-
1
-
-
84991354939
-
-
National Institute of Diabetes and Digestive and Kidney Diseases () Overweight and Obesity Statistics.
-
1 National Institute of Diabetes and Digestive and Kidney Diseases (2016) Overweight and Obesity Statistics. http://www.niddk.nih.gov/health-information/health-statistics/Pages/overweight-obesity-statistics.aspx.
-
(2016)
-
-
-
2
-
-
2142815151
-
Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity
-
2 Bray, G.A., et al. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79 (2004), 537–543.
-
(2004)
Am. J. Clin. Nutr.
, vol.79
, pp. 537-543
-
-
Bray, G.A.1
-
3
-
-
77952096918
-
The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome.
-
3 Lim, J.S. et al. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7, 251-264.
-
Nat Rev Gastroenterol Hepatol
, vol.7
, pp. 251-264
-
-
Lim, J.S.1
-
4
-
-
66749107383
-
National estimates of dietary fructose intake increased from 1977 to 2004 in the United States
-
4 Marriott, B.P., et al. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 139 (2009), 1228S–1235S.
-
(2009)
J. Nutr.
, vol.139
, pp. 1228S-1235S
-
-
Marriott, B.P.1
-
5
-
-
84899988517
-
Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study
-
5 Green, A.K., et al. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study. Obesity 22 (2014), E157–E163.
-
(2014)
Obesity
, vol.22
, pp. E157-E163
-
-
Green, A.K.1
-
6
-
-
84904543345
-
Sugar-sweetened beverage consumption is associated with abdominal fat partitioning in healthy adults
-
6 Ma, J., et al. Sugar-sweetened beverage consumption is associated with abdominal fat partitioning in healthy adults. J. Nutr. 144 (2014), 1283–1290.
-
(2014)
J. Nutr.
, vol.144
, pp. 1283-1290
-
-
Ma, J.1
-
7
-
-
84991319580
-
Sugar-sweetened beverage intake is associated with fatty liver in the Framingham Offspring Study
-
263
-
7 Ma, J., et al. Sugar-sweetened beverage intake is associated with fatty liver in the Framingham Offspring Study. The FASEB Journal, 28, 2014, 267 263.
-
(2014)
The FASEB Journal
, vol.28
, pp. 267
-
-
Ma, J.1
-
8
-
-
66449093225
-
Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans
-
8 Stanhope, K.L., et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119 (2009), 1322–1334.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1322-1334
-
-
Stanhope, K.L.1
-
9
-
-
84930809200
-
Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat
-
9 Schwarz, J.M., et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab. 100 (2015), 2434–2442.
-
(2015)
J. Clin. Endocrinol. Metab.
, vol.100
, pp. 2434-2442
-
-
Schwarz, J.M.1
-
10
-
-
66849124938
-
Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes
-
10 Le, K.A., et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am. J. Clin. Nutr. 89 (2009), 1760–1765.
-
(2009)
Am. J. Clin. Nutr.
, vol.89
, pp. 1760-1765
-
-
Le, K.A.1
-
11
-
-
66149120712
-
Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses
-
11 Teff, K.L., et al. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J. Clin. Endocrinol. Metab. 94 (2009), 1562–1569.
-
(2009)
J. Clin. Endocrinol. Metab.
, vol.94
, pp. 1562-1569
-
-
Teff, K.L.1
-
12
-
-
80053541911
-
Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women
-
12 Stanhope, K.L., et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J. Clin. Endocrinol. Metab. 96 (2011), E1596–E1605.
-
(2011)
J. Clin. Endocrinol. Metab.
, vol.96
, pp. E1596-E1605
-
-
Stanhope, K.L.1
-
13
-
-
84930419045
-
A dose–response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults
-
13 Stanhope, K.L., et al. A dose–response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am. J. Clin. Nutr. 101 (2015), 1144–1154.
-
(2015)
Am. J. Clin. Nutr.
, vol.101
, pp. 1144-1154
-
-
Stanhope, K.L.1
-
14
-
-
84904431240
-
Metabolic fate of fructose ingested with and without glucose in a mixed meal
-
14 Theytaz, F., et al. Metabolic fate of fructose ingested with and without glucose in a mixed meal. Nutrients 6 (2014), 2632–2649.
-
(2014)
Nutrients
, vol.6
, pp. 2632-2649
-
-
Theytaz, F.1
-
15
-
-
0027536484
-
Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors
-
15 Colville, C.A., et al. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem. J. 290 (1993), 701–706.
-
(1993)
Biochem. J.
, vol.290
, pp. 701-706
-
-
Colville, C.A.1
-
16
-
-
16644377810
-
Plasma D-glucose, D-fructose and insulin responses after oral administration of D-glucose, D-fructose and sucrose to normal rats
-
16 Prieto, P.G., et al. Plasma D-glucose, D-fructose and insulin responses after oral administration of D-glucose, D-fructose and sucrose to normal rats. J. Am. Coll. Nutr. 23 (2004), 414–419.
-
(2004)
J. Am. Coll. Nutr.
, vol.23
, pp. 414-419
-
-
Prieto, P.G.1
-
17
-
-
27844608412
-
Identification of human and rat FAD-AMP lyase (cyclic FMN forming) as ATP-dependent dihydroxyacetone kinases
-
17 Cabezas, A., et al. Identification of human and rat FAD-AMP lyase (cyclic FMN forming) as ATP-dependent dihydroxyacetone kinases. Biochem. Biophys Res. Commun. 338 (2005), 1682–1689.
-
(2005)
Biochem. Biophys Res. Commun.
, vol.338
, pp. 1682-1689
-
-
Cabezas, A.1
-
18
-
-
84874073240
-
2H enrichment distribution of hepatic glycogen from 2H2O reveals the contribution of dietary fructose to glycogen synthesis
-
18 Delgado, T.C., et al. 2H enrichment distribution of hepatic glycogen from 2H2O reveals the contribution of dietary fructose to glycogen synthesis. Am. J. Physiol. Endocrinol. Metab. 304 (2013), E384–E391.
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.304
, pp. E384-E391
-
-
Delgado, T.C.1
-
19
-
-
0030953106
-
Glucokinase regulatory Protein may interact with glucokinase in the hepatocyte nucleus
-
19 Brown, K.S., et al. Glucokinase regulatory Protein may interact with glucokinase in the hepatocyte nucleus. Diabetes 46 (1997), 179–186.
-
(1997)
Diabetes
, vol.46
, pp. 179-186
-
-
Brown, K.S.1
-
20
-
-
0031016101
-
Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes
-
20 Niculescu, L., et al. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes. Biochem. J. 321 (1997), 239–246.
-
(1997)
Biochem. J.
, vol.321
, pp. 239-246
-
-
Niculescu, L.1
-
21
-
-
49649099805
-
Glucokinase and molecular aspects of liver glycogen metabolism
-
21 Agius, L., Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 414 (2008), 1–18.
-
(2008)
Biochem. J.
, vol.414
, pp. 1-18
-
-
Agius, L.1
-
22
-
-
0034981831
-
Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans
-
22 Petersen, K.F., et al. Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes 50 (2001), 1263–1268.
-
(2001)
Diabetes
, vol.50
, pp. 1263-1268
-
-
Petersen, K.F.1
-
23
-
-
0034487957
-
Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults
-
23 Moore, M.C., et al. Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults. J. Clin. Endocrinol. Metab. 85 (2000), 4515–4519.
-
(2000)
J. Clin. Endocrinol. Metab.
, vol.85
, pp. 4515-4519
-
-
Moore, M.C.1
-
24
-
-
0018648819
-
Hormone-stimulated phosphorylation of liver phosphofructokinase in vivo
-
24 Kagimoto, T., Uyeda, K., Hormone-stimulated phosphorylation of liver phosphofructokinase in vivo. J. Biol. Chem. 254 (1979), 5584–5587.
-
(1979)
J. Biol. Chem.
, vol.254
, pp. 5584-5587
-
-
Kagimoto, T.1
Uyeda, K.2
-
25
-
-
0014216881
-
Purification and properties of rat liver fructokinase
-
25 Adelman, R.C., et al. Purification and properties of rat liver fructokinase. J. Biol. Chem. 242 (1967), 3360–3365.
-
(1967)
J. Biol. Chem.
, vol.242
, pp. 3360-3365
-
-
Adelman, R.C.1
-
27
-
-
78649723538
-
Both isoforms of ketohexokinase are dispensable for normal growth and development
-
27 Diggle, C.P., et al. Both isoforms of ketohexokinase are dispensable for normal growth and development. Physiol. Genomics 42A (2010), 235–243.
-
(2010)
Physiol. Genomics
, vol.42A
, pp. 235-243
-
-
Diggle, C.P.1
-
28
-
-
84863279522
-
Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice
-
28 Ishimoto, T., et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 4320–4325.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 4320-4325
-
-
Ishimoto, T.1
-
29
-
-
84887023370
-
High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase
-
29 Ishimoto, T., et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 58 (2013), 1632–1643.
-
(2013)
Hepatology
, vol.58
, pp. 1632-1643
-
-
Ishimoto, T.1
-
30
-
-
84940652690
-
Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK
-
30 Patel, C., et al. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309 (2015), R499–R509.
-
(2015)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.309
, pp. R499-R509
-
-
Patel, C.1
-
31
-
-
0028242029
-
Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP
-
31 Mahraoui, L., et al. Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP. Biochem. J. 301 (1994), 169–175.
-
(1994)
Biochem. J.
, vol.301
, pp. 169-175
-
-
Mahraoui, L.1
-
32
-
-
19644392907
-
Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway
-
32 Cui, X.L., et al. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 288 (2005), G1310–G1320.
-
(2005)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.288
, pp. G1310-G1320
-
-
Cui, X.L.1
-
33
-
-
84888857343
-
Induction by fructose force-feeding of histone H3 and H4 acetylation at their lysine residues around the Slc2a5 gene and its expression in mice
-
33 Honma, K., et al. Induction by fructose force-feeding of histone H3 and H4 acetylation at their lysine residues around the Slc2a5 gene and its expression in mice. Biosci. Biotechnol. Biochem. 77 (2013), 2188–2191.
-
(2013)
Biosci. Biotechnol. Biochem.
, vol.77
, pp. 2188-2191
-
-
Honma, K.1
-
34
-
-
79952858746
-
Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine
-
34 Suzuki, T., et al. Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine. Biochem. J. 435 (2011), 43–53.
-
(2011)
Biochem. J.
, vol.435
, pp. 43-53
-
-
Suzuki, T.1
-
35
-
-
84871709488
-
The role of the carbohydrate response element-binding protein in male fructose-fed rats
-
35 Erion, D.M., et al. The role of the carbohydrate response element-binding protein in male fructose-fed rats. Endocrinology 154 (2013), 36–44.
-
(2013)
Endocrinology
, vol.154
, pp. 36-44
-
-
Erion, D.M.1
-
36
-
-
2442435802
-
Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
-
36 Iizuka, K., et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 7281–7286.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 7281-7286
-
-
Iizuka, K.1
-
37
-
-
84868149993
-
Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver
-
37 Lanaspa, M.A., et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS ONE, 7, 2012, e47948.
-
(2012)
PLoS ONE
, vol.7
, pp. e47948
-
-
Lanaspa, M.A.1
-
38
-
-
42749092583
-
Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver
-
38 Koo, H-Y.Y., et al. Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochimica. biophys. acta 1782 (2008), 341–348.
-
(2008)
Biochimica. biophys. acta
, vol.1782
, pp. 341-348
-
-
Koo, H.-Y.Y.1
-
39
-
-
33749407193
-
ChREBP•Mlx is the principal mediator of glucose-induced gene expression in the liver
-
39 Ma, L., et al. ChREBP•Mlx is the principal mediator of glucose-induced gene expression in the liver. J. Biol. Chem. 281 (2006), 28721–28730.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 28721-28730
-
-
Ma, L.1
-
40
-
-
0023627259
-
31P magnetic resonance spectroscopy
-
31P magnetic resonance spectroscopy. Lancet 2 (1987), 931–934.
-
(1987)
Lancet
, vol.2
, pp. 931-934
-
-
Oberhaensli, R.D.1
-
41
-
-
0028147901
-
31P magnetic resonance spectroscopy
-
31P magnetic resonance spectroscopy. Pediatr. Res. 36 (1994), 436–440.
-
(1994)
Pediatr. Res.
, vol.36
, pp. 436-440
-
-
Boesiger, P.1
-
42
-
-
84924133141
-
Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans
-
42 Oppelt, S.A., et al. Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans. Mol. Genet. Metab. 114 (2015), 445–450.
-
(2015)
Mol. Genet. Metab.
, vol.114
, pp. 445-450
-
-
Oppelt, S.A.1
-
43
-
-
84984930218
-
Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome
-
43 Lanaspa, M.A., et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat. Commun., 4, 2013, 2434.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2434
-
-
Lanaspa, M.A.1
-
44
-
-
79960976746
-
Intestinal SR-BI is upregulated in insulin-resistant states and is associated with overproduction of intestinal apoB48-containing lipoproteins
-
44 Hayashi, A.A., et al. Intestinal SR-BI is upregulated in insulin-resistant states and is associated with overproduction of intestinal apoB48-containing lipoproteins. Am. J. Physiol. Gastrointest. Liver Physiol. 301 (2011), G326–G337.
-
(2011)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.301
, pp. G326-G337
-
-
Hayashi, A.A.1
-
45
-
-
0037199988
-
Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction
-
45 Haidari, M., et al. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J. Biol. Chem. 277 (2002), 31646–31655.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 31646-31655
-
-
Haidari, M.1
-
46
-
-
0016753983
-
Effects of a high fructose diet on lipogenic enzyme activities in some organs of rats fed ad libitum
-
46 Sugawa-Katayama, Y., Morita, N., Effects of a high fructose diet on lipogenic enzyme activities in some organs of rats fed ad libitum. J. Nutr. 105 (1975), 1377–1383.
-
(1975)
J. Nutr.
, vol.105
, pp. 1377-1383
-
-
Sugawa-Katayama, Y.1
Morita, N.2
-
47
-
-
0026520340
-
Mechanisms of fructose-induced hypertriglyceridaemia in the rat. Activation of hepatic pyruvate dehydrogenase through inhibition of pyruvate dehydrogenase kinase
-
47 Park, O.J., et al. Mechanisms of fructose-induced hypertriglyceridaemia in the rat. Activation of hepatic pyruvate dehydrogenase through inhibition of pyruvate dehydrogenase kinase. Biochem. J. 282 (1992), 753–757.
-
(1992)
Biochem. J.
, vol.282
, pp. 753-757
-
-
Park, O.J.1
-
48
-
-
0025295471
-
Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver
-
48 Katsurada, A., et al. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver. Eur. J. Biochem. 190 (1990), 427–433.
-
(1990)
Eur. J. Biochem.
, vol.190
, pp. 427-433
-
-
Katsurada, A.1
-
49
-
-
2942588527
-
Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms
-
49 Miyazaki, M., et al. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J. Biol. Chem. 279 (2004), 25164–25171.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 25164-25171
-
-
Miyazaki, M.1
-
50
-
-
0036084269
-
Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha
-
50 Nagai, Y., et al. Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am. J. Physiol. Endocrinol. Metab. 282 (2002), E1180–E1190.
-
(2002)
Am. J. Physiol. Endocrinol. Metab.
, vol.282
, pp. E1180-E1190
-
-
Nagai, Y.1
-
51
-
-
38649116056
-
Selective versus total insulin resistance: a pathogenic paradox
-
51 Brown, M.S., Goldstein, J.L., Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7 (2008), 95–96.
-
(2008)
Cell Metab.
, vol.7
, pp. 95-96
-
-
Brown, M.S.1
Goldstein, J.L.2
-
52
-
-
77649264504
-
Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
-
52 Li, S., et al. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Nat. Acad. Sci. 107 (2010), 3441–3446.
-
(2010)
Proc. Nat. Acad. Sci.
, vol.107
, pp. 3441-3446
-
-
Li, S.1
-
53
-
-
79961165137
-
mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
53 Peterson, Timothy R., et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146 (2011), 408–420.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
-
54
-
-
84862023939
-
Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression
-
54 Haas, J.T., et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 15 (2012), 873–884.
-
(2012)
Cell Metab.
, vol.15
, pp. 873-884
-
-
Haas, J.T.1
-
55
-
-
33746536677
-
Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis
-
55 Uyeda, K., Repa, J.J., Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4 (2006), 107–110.
-
(2006)
Cell Metab.
, vol.4
, pp. 107-110
-
-
Uyeda, K.1
Repa, J.J.2
-
56
-
-
70350131993
-
Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus
-
56 Koo, H.Y., et al. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus. Biochem. Biophys. Res. Commun. 390 (2009), 285–289.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.390
, pp. 285-289
-
-
Koo, H.Y.1
-
57
-
-
84859921736
-
A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
-
57 Herman, M.A., et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484 (2012), 333–338.
-
(2012)
Nature
, vol.484
, pp. 333-338
-
-
Herman, M.A.1
-
58
-
-
84952912438
-
Tissue specific effects of dietary carbohydrates and obesity on ChREBPalpha and ChREBPbeta expression
-
58 Stamatikos, A.D., et al. Tissue specific effects of dietary carbohydrates and obesity on ChREBPalpha and ChREBPbeta expression. Lipids 51 (2016), 95–104.
-
(2016)
Lipids
, vol.51
, pp. 95-104
-
-
Stamatikos, A.D.1
-
59
-
-
84876998618
-
Novel insights into ChREBP regulation and function
-
59 Filhoulaud, G., et al. Novel insights into ChREBP regulation and function. Trends in endocrinol. metab. 24 (2013), 257–268.
-
(2013)
Trends in endocrinol. metab.
, vol.24
, pp. 257-268
-
-
Filhoulaud, G.1
-
60
-
-
38649084407
-
Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides
-
60 Kooner, J.S., et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat. genet. 40 (2008), 149–151.
-
(2008)
Nat. genet.
, vol.40
, pp. 149-151
-
-
Kooner, J.S.1
-
61
-
-
38649132270
-
Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans
-
61 Kathiresan, S., et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. genet. 40 (2008), 189–197.
-
(2008)
Nat. genet.
, vol.40
, pp. 189-197
-
-
Kathiresan, S.1
-
62
-
-
80055024880
-
Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma
-
62 Chambers, J.C., et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. genet. 43 (2011), 1131–1138.
-
(2011)
Nat. genet.
, vol.43
, pp. 1131-1138
-
-
Chambers, J.C.1
-
63
-
-
84947899575
-
Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
-
63 Kottgen, A., et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. genet. 45 (2013), 145–154.
-
(2013)
Nat. genet.
, vol.45
, pp. 145-154
-
-
Kottgen, A.1
-
64
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
64 Badman, M.K., et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5 (2007), 426–437.
-
(2007)
Cell Metab.
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
-
65
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
65 Kharitonenkov, A., et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115 (2005), 1627–1635.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
-
66
-
-
77955474305
-
Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
-
66 Dushay, J., et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139 (2010), 456–463.
-
(2010)
Gastroenterology
, vol.139
, pp. 456-463
-
-
Dushay, J.1
-
67
-
-
84901821975
-
FGF21-based pharmacotherapy–potential utility for metabolic disorders
-
67 Gimeno, R.E., Moller, D.E., FGF21-based pharmacotherapy–potential utility for metabolic disorders. Trends endocrinol. metab. 25 (2014), 303–311.
-
(2014)
Trends endocrinol. metab.
, vol.25
, pp. 303-311
-
-
Gimeno, R.E.1
Moller, D.E.2
-
68
-
-
67649823642
-
FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
68 Potthoff, M.J., et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 10853–10858.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 10853-10858
-
-
Potthoff, M.J.1
-
69
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
69 Inagaki, T., et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5 (2007), 415–425.
-
(2007)
Cell Metab.
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
-
70
-
-
69249238074
-
Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes
-
70 Iizuka, K., et al. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS letters 583 (2009), 2882–2886.
-
(2009)
FEBS letters
, vol.583
, pp. 2882-2886
-
-
Iizuka, K.1
-
71
-
-
71949094496
-
Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction
-
71 Sanchez, J., et al. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction. Endocrinology 150 (2009), 5341–5350.
-
(2009)
Endocrinology
, vol.150
, pp. 5341-5350
-
-
Sanchez, J.1
-
72
-
-
84920722614
-
Fructose ingestion acutely stimulates circulating FGF21 levels in humans
-
72 Dushay, J.R., et al. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol. Metab. 4 (2015), 51–57.
-
(2015)
Mol. Metab.
, vol.4
, pp. 51-57
-
-
Dushay, J.R.1
-
73
-
-
84957949211
-
FGF21 regulates sweet and alcohol preference
-
73 Talukdar, S., et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 23 (2016), 344–349.
-
(2016)
Cell Metab.
, vol.23
, pp. 344-349
-
-
Talukdar, S.1
-
74
-
-
84957975315
-
FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver
-
74 von Holstein-Rathlou, S., et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 23 (2016), 335–343.
-
(2016)
Cell Metab.
, vol.23
, pp. 335-343
-
-
von Holstein-Rathlou, S.1
-
75
-
-
84875914619
-
Novel locus including FGF21 is associated with dietary macronutrient intake
-
75 Chu, A.Y., et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum. mol. genet. 22 (2013), 1895–1902.
-
(2013)
Hum. mol. genet.
, vol.22
, pp. 1895-1902
-
-
Chu, A.Y.1
-
76
-
-
84875922294
-
Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake
-
76 Tanaka, T., et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am. J. Clin. Nutr. 97 (2013), 1395–1402.
-
(2013)
Am. J. Clin. Nutr.
, vol.97
, pp. 1395-1402
-
-
Tanaka, T.1
-
77
-
-
0037127204
-
Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor
-
77 Lin, J., et al. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277 (2002), 1645–1648.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 1645-1648
-
-
Lin, J.1
-
78
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
78 Lin, J., et al. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1 (2005), 361–370.
-
(2005)
Cell Metab.
, vol.1
, pp. 361-370
-
-
Lin, J.1
-
79
-
-
19944430411
-
Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP
-
79 Lin, J., et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 120 (2005), 261–273.
-
(2005)
Cell
, vol.120
, pp. 261-273
-
-
Lin, J.1
-
80
-
-
84883229757
-
PGC-1beta and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration-dependent manner
-
80 Chambers, K.T., et al. PGC-1beta and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration-dependent manner. Mol. Metab. 2 (2013), 194–204.
-
(2013)
Mol. Metab.
, vol.2
, pp. 194-204
-
-
Chambers, K.T.1
-
81
-
-
60649109153
-
The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance
-
81 Nagai, Y., et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 9 (2009), 252–264.
-
(2009)
Cell Metab.
, vol.9
, pp. 252-264
-
-
Nagai, Y.1
-
82
-
-
45849137877
-
Regulation of hepatic lipogenesis by the transcription factor XBP1
-
82 Lee, A.H., et al. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320 (2008), 1492–1496.
-
(2008)
Science
, vol.320
, pp. 1492-1496
-
-
Lee, A.H.1
-
83
-
-
84919776840
-
Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice
-
83 Wang, H., et al. Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice. Endocrinology 156 (2015), 169–181.
-
(2015)
Endocrinology
, vol.156
, pp. 169-181
-
-
Wang, H.1
-
84
-
-
75749144215
-
XBP1: the last two decades
-
84 Glimcher, L.H., XBP1: the last two decades. Ann. Rheum. Dis. 69 (2010), i67–i71.
-
(2010)
Ann. Rheum. Dis.
, vol.69
, pp. i67-i71
-
-
Glimcher, L.H.1
-
85
-
-
84862908245
-
Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice
-
85 Jurczak, M.J., et al. Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J. Biol. Chem. 287 (2012), 2558–2567.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 2558-2567
-
-
Jurczak, M.J.1
-
86
-
-
84872005699
-
Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial
-
86 Aeberli, I., et al. Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care 36 (2013), 150–156.
-
(2013)
Diabetes Care
, vol.36
, pp. 150-156
-
-
Aeberli, I.1
-
87
-
-
3543029821
-
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease
-
87 Samuel, V.T., et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279 (2004), 32345–32353.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 32345-32353
-
-
Samuel, V.T.1
-
88
-
-
0026040907
-
Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats
-
88 Kraegen, E.W., et al. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40 (1991), 1397–1403.
-
(1991)
Diabetes
, vol.40
, pp. 1397-1403
-
-
Kraegen, E.W.1
-
89
-
-
0345086474
-
Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade
-
89 Griffin, M.E., et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48 (1999), 1270–1274.
-
(1999)
Diabetes
, vol.48
, pp. 1270-1274
-
-
Griffin, M.E.1
-
90
-
-
8544244084
-
PKC-theta knockout mice are protected from fat-induced insulin resistance
-
90 Kim, J.K., et al. PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114 (2004), 823–827.
-
(2004)
J Clin Invest
, vol.114
, pp. 823-827
-
-
Kim, J.K.1
-
91
-
-
0035340548
-
Increased protein kinase C theta in skeletal muscle of diabetic patients
-
91 Itani, S.I., et al. Increased protein kinase C theta in skeletal muscle of diabetic patients. Metabolism 50 (2001), 553–557.
-
(2001)
Metabolism
, vol.50
, pp. 553-557
-
-
Itani, S.I.1
-
92
-
-
33644654777
-
Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2
-
92 Savage, D.B., et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 116 (2006), 817–824.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 817-824
-
-
Savage, D.B.1
-
93
-
-
53449099325
-
Inhibition of ADRP prevents diet-induced insulin resistance
-
93 Varela, G.M., et al. Inhibition of ADRP prevents diet-induced insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008), G621–G628.
-
(2008)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.295
, pp. G621-G628
-
-
Varela, G.M.1
-
94
-
-
80053627289
-
Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease
-
94 Kumashiro, N., et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Nat. Acad. Sci. U. S. A. 108 (2011), 16381–16385.
-
(2011)
Proc. Nat. Acad. Sci. U. S. A.
, vol.108
, pp. 16381-16385
-
-
Kumashiro, N.1
-
95
-
-
33847404482
-
Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease
-
95 Samuel, V.T., et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117 (2007), 739–745.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 739-745
-
-
Samuel, V.T.1
-
96
-
-
84904337541
-
Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding
-
96 Coate, K.C., et al. Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding. Am. J. Endocrinol. Metab. 307 (2014), E151–E160.
-
(2014)
Am. J. Endocrinol. Metab.
, vol.307
, pp. E151-E160
-
-
Coate, K.C.1
-
97
-
-
17744374590
-
The use and misuse of fruit juice in pediatrics
-
97 Committee on, N., The use and misuse of fruit juice in pediatrics. Pediatrics 107 (2001), 1210–1213.
-
(2001)
Pediatrics
, vol.107
, pp. 1210-1213
-
-
Committee on, N.1
-
98
-
-
84924303258
-
Snacks, sweetened Beverages, added sugars, and schools
-
98 Murray, R., et al. Snacks, sweetened Beverages, added sugars, and schools. Pediatrics 135 (2015), 575–583.
-
(2015)
Pediatrics
, vol.135
, pp. 575-583
-
-
Murray, R.1
-
99
-
-
33645036507
-
Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: a randomized, controlled pilot study
-
99 Ebbeling, C.B., et al. Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: a randomized, controlled pilot study. Pediatrics 117 (2006), 673–680.
-
(2006)
Pediatrics
, vol.117
, pp. 673-680
-
-
Ebbeling, C.B.1
-
100
-
-
84959536714
-
Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: observational study
-
100 Colchero, M.A., et al. Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: observational study. Brit. Med. J., 352, 2016, h6704.
-
(2016)
Brit. Med. J.
, vol.352
, pp. h6704
-
-
Colchero, M.A.1
|