메뉴 건너뛰기




Volumn 26, Issue 7, 2016, Pages 535-546

Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets

Author keywords

Amphipathic helix; Hydrophobic hairpin; Lipolysis; Organelle protein composition; Triglyceride storage

Indexed keywords

FAT DROPLET; PROTEIN;

EID: 84961189674     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.02.007     Document Type: Review
Times cited : (231)

References (119)
  • 1
    • 84888367601 scopus 로고    scopus 로고
    • The biophysics and cell biology of lipid droplets
    • Thiam A.R., et al. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 2013, 14:775-786.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 775-786
    • Thiam, A.R.1
  • 2
    • 84861913952 scopus 로고    scopus 로고
    • Lipid droplets and cellular lipid metabolism
    • Walther T.C., Farese R.V. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 2012, 81:687-714.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 687-714
    • Walther, T.C.1    Farese, R.V.2
  • 3
    • 84898645712 scopus 로고    scopus 로고
    • Lipid droplet biogenesis
    • Wilfling F., et al. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 2014, 29:39-45.
    • (2014) Curr. Opin. Cell Biol. , vol.29 , pp. 39-45
    • Wilfling, F.1
  • 4
    • 84930655630 scopus 로고    scopus 로고
    • Expanding roles for lipid droplets
    • Welte M.A. Expanding roles for lipid droplets. Curr. Biol. 2015, 25:R470-R481.
    • (2015) Curr. Biol. , vol.25 , pp. R470-R481
    • Welte, M.A.1
  • 5
    • 84904647870 scopus 로고    scopus 로고
    • Cytosolic lipid droplets: from mechanisms of fat storage to disease
    • Gross D.A., Silver D.L. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit. Rev. Biochem. Mol. Biol. 2014, 49:304-326.
    • (2014) Crit. Rev. Biochem. Mol. Biol. , vol.49 , pp. 304-326
    • Gross, D.A.1    Silver, D.L.2
  • 7
    • 84938699454 scopus 로고    scopus 로고
    • Lipid droplet-organelle interactions: emerging roles in lipid metabolism
    • Barbosa A.D., et al. Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr. Opin. Cell Biol. 2015, 35:91-97.
    • (2015) Curr. Opin. Cell Biol. , vol.35 , pp. 91-97
    • Barbosa, A.D.1
  • 8
    • 34147152663 scopus 로고    scopus 로고
    • Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic
    • Bartz R., et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 2007, 48:837-847.
    • (2007) J. Lipid Res. , vol.48 , pp. 837-847
    • Bartz, R.1
  • 9
    • 0037113954 scopus 로고    scopus 로고
    • The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition
    • Tauchi-Sato K., et al. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J. Biol. Chem. 2002, 277:44507-44512.
    • (2002) J. Biol. Chem. , vol.277 , pp. 44507-44512
    • Tauchi-Sato, K.1
  • 10
    • 79960933880 scopus 로고    scopus 로고
    • A role for phosphatidic acid in the formation of 'supersized' lipid droplets
    • Fei W., et al. A role for phosphatidic acid in the formation of 'supersized' lipid droplets. PLoS Genet. 2011, 7:e1002201.
    • (2011) PLoS Genet. , vol.7
    • Fei, W.1
  • 11
    • 84939469873 scopus 로고    scopus 로고
    • Protein crowding is a determinant of lipid droplet composition
    • Kory N., et al. Protein crowding is a determinant of lipid droplet composition. Dev. Cell 2015, 34:351-363.
    • (2015) Dev. Cell , vol.34 , pp. 351-363
    • Kory, N.1
  • 12
    • 84875326507 scopus 로고    scopus 로고
    • Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets
    • Wilfling F., et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 2013, 24:384-399.
    • (2013) Dev. Cell , vol.24 , pp. 384-399
    • Wilfling, F.1
  • 13
    • 21444437133 scopus 로고    scopus 로고
    • S3-12, adipophilin, and TIP47 package lipid in adipocytes
    • Wolins N.E., et al. S3-12, adipophilin, and TIP47 package lipid in adipocytes. J. Biol. Chem. 2005, 280:19146-19155.
    • (2005) J. Biol. Chem. , vol.280 , pp. 19146-19155
    • Wolins, N.E.1
  • 14
    • 84866143955 scopus 로고    scopus 로고
    • Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets
    • Hsieh K., et al. Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets. J. Cell Sci. 2012, 125:4067-4076.
    • (2012) J. Cell Sci. , vol.125 , pp. 4067-4076
    • Hsieh, K.1
  • 15
    • 84895764551 scopus 로고    scopus 로고
    • Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains
    • Kassan A., et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 2013, 203:985-1001.
    • (2013) J. Cell Biol. , vol.203 , pp. 985-1001
    • Kassan, A.1
  • 16
    • 84898715853 scopus 로고    scopus 로고
    • Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting
    • Wilfling F., et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 2014, 3:e01607.
    • (2014) Elife , vol.3
    • Wilfling, F.1
  • 17
    • 84862908504 scopus 로고    scopus 로고
    • Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites
    • Gong J., et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell Biol. 2011, 195:953-963.
    • (2011) J. Cell Biol. , vol.195 , pp. 953-963
    • Gong, J.1
  • 18
    • 83355173216 scopus 로고    scopus 로고
    • FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation
    • Jambunathan S., et al. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS ONE 2011, 6:e28614.
    • (2011) PLoS ONE , vol.6
    • Jambunathan, S.1
  • 19
    • 8744267532 scopus 로고    scopus 로고
    • Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes
    • Brasaemle D.L., et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 2004, 279:46835-46842.
    • (2004) J. Biol. Chem. , vol.279 , pp. 46835-46842
    • Brasaemle, D.L.1
  • 20
    • 81055148267 scopus 로고    scopus 로고
    • The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics
    • Bouchoux J., et al. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol. Cell 2011, 103:499-517.
    • (2011) Biol. Cell , vol.103 , pp. 499-517
    • Bouchoux, J.1
  • 21
    • 33748598240 scopus 로고    scopus 로고
    • The lipid-droplet proteome reveals that droplets are a protein-storage depot
    • Cermelli S., et al. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 2006, 16:1783-1795.
    • (2006) Curr. Biol. , vol.16 , pp. 1783-1795
    • Cermelli, S.1
  • 22
    • 84930685744 scopus 로고    scopus 로고
    • Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge
    • D'Aquila T., et al. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLoS ONE 2015, 10:e0126823.
    • (2015) PLoS ONE , vol.10
    • D'Aquila, T.1
  • 23
    • 84863230656 scopus 로고    scopus 로고
    • Identification of the major functional proteins of prokaryotic lipid droplets
    • Ding Y., et al. Identification of the major functional proteins of prokaryotic lipid droplets. J. Lipid Res. 2012, 53:399-411.
    • (2012) J. Lipid Res. , vol.53 , pp. 399-411
    • Ding, Y.1
  • 24
    • 84875367136 scopus 로고    scopus 로고
    • Protein correlation profiles identify lipid droplet proteins with high confidence
    • Krahmer N., et al. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell Proteomics 2013, 12:1115-1126.
    • (2013) Mol. Cell Proteomics , vol.12 , pp. 1115-1126
    • Krahmer, N.1
  • 25
    • 84864818294 scopus 로고    scopus 로고
    • Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets
    • Zhang P., et al. Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol. Cell Proteomics 2012, 11:317-328.
    • (2012) Mol. Cell Proteomics , vol.11 , pp. 317-328
    • Zhang, P.1
  • 26
    • 84904011588 scopus 로고    scopus 로고
    • High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation
    • Currie E., et al. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J. Lipid Res. 2014, 55:1465-1477.
    • (2014) J. Lipid Res. , vol.55 , pp. 1465-1477
    • Currie, E.1
  • 27
    • 1642565185 scopus 로고    scopus 로고
    • Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7
    • Fujimoto Y., et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim. Biophys. Acta 2004, 1644:47-59.
    • (2004) Biochim. Biophys. Acta , vol.1644 , pp. 47-59
    • Fujimoto, Y.1
  • 28
    • 71749098785 scopus 로고    scopus 로고
    • Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl)
    • Granneman J.G., et al. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J. Biol. Chem. 2009, 284:34538-34544.
    • (2009) J. Biol. Chem. , vol.284 , pp. 34538-34544
    • Granneman, J.G.1
  • 29
    • 79953160438 scopus 로고    scopus 로고
    • Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase
    • Granneman J.G., et al. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J. Biol. Chem. 2011, 286:5126-5135.
    • (2011) J. Biol. Chem. , vol.286 , pp. 5126-5135
    • Granneman, J.G.1
  • 30
    • 0037477829 scopus 로고    scopus 로고
    • Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation of adipocytes
    • Sztalryd C., et al. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation of adipocytes. J. Cell Biol. 2002, 161:1103.
    • (2002) J. Cell Biol. , vol.161 , pp. 1103
    • Sztalryd, C.1
  • 31
    • 84922269099 scopus 로고    scopus 로고
    • The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis
    • Pollak N.M., et al. The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis. J. Biol. Chem. 2015, 290:1295-1306.
    • (2015) J. Biol. Chem. , vol.290 , pp. 1295-1306
    • Pollak, N.M.1
  • 32
    • 79960398841 scopus 로고    scopus 로고
    • Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae
    • Jacquier N., et al. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 2011, 124:2424-2437.
    • (2011) J. Cell Sci. , vol.124 , pp. 2424-2437
    • Jacquier, N.1
  • 33
    • 0019069651 scopus 로고
    • Organelle relationships in cultured 3T3-L1 preadipocytes
    • Novikoff A.B., et al. Organelle relationships in cultured 3T3-L1 preadipocytes. J. Cell Biol. 1980, 87:180-196.
    • (1980) J. Cell Biol. , vol.87 , pp. 180-196
    • Novikoff, A.B.1
  • 34
    • 33847755111 scopus 로고    scopus 로고
    • Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity
    • Tarnopolsky M.A., et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292:R1271-R12718.
    • (2007) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.292 , pp. R1271-R12718
    • Tarnopolsky, M.A.1
  • 35
    • 33747380991 scopus 로고    scopus 로고
    • An intimate collaboration between peroxisomes and lipid bodies
    • Binns D., et al. An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 2006, 173:719-731.
    • (2006) J. Cell Biol. , vol.173 , pp. 719-731
    • Binns, D.1
  • 36
    • 0346874342 scopus 로고    scopus 로고
    • Proteomic characterization of the human centrosome by protein correlation profiling
    • Andersen J.S., et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003, 426:570-574.
    • (2003) Nature , vol.426 , pp. 570-574
    • Andersen, J.S.1
  • 37
    • 0029069574 scopus 로고
    • Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes
    • Blanchette-Mackie E.J., et al. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 1995, 36:1211-1226.
    • (1995) J. Lipid Res. , vol.36 , pp. 1211-1226
    • Blanchette-Mackie, E.J.1
  • 38
    • 0037040958 scopus 로고    scopus 로고
    • Membrane protein topology of oleosin is constrained by its long hydrophobic domain
    • Abell B.M., et al. Membrane protein topology of oleosin is constrained by its long hydrophobic domain. J. Biol. Chem. 2002, 277:8602-8610.
    • (2002) J. Biol. Chem. , vol.277 , pp. 8602-8610
    • Abell, B.M.1
  • 39
    • 0031201009 scopus 로고    scopus 로고
    • Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting
    • Abell B.M., et al. Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 1997, 9:1481-1493.
    • (1997) Plant Cell , vol.9 , pp. 1481-1493
    • Abell, B.M.1
  • 40
    • 84872472046 scopus 로고    scopus 로고
    • Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1
    • Stevanovic A., Thiele C. Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1. J. Lipid Res. 2013, 54:503-513.
    • (2013) J. Lipid Res. , vol.54 , pp. 503-513
    • Stevanovic, A.1    Thiele, C.2
  • 41
    • 84860311914 scopus 로고    scopus 로고
    • The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake
    • Poppelreuther M., et al. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J. Lipid Res. 2012, 53:888-900.
    • (2012) J. Lipid Res. , vol.53 , pp. 888-900
    • Poppelreuther, M.1
  • 42
    • 33845977414 scopus 로고    scopus 로고
    • Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2
    • Stone S.J., et al. Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2. J. Biol. Chem. 2006, 281:40273-40282.
    • (2006) J. Biol. Chem. , vol.281 , pp. 40273-40282
    • Stone, S.J.1
  • 43
    • 70749126722 scopus 로고    scopus 로고
    • Hydrophobic and basic domains target proteins to lipid droplets
    • Ingelmo-Torres M., et al. Hydrophobic and basic domains target proteins to lipid droplets. Traffic 2009, 10:1785-1801.
    • (2009) Traffic , vol.10 , pp. 1785-1801
    • Ingelmo-Torres, M.1
  • 44
    • 46749130169 scopus 로고    scopus 로고
    • Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets
    • Zehmer J.K., et al. Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J. Cell Sci. 2008, 12:1852-1860.
    • (2008) J. Cell Sci. , vol.12 , pp. 1852-1860
    • Zehmer, J.K.1
  • 45
    • 33746959419 scopus 로고    scopus 로고
    • Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets
    • Turró S., et al. Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 2006, 7:1254-1269.
    • (2006) Traffic , vol.7 , pp. 1254-1269
    • Turró, S.1
  • 46
    • 34548412267 scopus 로고    scopus 로고
    • Regulated expression by PPARalpha and unique localization of 17beta-hydroxysteroid dehydrogenase type 11 protein in mouse intestine and liver
    • Yokoi Y., et al. Regulated expression by PPARalpha and unique localization of 17beta-hydroxysteroid dehydrogenase type 11 protein in mouse intestine and liver. FEBS J. 2007, 274:4837-4847.
    • (2007) FEBS J. , vol.274 , pp. 4837-4847
    • Yokoi, Y.1
  • 47
    • 54249166513 scopus 로고    scopus 로고
    • Identification and characterization of the ER/lipid droplet-targeting sequence in 17beta-hydroxysteroid dehydrogenase type 11
    • Horiguchi Y., et al. Identification and characterization of the ER/lipid droplet-targeting sequence in 17beta-hydroxysteroid dehydrogenase type 11. Arch. Biochem. Biophys. 2008, 479:121-130.
    • (2008) Arch. Biochem. Biophys. , vol.479 , pp. 121-130
    • Horiguchi, Y.1
  • 48
    • 77951245602 scopus 로고    scopus 로고
    • The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase
    • Gruber A., et al. The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J. Biol. Chem. 2008, 285:12289-12298.
    • (2008) J. Biol. Chem. , vol.285 , pp. 12289-12298
    • Gruber, A.1
  • 49
    • 84945931739 scopus 로고    scopus 로고
    • Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring
    • Boeszoermenyi A., et al. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring. J. Biol. Chem. 2015, 290:26361-26372.
    • (2015) J. Biol. Chem. , vol.290 , pp. 26361-26372
    • Boeszoermenyi, A.1
  • 50
    • 70350400618 scopus 로고    scopus 로고
    • Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets
    • Zehmer J.K., et al. Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J. Cell Sci. 2009, 122:3694-3702.
    • (2009) J. Cell Sci. , vol.122 , pp. 3694-3702
    • Zehmer, J.K.1
  • 51
    • 69449095908 scopus 로고    scopus 로고
    • Coatomer-dependent protein delivery to lipid droplets
    • Soni K.G., et al. Coatomer-dependent protein delivery to lipid droplets. J. Cell Sci. 2009, 122:1834-1841.
    • (2009) J. Cell Sci. , vol.122 , pp. 1834-1841
    • Soni, K.G.1
  • 52
    • 56849110119 scopus 로고    scopus 로고
    • COPI complex is a regulator of lipid homeostasis
    • Beller M., et al. COPI complex is a regulator of lipid homeostasis. PLoS Biol. 2008, 6:e292.
    • (2008) PLoS Biol. , vol.6
    • Beller, M.1
  • 53
    • 25144470244 scopus 로고    scopus 로고
    • Arf1-dependent PLD is localized to oleic acid-induced lipid droplets in NIH3T3 cells
    • Nakamura N., et al. Arf1-dependent PLD is localized to oleic acid-induced lipid droplets in NIH3T3 cells. Biochem. Biophys. Res. Commun. 2005, 335:117-123.
    • (2005) Biochem. Biophys. Res. Commun. , vol.335 , pp. 117-123
    • Nakamura, N.1
  • 54
    • 44449095056 scopus 로고    scopus 로고
    • Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
    • Guo Y., et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008, 453:657-661.
    • (2008) Nature , vol.453 , pp. 657-661
    • Guo, Y.1
  • 55
    • 84885459411 scopus 로고    scopus 로고
    • Targeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes
    • Bouvet S., et al. Targeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes. J. Cell Sci. 2013, 126:4794-4805.
    • (2013) J. Cell Sci. , vol.126 , pp. 4794-4805
    • Bouvet, S.1
  • 56
    • 84882290578 scopus 로고    scopus 로고
    • COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function
    • Thiam A.R., et al. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:13244-13249.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 13244-13249
    • Thiam, A.R.1
  • 57
    • 84930916570 scopus 로고    scopus 로고
    • ELMOD2 is anchored to lipid droplets by palmitoylation and regulates ATGL recruitment
    • Suzuki M., et al. ELMOD2 is anchored to lipid droplets by palmitoylation and regulates ATGL recruitment. Mol. Biol. Cell 2015, 26:2333-2342.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 2333-2342
    • Suzuki, M.1
  • 58
    • 21644459401 scopus 로고    scopus 로고
    • Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane
    • Ozeki S., et al. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci. 2005, 118:2601-2611.
    • (2005) J. Cell Sci. , vol.118 , pp. 2601-2611
    • Ozeki, S.1
  • 59
    • 7044235790 scopus 로고    scopus 로고
    • Thermodynamics of lipid-peptide interactions
    • Seelig J. Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta 2004, 1666:40-50.
    • (2004) Biochim. Biophys. Acta , vol.1666 , pp. 40-50
    • Seelig, J.1
  • 60
    • 0342378042 scopus 로고    scopus 로고
    • Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes
    • Terzi E., et al. Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes. Biochemistry 1997, 36:14845-14852.
    • (1997) Biochemistry , vol.36 , pp. 14845-14852
    • Terzi, E.1
  • 61
    • 0033516703 scopus 로고    scopus 로고
    • An amphipathic alpha-helix at a membrane interface. A structural study using a novel X-ray diffraction method
    • Hristova K., et al. An amphipathic alpha-helix at a membrane interface. A structural study using a novel X-ray diffraction method. J. Mol. Biol. 1999, 290:99-117.
    • (1999) J. Mol. Biol. , vol.290 , pp. 99-117
    • Hristova, K.1
  • 62
    • 80053927108 scopus 로고    scopus 로고
    • Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase
    • Krahmer N., et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab. 2011, 14:504-515.
    • (2011) Cell Metab. , vol.14 , pp. 504-515
    • Krahmer, N.1
  • 63
    • 0016761879 scopus 로고
    • Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates
    • Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J. Biol. Chem. 1975, 250:3359-3367.
    • (1975) J. Biol. Chem. , vol.250 , pp. 3359-3367
    • Sundler, R.1    Akesson, B.2
  • 64
    • 0000749205 scopus 로고
    • The function of cytidine coenzymes in the biosynthesis of phospholipides
    • Kennedy E.P., Weiss S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 1956, 222:193-214.
    • (1956) J. Biol. Chem. , vol.222 , pp. 193-214
    • Kennedy, E.P.1    Weiss, S.B.2
  • 65
    • 84876414053 scopus 로고    scopus 로고
    • The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site
    • Huang H.K., et al. The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site. J. Mol. Biol. 2013, 425:1546-1564.
    • (2013) J. Mol. Biol. , vol.425 , pp. 1546-1564
    • Huang, H.K.1
  • 66
    • 84892648364 scopus 로고    scopus 로고
    • Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix
    • Lee J., et al. Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix. J. Biol. Chem. 2014, 289:1742-1755.
    • (2014) J. Biol. Chem. , vol.289 , pp. 1742-1755
    • Lee, J.1
  • 67
    • 0033531947 scopus 로고    scopus 로고
    • Enzymatic and cellular characterization of a catalytic fragment of CTP:phosphocholine cytidylyltransferase alpha
    • Friesen J.A., et al. Enzymatic and cellular characterization of a catalytic fragment of CTP:phosphocholine cytidylyltransferase alpha. J. Biol. Chem. 1999, 274:13384-13389.
    • (1999) J. Biol. Chem. , vol.274 , pp. 13384-13389
    • Friesen, J.A.1
  • 68
    • 84902578766 scopus 로고    scopus 로고
    • Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease
    • Payne F., et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8901-8906.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 8901-8906
    • Payne, F.1
  • 69
    • 84937963352 scopus 로고    scopus 로고
    • Nuclear-localized CTP:phosphocholine cytidylyltransferase alpha regulates phosphatidylcholine synthesis required for lipid droplet biogenesis
    • Aitchison A.J., et al. Nuclear-localized CTP:phosphocholine cytidylyltransferase alpha regulates phosphatidylcholine synthesis required for lipid droplet biogenesis. Mol. Biol. Cell 2015, 26:2927-2938.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 2927-2938
    • Aitchison, A.J.1
  • 70
    • 84873350695 scopus 로고    scopus 로고
    • Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature
    • Vamparys L., et al. Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature. Biophys. J. 2013, 104:585-593.
    • (2013) Biophys. J. , vol.104 , pp. 585-593
    • Vamparys, L.1
  • 71
    • 0031010020 scopus 로고    scopus 로고
    • Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes
    • Arnold R.S., et al. Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes. Biochemistry 1997, 36:6149-6156.
    • (1997) Biochemistry , vol.36 , pp. 6149-6156
    • Arnold, R.S.1
  • 72
    • 20444420133 scopus 로고    scopus 로고
    • Oxysterols inhibit phosphatidylcholine synthesis via ERK docking and phosphorylation of CTP:phosphocholine cytidylyltransferase
    • Agassandian M., et al. Oxysterols inhibit phosphatidylcholine synthesis via ERK docking and phosphorylation of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 2005, 280:21577-21587.
    • (2005) J. Biol. Chem. , vol.280 , pp. 21577-21587
    • Agassandian, M.1
  • 73
    • 41849111245 scopus 로고    scopus 로고
    • Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes
    • Arrese E.L., et al. Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes. Arch. Biochem. Biophys. 2008, 473:42-47.
    • (2008) Arch. Biochem. Biophys. , vol.473 , pp. 42-47
    • Arrese, E.L.1
  • 74
    • 66349128492 scopus 로고    scopus 로고
    • PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores
    • Bickel P.E., et al. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim. Biophys. Acta 2009, 1791:419-440.
    • (2009) Biochim. Biophys. Acta , vol.1791 , pp. 419-440
    • Bickel, P.E.1
  • 75
    • 66149107375 scopus 로고    scopus 로고
    • TIP47 functions in the biogenesis of lipid droplets
    • Bulankina A.V., et al. TIP47 functions in the biogenesis of lipid droplets. J. Cell Biol. 2009, 185:641-655.
    • (2009) J. Cell Biol. , vol.185 , pp. 641-655
    • Bulankina, A.V.1
  • 76
    • 20544457076 scopus 로고    scopus 로고
    • Hydrophobic sequences target and anchor perilipin A to lipid droplets
    • Subramanian V., et al. Hydrophobic sequences target and anchor perilipin A to lipid droplets. J. Lipid Res. 2004, 45:1983-1991.
    • (2004) J. Lipid Res. , vol.45 , pp. 1983-1991
    • Subramanian, V.1
  • 77
    • 84922480806 scopus 로고    scopus 로고
    • Structural and functional assessment of perilipin 2 lipid binding domain(s)
    • Najt C.P., et al. Structural and functional assessment of perilipin 2 lipid binding domain(s). Biochemistry 2014, 53:7051-7066.
    • (2014) Biochemistry , vol.53 , pp. 7051-7066
    • Najt, C.P.1
  • 78
    • 0038054286 scopus 로고    scopus 로고
    • A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins
    • Bussell R., Eliezer D. A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J. Mol. Biol. 2003, 329:763-778.
    • (2003) J. Mol. Biol. , vol.329 , pp. 763-778
    • Bussell, R.1    Eliezer, D.2
  • 79
    • 0026523122 scopus 로고
    • The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function
    • Segrest J.P., et al. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res. 1992, 33:141-166.
    • (1992) J. Lipid Res. , vol.33 , pp. 141-166
    • Segrest, J.P.1
  • 80
    • 79958827096 scopus 로고    scopus 로고
    • The adipophilin C terminus is a self-folding membrane-binding domain that is important for milk lipid secretion
    • Chong B.M., et al. The adipophilin C terminus is a self-folding membrane-binding domain that is important for milk lipid secretion. J. Biol. Chem. 2011, 286:23254-23265.
    • (2011) J. Biol. Chem. , vol.286 , pp. 23254-23265
    • Chong, B.M.1
  • 81
    • 3142640798 scopus 로고    scopus 로고
    • Structure of a lipid droplet protein; the PAT family member TIP47
    • Hickenbottom S.J., et al. Structure of a lipid droplet protein; the PAT family member TIP47. Structure 2004, 12:1199-1207.
    • (2004) Structure , vol.12 , pp. 1199-1207
    • Hickenbottom, S.J.1
  • 82
    • 33745751795 scopus 로고    scopus 로고
    • Recruitment of TIP47 to lipid droplets is controlled by the putative hydrophobic cleft
    • Ohsaki Y., et al. Recruitment of TIP47 to lipid droplets is controlled by the putative hydrophobic cleft. Biochem. Biophys. Res. Commun. 2006, 347:279-287.
    • (2006) Biochem. Biophys. Res. Commun. , vol.347 , pp. 279-287
    • Ohsaki, Y.1
  • 83
    • 36649009407 scopus 로고    scopus 로고
    • Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover
    • Listenberger L.L., et al. Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J. Lipid Res. 2007, 48:2751-2761.
    • (2007) J. Lipid Res. , vol.48 , pp. 2751-2761
    • Listenberger, L.L.1
  • 84
    • 33749058310 scopus 로고    scopus 로고
    • A proposed model of fat packaging by exchangeable lipid droplet proteins
    • Wolins N.E., et al. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 2006, 580:5484-5491.
    • (2006) FEBS Lett. , vol.580 , pp. 5484-5491
    • Wolins, N.E.1
  • 85
    • 84881133830 scopus 로고    scopus 로고
    • The minor allele of the missense polymorphism Ser251Pro in perilipin 2 (PLIN2) disrupts an α-helix, affects lipolysis, and is associated with reduced plasma triglyceride concentration in humans
    • Magné J., et al. The minor allele of the missense polymorphism Ser251Pro in perilipin 2 (PLIN2) disrupts an α-helix, affects lipolysis, and is associated with reduced plasma triglyceride concentration in humans. FASEB J. 2013, 27:3090-3099.
    • (2013) FASEB J. , vol.27 , pp. 3090-3099
    • Magné, J.1
  • 86
    • 79952000272 scopus 로고    scopus 로고
    • Perilipin deficiency and autosomal dominant partial lipodystrophy
    • Gandotra S., et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N. Engl. J. Med. 2011, 364:740-748.
    • (2011) N. Engl. J. Med. , vol.364 , pp. 740-748
    • Gandotra, S.1
  • 87
    • 80053406177 scopus 로고    scopus 로고
    • Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5)
    • Gandotra S., et al. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J. Biol. Chem. 2011, 286:34998-35006.
    • (2011) J. Biol. Chem. , vol.286 , pp. 34998-35006
    • Gandotra, S.1
  • 88
    • 84920019338 scopus 로고    scopus 로고
    • Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy
    • Kozusko K., et al. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy. Diabetes 2015, 64:299-310.
    • (2015) Diabetes , vol.64 , pp. 299-310
    • Kozusko, K.1
  • 89
    • 33846956769 scopus 로고    scopus 로고
    • A general amphipathic alpha-helical motif for sensing membrane curvature
    • Drin G., et al. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 2007, 14:138-146.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 138-146
    • Drin, G.1
  • 90
    • 22744442219 scopus 로고    scopus 로고
    • ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif
    • Bigay J., et al. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 2005, 24:2244-2253.
    • (2005) EMBO J. , vol.24 , pp. 2244-2253
    • Bigay, J.1
  • 91
    • 0026783771 scopus 로고
    • Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet
    • Egan J.J., et al. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:8537-8541.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 8537-8541
    • Egan, J.J.1
  • 92
    • 84869489094 scopus 로고    scopus 로고
    • Lipid droplets control the maternal histone supply of Drosophila embryos
    • Li Z., et al. Lipid droplets control the maternal histone supply of Drosophila embryos. Curr. Biol. 2012, 22:2104-2113.
    • (2012) Curr. Biol. , vol.22 , pp. 2104-2113
    • Li, Z.1
  • 93
    • 84857094659 scopus 로고    scopus 로고
    • Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins
    • Carvalho F.A., et al. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J. Virol. 2012, 86:2096-2108.
    • (2012) J. Virol. , vol.86 , pp. 2096-2108
    • Carvalho, F.A.1
  • 94
    • 84918502535 scopus 로고    scopus 로고
    • Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification
    • Kitamura T., et al. Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification. Biochem. J. 2015, 465:79-87.
    • (2015) Biochem. J. , vol.465 , pp. 79-87
    • Kitamura, T.1
  • 95
    • 33847744302 scopus 로고    scopus 로고
    • Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation
    • Leung K.F., et al. Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J. Biol. Chem. 2007, 282:1487-1497.
    • (2007) J. Biol. Chem. , vol.282 , pp. 1487-1497
    • Leung, K.F.1
  • 96
    • 84878943669 scopus 로고    scopus 로고
    • The mechanism and physiological function of macroautophagy
    • Klionsky D.J., Codogno P. The mechanism and physiological function of macroautophagy. J. Innate. Immun. 2013, 5:427-433.
    • (2013) J. Innate. Immun. , vol.5 , pp. 427-433
    • Klionsky, D.J.1    Codogno, P.2
  • 97
    • 70449448312 scopus 로고    scopus 로고
    • Autophagy regulates adipose mass and differentiation in mice
    • Singh R., et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest. 2009, 119:3329-3339.
    • (2009) J Clin Invest. , vol.119 , pp. 3329-3339
    • Singh, R.1
  • 98
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 99
    • 84892536117 scopus 로고    scopus 로고
    • Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
    • van Zutphen T., et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 2014, 25:290-301.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 290-301
    • van Zutphen, T.1
  • 100
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11:467-478.
    • (2010) Cell Metab. , vol.11 , pp. 467-478
    • Yang, L.1
  • 101
    • 84857653989 scopus 로고    scopus 로고
    • Regulation of lipid droplet cholesterol efflux from macrophage foam cells
    • Ouimet M., Marcel Y.L. Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler. Thromb. Vasc. Biol. 2012, 32:575-581.
    • (2012) Arterioscler. Thromb. Vasc. Biol. , vol.32 , pp. 575-581
    • Ouimet, M.1    Marcel, Y.L.2
  • 102
    • 84941602304 scopus 로고    scopus 로고
    • AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
    • Herms A., et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat. Commun. 2015, 6:7176.
    • (2015) Nat. Commun. , vol.6 , pp. 7176
    • Herms, A.1
  • 103
    • 84925324049 scopus 로고    scopus 로고
    • Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
    • Rambold A.S., et al. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 2015, 32:678-692.
    • (2015) Dev. Cell , vol.32 , pp. 678-692
    • Rambold, A.S.1
  • 104
    • 77952409634 scopus 로고    scopus 로고
    • A feed-forward loop amplifies nutritional regulation of PNPLA3
    • Huang Y., et al. A feed-forward loop amplifies nutritional regulation of PNPLA3. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7892-7897.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7892-7897
    • Huang, Y.1
  • 105
    • 84940932767 scopus 로고    scopus 로고
    • Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during post-germinative seedling growth in Arabidopsis
    • Deruyffelaere C., et al. Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during post-germinative seedling growth in Arabidopsis. Plant Cell Physiol. 2015, 56:1374-1387.
    • (2015) Plant Cell Physiol. , vol.56 , pp. 1374-1387
    • Deruyffelaere, C.1
  • 106
    • 84930182353 scopus 로고    scopus 로고
    • Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis
    • Kaushik S., Cuervo A.M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 2015, 17:759-770.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 759-770
    • Kaushik, S.1    Cuervo, A.M.2
  • 107
    • 84873355211 scopus 로고    scopus 로고
    • Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet-associated endoplasmic reticulum membranes
    • Jo Y., et al. Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet-associated endoplasmic reticulum membranes. Mol. Biol. Cell 2013, 24:169-183.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 169-183
    • Jo, Y.1
  • 108
    • 80054801259 scopus 로고    scopus 로고
    • Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control
    • Klemm E.J., et al. Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem. 2011, 286:37602-37614.
    • (2011) J. Biol. Chem. , vol.286 , pp. 37602-37614
    • Klemm, E.J.1
  • 109
    • 79953147165 scopus 로고    scopus 로고
    • Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region
    • Spandl J., et al. Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J. Biol. Chem. 2011, 286:5599-5606.
    • (2011) J. Biol. Chem. , vol.286 , pp. 5599-5606
    • Spandl, J.1
  • 110
    • 84872840929 scopus 로고    scopus 로고
    • Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover
    • Olzmann J.A., et al. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:1345-1350.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 1345-1350
    • Olzmann, J.A.1
  • 111
    • 84885848514 scopus 로고    scopus 로고
    • Membrane bending: the power of protein imbalance
    • Derganc J., et al. Membrane bending: the power of protein imbalance. Trends Biochem. Sci. 2013, 38:576-584.
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 576-584
    • Derganc, J.1
  • 112
    • 84877884853 scopus 로고    scopus 로고
    • Surface pressure-dependent conformation change of apolipoprotein-derived amphipathic alpha-helices
    • Mitsche M.A., Small D.M. Surface pressure-dependent conformation change of apolipoprotein-derived amphipathic alpha-helices. J. Lipid Res. 2013, 54:1578-1588.
    • (2013) J. Lipid Res. , vol.54 , pp. 1578-1588
    • Mitsche, M.A.1    Small, D.M.2
  • 113
    • 67650529104 scopus 로고    scopus 로고
    • Surface study of apoB1694-1880, a sequence that can anchor apoB to lipoproteins and make it nonexchangeable
    • Wang L., et al. Surface study of apoB1694-1880, a sequence that can anchor apoB to lipoproteins and make it nonexchangeable. J. Lipid Res. 2009, 50:1340-1352.
    • (2009) J. Lipid Res. , vol.50 , pp. 1340-1352
    • Wang, L.1
  • 114
    • 84866514776 scopus 로고    scopus 로고
    • Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets
    • Ollila O.H., et al. Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets. Biophys. J. 2012, 103:1236-1244.
    • (2012) Biophys. J. , vol.103 , pp. 1236-1244
    • Ollila, O.H.1
  • 115
    • 79960547850 scopus 로고    scopus 로고
    • Local/bulk determinants of conformational stability of exchangeable apolipoproteins
    • Dergunov A.D. Local/bulk determinants of conformational stability of exchangeable apolipoproteins. Biochim. Biophys. Acta 2011, 1814:1169-1177.
    • (2011) Biochim. Biophys. Acta , vol.1814 , pp. 1169-1177
    • Dergunov, A.D.1
  • 116
    • 30844437022 scopus 로고    scopus 로고
    • ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells
    • Masuda Y., et al. ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J. Lipid Res. 2006, 47:87-98.
    • (2006) J. Lipid Res. , vol.47 , pp. 87-98
    • Masuda, Y.1
  • 117
    • 30044445455 scopus 로고    scopus 로고
    • Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway
    • Xu G., et al. Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J. Biol. Chem. 2005, 280:42841-42847.
    • (2005) J. Biol. Chem. , vol.280 , pp. 42841-42847
    • Xu, G.1
  • 118
    • 84957922839 scopus 로고    scopus 로고
    • The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix
    • Barneda D., et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife 2015, 4:e07485.
    • (2015) Elife , vol.4
    • Barneda, D.1
  • 119
    • 84920955177 scopus 로고    scopus 로고
    • Pnpla3I148 M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis
    • Smagris E., et al. Pnpla3I148 M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 2015, 61:108-118.
    • (2015) Hepatology , vol.61 , pp. 108-118
    • Smagris, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.