droplets control the maternal histone supply of Drosophila embryos. Curr. Biol. 2012, 22:2104-2113.
-
(2012)
Curr. Biol.
, vol.22
, pp. 2104-2113
-
-
Li, Z.1
-
93
-
-
84857094659
-
Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins
-
Carvalho F.A., et al. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J. Virol. 2012, 86:2096-2108.
-
(2012)
J. Virol.
, vol.86
, pp. 2096-2108
-
-
Carvalho, F.A.1
-
94
-
-
84918502535
-
Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification
-
Kitamura T., et al. Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification. Biochem. J. 2015, 465:79-87.
-
(2015)
Biochem. J.
, vol.465
, pp. 79-87
-
-
Kitamura, T.1
-
95
-
-
33847744302
-
Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation
-
Leung K.F., et al. Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J. Biol. Chem. 2007, 282:1487-1497.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 1487-1497
-
-
Leung, K.F.1
-
96
-
-
84878943669
-
The mechanism and physiological function of macroautophagy
-
Klionsky D.J., Codogno P. The mechanism and physiological function of macroautophagy. J. Innate. Immun. 2013, 5:427-433.
-
(2013)
J. Innate. Immun.
, vol.5
, pp. 427-433
-
-
Klionsky, D.J.1
Codogno, P.2
-
97
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
Singh R., et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest. 2009, 119:3329-3339.
-
(2009)
J Clin Invest.
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
-
98
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
-
99
-
-
84892536117
-
Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
-
van Zutphen T., et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 2014, 25:290-301.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 290-301
-
-
van Zutphen, T.1
-
100
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11:467-478.
-
(2010)
Cell Metab.
, vol.11
, pp. 467-478
-
-
Yang, L.1
-
101
-
-
84857653989
-
Regulation of lipid droplet cholesterol efflux from macrophage foam cells
-
Ouimet M., Marcel Y.L. Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler. Thromb. Vasc. Biol. 2012, 32:575-581.
-
(2012)
Arterioscler. Thromb. Vasc. Biol.
, vol.32
, pp. 575-581
-
-
Ouimet, M.1
Marcel, Y.L.2
-
102
-
-
84941602304
-
AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
-
Herms A., et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat. Commun. 2015, 6:7176.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7176
-
-
Herms, A.1
-
103
-
-
84925324049
-
Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold A.S., et al. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 2015, 32:678-692.
-
(2015)
Dev. Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
-
104
-
-
77952409634
-
A feed-forward loop amplifies nutritional regulation of PNPLA3
-
Huang Y., et al. A feed-forward loop amplifies nutritional regulation of PNPLA3. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7892-7897.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 7892-7897
-
-
Huang, Y.1
-
105
-
-
84940932767
-
Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during post-germinative seedling growth in Arabidopsis
-
Deruyffelaere C., et al. Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during post-germinative seedling growth in Arabidopsis. Plant Cell Physiol. 2015, 56:1374-1387.
-
(2015)
Plant Cell Physiol.
, vol.56
, pp. 1374-1387
-
-
Deruyffelaere, C.1
-
106
-
-
84930182353
-
Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis
-
Kaushik S., Cuervo A.M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 2015, 17:759-770.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 759-770
-
-
Kaushik, S.1
Cuervo, A.M.2
-
107
-
-
84873355211
-
Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet-associated endoplasmic reticulum membranes
-
Jo Y., et al. Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet-associated endoplasmic reticulum membranes. Mol. Biol. Cell 2013, 24:169-183.
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 169-183
-
-
Jo, Y.1
-
108
-
-
80054801259
-
Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control
-
Klemm E.J., et al. Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem. 2011, 286:37602-37614.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 37602-37614
-
-
Klemm, E.J.1
-
109
-
-
79953147165
-
Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region
-
Spandl J., et al. Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J. Biol. Chem. 2011, 286:5599-5606.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 5599-5606
-
-
Spandl, J.1
-
110
-
-
84872840929
-
Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover
-
Olzmann J.A., et al. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:1345-1350.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 1345-1350
-
-
Olzmann, J.A.1
-
111
-
-
84885848514
-
Membrane bending: the power of protein imbalance
-
Derganc J., et al. Membrane bending: the power of protein imbalance. Trends Biochem. Sci. 2013, 38:576-584.
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 576-584
-
-
Derganc, J.1
-
112
-
-
84877884853
-
Surface pressure-dependent conformation change of apolipoprotein-derived amphipathic alpha-helices
-
Mitsche M.A., Small D.M. Surface pressure-dependent conformation change of apolipoprotein-derived amphipathic alpha-helices. J. Lipid Res. 2013, 54:1578-1588.
-
(2013)
J. Lipid Res.
, vol.54
, pp. 1578-1588
-
-
Mitsche, M.A.1
Small, D.M.2
-
113
-
-
67650529104
-
Surface study of apoB1694-1880, a sequence that can anchor apoB to lipoproteins and make it nonexchangeable
-
Wang L., et al. Surface study of apoB1694-1880, a sequence that can anchor apoB to lipoproteins and make it nonexchangeable. J. Lipid Res. 2009, 50:1340-1352.
-
(2009)
J. Lipid Res.
, vol.50
, pp. 1340-1352
-
-
Wang, L.1
-
114
-
-
84866514776
-
Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets
-
Ollila O.H., et al. Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets. Biophys. J. 2012, 103:1236-1244.
-
(2012)
Biophys. J.
, vol.103
, pp. 1236-1244
-
-
Ollila, O.H.1
-
115
-
-
79960547850
-
Local/bulk determinants of conformational stability of exchangeable apolipoproteins
-
Dergunov A.D. Local/bulk determinants of conformational stability of exchangeable apolipoproteins. Biochim. Biophys. Acta 2011, 1814:1169-1177.
-
(2011)
Biochim. Biophys. Acta
, vol.1814
, pp. 1169-1177
-
-
Dergunov, A.D.1
-
116
-
-
30844437022
-
ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells
-
Masuda Y., et al. ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J. Lipid Res. 2006, 47:87-98.
-
(2006)
J. Lipid Res.
, vol.47
, pp. 87-98
-
-
Masuda, Y.1
-
117
-
-
30044445455
-
Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway
-
Xu G., et al. Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J. Biol. Chem. 2005, 280:42841-42847.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 42841-42847
-
-
Xu, G.1
-
118
-
-
84957922839
-
The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix
-
Barneda D., et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife 2015, 4:e07485.
-
(2015)
Elife
, vol.4
-
-
Barneda, D.1
-
119
-
-
84920955177
-
Pnpla3I148 M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis
-
Smagris E., et al. Pnpla3I148 M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 2015, 61:108-118.
-
(2015)
Hepatology
, vol.61
, pp. 108-118
-
-
Smagris, E.1
|