메뉴 건너뛰기




Volumn 27, Issue 10, 2016, Pages 719-730

The Sweet Path to Metabolic Demise: Fructose and Lipid Synthesis

Author keywords

[No Author keywords available]

Indexed keywords

CARBOHYDRATE BINDING PROTEIN; CARBOHYDRATE RESPONSIVE ELEMENT BINDING PROTEIN; FIBROBLAST GROWTH FACTOR 21; FRUCTOSE; KETOHEXOKINASE; LIPID; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1BETA; STEROL REGULATORY ELEMENT BINDING PROTEIN 1C; UNCLASSIFIED DRUG; INSULIN;

EID: 84977079006     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2016.06.005     Document Type: Review
Times cited : (173)

References (100)
  • 1
    • 84991354939 scopus 로고    scopus 로고
    • National Institute of Diabetes and Digestive and Kidney Diseases () Overweight and Obesity Statistics.
    • 1 National Institute of Diabetes and Digestive and Kidney Diseases (2016) Overweight and Obesity Statistics. http://www.niddk.nih.gov/health-information/health-statistics/Pages/overweight-obesity-statistics.aspx.
    • (2016)
  • 2
    • 2142815151 scopus 로고    scopus 로고
    • Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity
    • 2 Bray, G.A., et al. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79 (2004), 537–543.
    • (2004) Am. J. Clin. Nutr. , vol.79 , pp. 537-543
    • Bray, G.A.1
  • 3
    • 77952096918 scopus 로고    scopus 로고
    • The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome.
    • 3 Lim, J.S. et al. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7, 251-264.
    • Nat Rev Gastroenterol Hepatol , vol.7 , pp. 251-264
    • Lim, J.S.1
  • 4
    • 66749107383 scopus 로고    scopus 로고
    • National estimates of dietary fructose intake increased from 1977 to 2004 in the United States
    • 4 Marriott, B.P., et al. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 139 (2009), 1228S–1235S.
    • (2009) J. Nutr. , vol.139 , pp. 1228S-1235S
    • Marriott, B.P.1
  • 5
    • 84899988517 scopus 로고    scopus 로고
    • Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study
    • 5 Green, A.K., et al. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study. Obesity 22 (2014), E157–E163.
    • (2014) Obesity , vol.22 , pp. E157-E163
    • Green, A.K.1
  • 6
    • 84904543345 scopus 로고    scopus 로고
    • Sugar-sweetened beverage consumption is associated with abdominal fat partitioning in healthy adults
    • 6 Ma, J., et al. Sugar-sweetened beverage consumption is associated with abdominal fat partitioning in healthy adults. J. Nutr. 144 (2014), 1283–1290.
    • (2014) J. Nutr. , vol.144 , pp. 1283-1290
    • Ma, J.1
  • 7
    • 84991319580 scopus 로고    scopus 로고
    • Sugar-sweetened beverage intake is associated with fatty liver in the Framingham Offspring Study
    • 263
    • 7 Ma, J., et al. Sugar-sweetened beverage intake is associated with fatty liver in the Framingham Offspring Study. The FASEB Journal, 28, 2014, 267 263.
    • (2014) The FASEB Journal , vol.28 , pp. 267
    • Ma, J.1
  • 8
    • 66449093225 scopus 로고    scopus 로고
    • Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans
    • 8 Stanhope, K.L., et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119 (2009), 1322–1334.
    • (2009) J. Clin. Invest. , vol.119 , pp. 1322-1334
    • Stanhope, K.L.1
  • 9
    • 84930809200 scopus 로고    scopus 로고
    • Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat
    • 9 Schwarz, J.M., et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab. 100 (2015), 2434–2442.
    • (2015) J. Clin. Endocrinol. Metab. , vol.100 , pp. 2434-2442
    • Schwarz, J.M.1
  • 10
    • 66849124938 scopus 로고    scopus 로고
    • Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes
    • 10 Le, K.A., et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am. J. Clin. Nutr. 89 (2009), 1760–1765.
    • (2009) Am. J. Clin. Nutr. , vol.89 , pp. 1760-1765
    • Le, K.A.1
  • 11
    • 66149120712 scopus 로고    scopus 로고
    • Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses
    • 11 Teff, K.L., et al. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J. Clin. Endocrinol. Metab. 94 (2009), 1562–1569.
    • (2009) J. Clin. Endocrinol. Metab. , vol.94 , pp. 1562-1569
    • Teff, K.L.1
  • 12
    • 80053541911 scopus 로고    scopus 로고
    • Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women
    • 12 Stanhope, K.L., et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J. Clin. Endocrinol. Metab. 96 (2011), E1596–E1605.
    • (2011) J. Clin. Endocrinol. Metab. , vol.96 , pp. E1596-E1605
    • Stanhope, K.L.1
  • 13
    • 84930419045 scopus 로고    scopus 로고
    • A dose–response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults
    • 13 Stanhope, K.L., et al. A dose–response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am. J. Clin. Nutr. 101 (2015), 1144–1154.
    • (2015) Am. J. Clin. Nutr. , vol.101 , pp. 1144-1154
    • Stanhope, K.L.1
  • 14
    • 84904431240 scopus 로고    scopus 로고
    • Metabolic fate of fructose ingested with and without glucose in a mixed meal
    • 14 Theytaz, F., et al. Metabolic fate of fructose ingested with and without glucose in a mixed meal. Nutrients 6 (2014), 2632–2649.
    • (2014) Nutrients , vol.6 , pp. 2632-2649
    • Theytaz, F.1
  • 15
    • 0027536484 scopus 로고
    • Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors
    • 15 Colville, C.A., et al. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem. J. 290 (1993), 701–706.
    • (1993) Biochem. J. , vol.290 , pp. 701-706
    • Colville, C.A.1
  • 16
    • 16644377810 scopus 로고    scopus 로고
    • Plasma D-glucose, D-fructose and insulin responses after oral administration of D-glucose, D-fructose and sucrose to normal rats
    • 16 Prieto, P.G., et al. Plasma D-glucose, D-fructose and insulin responses after oral administration of D-glucose, D-fructose and sucrose to normal rats. J. Am. Coll. Nutr. 23 (2004), 414–419.
    • (2004) J. Am. Coll. Nutr. , vol.23 , pp. 414-419
    • Prieto, P.G.1
  • 17
    • 27844608412 scopus 로고    scopus 로고
    • Identification of human and rat FAD-AMP lyase (cyclic FMN forming) as ATP-dependent dihydroxyacetone kinases
    • 17 Cabezas, A., et al. Identification of human and rat FAD-AMP lyase (cyclic FMN forming) as ATP-dependent dihydroxyacetone kinases. Biochem. Biophys Res. Commun. 338 (2005), 1682–1689.
    • (2005) Biochem. Biophys Res. Commun. , vol.338 , pp. 1682-1689
    • Cabezas, A.1
  • 18
    • 84874073240 scopus 로고    scopus 로고
    • 2H enrichment distribution of hepatic glycogen from 2H2O reveals the contribution of dietary fructose to glycogen synthesis
    • 18 Delgado, T.C., et al. 2H enrichment distribution of hepatic glycogen from 2H2O reveals the contribution of dietary fructose to glycogen synthesis. Am. J. Physiol. Endocrinol. Metab. 304 (2013), E384–E391.
    • (2013) Am. J. Physiol. Endocrinol. Metab. , vol.304 , pp. E384-E391
    • Delgado, T.C.1
  • 19
    • 0030953106 scopus 로고    scopus 로고
    • Glucokinase regulatory Protein may interact with glucokinase in the hepatocyte nucleus
    • 19 Brown, K.S., et al. Glucokinase regulatory Protein may interact with glucokinase in the hepatocyte nucleus. Diabetes 46 (1997), 179–186.
    • (1997) Diabetes , vol.46 , pp. 179-186
    • Brown, K.S.1
  • 20
    • 0031016101 scopus 로고    scopus 로고
    • Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes
    • 20 Niculescu, L., et al. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes. Biochem. J. 321 (1997), 239–246.
    • (1997) Biochem. J. , vol.321 , pp. 239-246
    • Niculescu, L.1
  • 21
    • 49649099805 scopus 로고    scopus 로고
    • Glucokinase and molecular aspects of liver glycogen metabolism
    • 21 Agius, L., Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 414 (2008), 1–18.
    • (2008) Biochem. J. , vol.414 , pp. 1-18
    • Agius, L.1
  • 22
    • 0034981831 scopus 로고    scopus 로고
    • Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans
    • 22 Petersen, K.F., et al. Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes 50 (2001), 1263–1268.
    • (2001) Diabetes , vol.50 , pp. 1263-1268
    • Petersen, K.F.1
  • 23
    • 0034487957 scopus 로고    scopus 로고
    • Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults
    • 23 Moore, M.C., et al. Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults. J. Clin. Endocrinol. Metab. 85 (2000), 4515–4519.
    • (2000) J. Clin. Endocrinol. Metab. , vol.85 , pp. 4515-4519
    • Moore, M.C.1
  • 24
    • 0018648819 scopus 로고
    • Hormone-stimulated phosphorylation of liver phosphofructokinase in vivo
    • 24 Kagimoto, T., Uyeda, K., Hormone-stimulated phosphorylation of liver phosphofructokinase in vivo. J. Biol. Chem. 254 (1979), 5584–5587.
    • (1979) J. Biol. Chem. , vol.254 , pp. 5584-5587
    • Kagimoto, T.1    Uyeda, K.2
  • 25
    • 0014216881 scopus 로고
    • Purification and properties of rat liver fructokinase
    • 25 Adelman, R.C., et al. Purification and properties of rat liver fructokinase. J. Biol. Chem. 242 (1967), 3360–3365.
    • (1967) J. Biol. Chem. , vol.242 , pp. 3360-3365
    • Adelman, R.C.1
  • 27
    • 78649723538 scopus 로고    scopus 로고
    • Both isoforms of ketohexokinase are dispensable for normal growth and development
    • 27 Diggle, C.P., et al. Both isoforms of ketohexokinase are dispensable for normal growth and development. Physiol. Genomics 42A (2010), 235–243.
    • (2010) Physiol. Genomics , vol.42A , pp. 235-243
    • Diggle, C.P.1
  • 28
    • 84863279522 scopus 로고    scopus 로고
    • Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice
    • 28 Ishimoto, T., et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 4320–4325.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 4320-4325
    • Ishimoto, T.1
  • 29
    • 84887023370 scopus 로고    scopus 로고
    • High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase
    • 29 Ishimoto, T., et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 58 (2013), 1632–1643.
    • (2013) Hepatology , vol.58 , pp. 1632-1643
    • Ishimoto, T.1
  • 30
    • 84940652690 scopus 로고    scopus 로고
    • Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK
    • 30 Patel, C., et al. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309 (2015), R499–R509.
    • (2015) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.309 , pp. R499-R509
    • Patel, C.1
  • 31
    • 0028242029 scopus 로고
    • Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP
    • 31 Mahraoui, L., et al. Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP. Biochem. J. 301 (1994), 169–175.
    • (1994) Biochem. J. , vol.301 , pp. 169-175
    • Mahraoui, L.1
  • 32
    • 19644392907 scopus 로고    scopus 로고
    • Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway
    • 32 Cui, X.L., et al. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 288 (2005), G1310–G1320.
    • (2005) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.288 , pp. G1310-G1320
    • Cui, X.L.1
  • 33
    • 84888857343 scopus 로고    scopus 로고
    • Induction by fructose force-feeding of histone H3 and H4 acetylation at their lysine residues around the Slc2a5 gene and its expression in mice
    • 33 Honma, K., et al. Induction by fructose force-feeding of histone H3 and H4 acetylation at their lysine residues around the Slc2a5 gene and its expression in mice. Biosci. Biotechnol. Biochem. 77 (2013), 2188–2191.
    • (2013) Biosci. Biotechnol. Biochem. , vol.77 , pp. 2188-2191
    • Honma, K.1
  • 34
    • 79952858746 scopus 로고    scopus 로고
    • Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine
    • 34 Suzuki, T., et al. Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine. Biochem. J. 435 (2011), 43–53.
    • (2011) Biochem. J. , vol.435 , pp. 43-53
    • Suzuki, T.1
  • 35
    • 84871709488 scopus 로고    scopus 로고
    • The role of the carbohydrate response element-binding protein in male fructose-fed rats
    • 35 Erion, D.M., et al. The role of the carbohydrate response element-binding protein in male fructose-fed rats. Endocrinology 154 (2013), 36–44.
    • (2013) Endocrinology , vol.154 , pp. 36-44
    • Erion, D.M.1
  • 36
    • 2442435802 scopus 로고    scopus 로고
    • Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
    • 36 Iizuka, K., et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 7281–7286.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 7281-7286
    • Iizuka, K.1
  • 37
    • 84868149993 scopus 로고    scopus 로고
    • Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver
    • 37 Lanaspa, M.A., et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS ONE, 7, 2012, e47948.
    • (2012) PLoS ONE , vol.7 , pp. e47948
    • Lanaspa, M.A.1
  • 38
    • 42749092583 scopus 로고    scopus 로고
    • Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver
    • 38 Koo, H-Y.Y., et al. Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochimica. biophys. acta 1782 (2008), 341–348.
    • (2008) Biochimica. biophys. acta , vol.1782 , pp. 341-348
    • Koo, H.-Y.Y.1
  • 39
    • 33749407193 scopus 로고    scopus 로고
    • ChREBP•Mlx is the principal mediator of glucose-induced gene expression in the liver
    • 39 Ma, L., et al. ChREBP•Mlx is the principal mediator of glucose-induced gene expression in the liver. J. Biol. Chem. 281 (2006), 28721–28730.
    • (2006) J. Biol. Chem. , vol.281 , pp. 28721-28730
    • Ma, L.1
  • 40
    • 0023627259 scopus 로고
    • 31P magnetic resonance spectroscopy
    • 31P magnetic resonance spectroscopy. Lancet 2 (1987), 931–934.
    • (1987) Lancet , vol.2 , pp. 931-934
    • Oberhaensli, R.D.1
  • 41
    • 0028147901 scopus 로고
    • 31P magnetic resonance spectroscopy
    • 31P magnetic resonance spectroscopy. Pediatr. Res. 36 (1994), 436–440.
    • (1994) Pediatr. Res. , vol.36 , pp. 436-440
    • Boesiger, P.1
  • 42
    • 84924133141 scopus 로고    scopus 로고
    • Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans
    • 42 Oppelt, S.A., et al. Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans. Mol. Genet. Metab. 114 (2015), 445–450.
    • (2015) Mol. Genet. Metab. , vol.114 , pp. 445-450
    • Oppelt, S.A.1
  • 43
    • 84984930218 scopus 로고    scopus 로고
    • Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome
    • 43 Lanaspa, M.A., et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat. Commun., 4, 2013, 2434.
    • (2013) Nat. Commun. , vol.4 , pp. 2434
    • Lanaspa, M.A.1
  • 44
    • 79960976746 scopus 로고    scopus 로고
    • Intestinal SR-BI is upregulated in insulin-resistant states and is associated with overproduction of intestinal apoB48-containing lipoproteins
    • 44 Hayashi, A.A., et al. Intestinal SR-BI is upregulated in insulin-resistant states and is associated with overproduction of intestinal apoB48-containing lipoproteins. Am. J. Physiol. Gastrointest. Liver Physiol. 301 (2011), G326–G337.
    • (2011) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.301 , pp. G326-G337
    • Hayashi, A.A.1
  • 45
    • 0037199988 scopus 로고    scopus 로고
    • Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction
    • 45 Haidari, M., et al. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J. Biol. Chem. 277 (2002), 31646–31655.
    • (2002) J. Biol. Chem. , vol.277 , pp. 31646-31655
    • Haidari, M.1
  • 46
    • 0016753983 scopus 로고
    • Effects of a high fructose diet on lipogenic enzyme activities in some organs of rats fed ad libitum
    • 46 Sugawa-Katayama, Y., Morita, N., Effects of a high fructose diet on lipogenic enzyme activities in some organs of rats fed ad libitum. J. Nutr. 105 (1975), 1377–1383.
    • (1975) J. Nutr. , vol.105 , pp. 1377-1383
    • Sugawa-Katayama, Y.1    Morita, N.2
  • 47
    • 0026520340 scopus 로고
    • Mechanisms of fructose-induced hypertriglyceridaemia in the rat. Activation of hepatic pyruvate dehydrogenase through inhibition of pyruvate dehydrogenase kinase
    • 47 Park, O.J., et al. Mechanisms of fructose-induced hypertriglyceridaemia in the rat. Activation of hepatic pyruvate dehydrogenase through inhibition of pyruvate dehydrogenase kinase. Biochem. J. 282 (1992), 753–757.
    • (1992) Biochem. J. , vol.282 , pp. 753-757
    • Park, O.J.1
  • 48
    • 0025295471 scopus 로고
    • Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver
    • 48 Katsurada, A., et al. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver. Eur. J. Biochem. 190 (1990), 427–433.
    • (1990) Eur. J. Biochem. , vol.190 , pp. 427-433
    • Katsurada, A.1
  • 49
    • 2942588527 scopus 로고    scopus 로고
    • Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms
    • 49 Miyazaki, M., et al. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J. Biol. Chem. 279 (2004), 25164–25171.
    • (2004) J. Biol. Chem. , vol.279 , pp. 25164-25171
    • Miyazaki, M.1
  • 50
    • 0036084269 scopus 로고    scopus 로고
    • Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha
    • 50 Nagai, Y., et al. Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am. J. Physiol. Endocrinol. Metab. 282 (2002), E1180–E1190.
    • (2002) Am. J. Physiol. Endocrinol. Metab. , vol.282 , pp. E1180-E1190
    • Nagai, Y.1
  • 51
    • 38649116056 scopus 로고    scopus 로고
    • Selective versus total insulin resistance: a pathogenic paradox
    • 51 Brown, M.S., Goldstein, J.L., Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7 (2008), 95–96.
    • (2008) Cell Metab. , vol.7 , pp. 95-96
    • Brown, M.S.1    Goldstein, J.L.2
  • 52
    • 77649264504 scopus 로고    scopus 로고
    • Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
    • 52 Li, S., et al. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Nat. Acad. Sci. 107 (2010), 3441–3446.
    • (2010) Proc. Nat. Acad. Sci. , vol.107 , pp. 3441-3446
    • Li, S.1
  • 53
    • 79961165137 scopus 로고    scopus 로고
    • mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • 53 Peterson, Timothy R., et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146 (2011), 408–420.
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1
  • 54
    • 84862023939 scopus 로고    scopus 로고
    • Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression
    • 54 Haas, J.T., et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 15 (2012), 873–884.
    • (2012) Cell Metab. , vol.15 , pp. 873-884
    • Haas, J.T.1
  • 55
    • 33746536677 scopus 로고    scopus 로고
    • Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis
    • 55 Uyeda, K., Repa, J.J., Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4 (2006), 107–110.
    • (2006) Cell Metab. , vol.4 , pp. 107-110
    • Uyeda, K.1    Repa, J.J.2
  • 56
    • 70350131993 scopus 로고    scopus 로고
    • Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus
    • 56 Koo, H.Y., et al. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus. Biochem. Biophys. Res. Commun. 390 (2009), 285–289.
    • (2009) Biochem. Biophys. Res. Commun. , vol.390 , pp. 285-289
    • Koo, H.Y.1
  • 57
    • 84859921736 scopus 로고    scopus 로고
    • A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
    • 57 Herman, M.A., et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484 (2012), 333–338.
    • (2012) Nature , vol.484 , pp. 333-338
    • Herman, M.A.1
  • 58
    • 84952912438 scopus 로고    scopus 로고
    • Tissue specific effects of dietary carbohydrates and obesity on ChREBPalpha and ChREBPbeta expression
    • 58 Stamatikos, A.D., et al. Tissue specific effects of dietary carbohydrates and obesity on ChREBPalpha and ChREBPbeta expression. Lipids 51 (2016), 95–104.
    • (2016) Lipids , vol.51 , pp. 95-104
    • Stamatikos, A.D.1
  • 59
    • 84876998618 scopus 로고    scopus 로고
    • Novel insights into ChREBP regulation and function
    • 59 Filhoulaud, G., et al. Novel insights into ChREBP regulation and function. Trends in endocrinol. metab. 24 (2013), 257–268.
    • (2013) Trends in endocrinol. metab. , vol.24 , pp. 257-268
    • Filhoulaud, G.1
  • 60
    • 38649084407 scopus 로고    scopus 로고
    • Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides
    • 60 Kooner, J.S., et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat. genet. 40 (2008), 149–151.
    • (2008) Nat. genet. , vol.40 , pp. 149-151
    • Kooner, J.S.1
  • 61
    • 38649132270 scopus 로고    scopus 로고
    • Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans
    • 61 Kathiresan, S., et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. genet. 40 (2008), 189–197.
    • (2008) Nat. genet. , vol.40 , pp. 189-197
    • Kathiresan, S.1
  • 62
    • 80055024880 scopus 로고    scopus 로고
    • Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma
    • 62 Chambers, J.C., et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. genet. 43 (2011), 1131–1138.
    • (2011) Nat. genet. , vol.43 , pp. 1131-1138
    • Chambers, J.C.1
  • 63
    • 84947899575 scopus 로고    scopus 로고
    • Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
    • 63 Kottgen, A., et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. genet. 45 (2013), 145–154.
    • (2013) Nat. genet. , vol.45 , pp. 145-154
    • Kottgen, A.1
  • 64
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
    • 64 Badman, M.K., et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5 (2007), 426–437.
    • (2007) Cell Metab. , vol.5 , pp. 426-437
    • Badman, M.K.1
  • 65
    • 20444435873 scopus 로고    scopus 로고
    • FGF-21 as a novel metabolic regulator
    • 65 Kharitonenkov, A., et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115 (2005), 1627–1635.
    • (2005) J. Clin. Invest. , vol.115 , pp. 1627-1635
    • Kharitonenkov, A.1
  • 66
    • 77955474305 scopus 로고    scopus 로고
    • Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
    • 66 Dushay, J., et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139 (2010), 456–463.
    • (2010) Gastroenterology , vol.139 , pp. 456-463
    • Dushay, J.1
  • 67
    • 84901821975 scopus 로고    scopus 로고
    • FGF21-based pharmacotherapy–potential utility for metabolic disorders
    • 67 Gimeno, R.E., Moller, D.E., FGF21-based pharmacotherapy–potential utility for metabolic disorders. Trends endocrinol. metab. 25 (2014), 303–311.
    • (2014) Trends endocrinol. metab. , vol.25 , pp. 303-311
    • Gimeno, R.E.1    Moller, D.E.2
  • 68
    • 67649823642 scopus 로고    scopus 로고
    • FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
    • 68 Potthoff, M.J., et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 10853–10858.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 10853-10858
    • Potthoff, M.J.1
  • 69
    • 34249686631 scopus 로고    scopus 로고
    • Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
    • 69 Inagaki, T., et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5 (2007), 415–425.
    • (2007) Cell Metab. , vol.5 , pp. 415-425
    • Inagaki, T.1
  • 70
    • 69249238074 scopus 로고    scopus 로고
    • Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes
    • 70 Iizuka, K., et al. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS letters 583 (2009), 2882–2886.
    • (2009) FEBS letters , vol.583 , pp. 2882-2886
    • Iizuka, K.1
  • 71
    • 71949094496 scopus 로고    scopus 로고
    • Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction
    • 71 Sanchez, J., et al. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction. Endocrinology 150 (2009), 5341–5350.
    • (2009) Endocrinology , vol.150 , pp. 5341-5350
    • Sanchez, J.1
  • 72
    • 84920722614 scopus 로고    scopus 로고
    • Fructose ingestion acutely stimulates circulating FGF21 levels in humans
    • 72 Dushay, J.R., et al. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol. Metab. 4 (2015), 51–57.
    • (2015) Mol. Metab. , vol.4 , pp. 51-57
    • Dushay, J.R.1
  • 73
    • 84957949211 scopus 로고    scopus 로고
    • FGF21 regulates sweet and alcohol preference
    • 73 Talukdar, S., et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 23 (2016), 344–349.
    • (2016) Cell Metab. , vol.23 , pp. 344-349
    • Talukdar, S.1
  • 74
    • 84957975315 scopus 로고    scopus 로고
    • FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver
    • 74 von Holstein-Rathlou, S., et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 23 (2016), 335–343.
    • (2016) Cell Metab. , vol.23 , pp. 335-343
    • von Holstein-Rathlou, S.1
  • 75
    • 84875914619 scopus 로고    scopus 로고
    • Novel locus including FGF21 is associated with dietary macronutrient intake
    • 75 Chu, A.Y., et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum. mol. genet. 22 (2013), 1895–1902.
    • (2013) Hum. mol. genet. , vol.22 , pp. 1895-1902
    • Chu, A.Y.1
  • 76
    • 84875922294 scopus 로고    scopus 로고
    • Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake
    • 76 Tanaka, T., et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am. J. Clin. Nutr. 97 (2013), 1395–1402.
    • (2013) Am. J. Clin. Nutr. , vol.97 , pp. 1395-1402
    • Tanaka, T.1
  • 77
    • 0037127204 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor
    • 77 Lin, J., et al. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277 (2002), 1645–1648.
    • (2002) J. Biol. Chem. , vol.277 , pp. 1645-1648
    • Lin, J.1
  • 78
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • 78 Lin, J., et al. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1 (2005), 361–370.
    • (2005) Cell Metab. , vol.1 , pp. 361-370
    • Lin, J.1
  • 79
    • 19944430411 scopus 로고    scopus 로고
    • Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP
    • 79 Lin, J., et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 120 (2005), 261–273.
    • (2005) Cell , vol.120 , pp. 261-273
    • Lin, J.1
  • 80
    • 84883229757 scopus 로고    scopus 로고
    • PGC-1beta and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration-dependent manner
    • 80 Chambers, K.T., et al. PGC-1beta and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration-dependent manner. Mol. Metab. 2 (2013), 194–204.
    • (2013) Mol. Metab. , vol.2 , pp. 194-204
    • Chambers, K.T.1
  • 81
    • 60649109153 scopus 로고    scopus 로고
    • The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance
    • 81 Nagai, Y., et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 9 (2009), 252–264.
    • (2009) Cell Metab. , vol.9 , pp. 252-264
    • Nagai, Y.1
  • 82
    • 45849137877 scopus 로고    scopus 로고
    • Regulation of hepatic lipogenesis by the transcription factor XBP1
    • 82 Lee, A.H., et al. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320 (2008), 1492–1496.
    • (2008) Science , vol.320 , pp. 1492-1496
    • Lee, A.H.1
  • 83
    • 84919776840 scopus 로고    scopus 로고
    • Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice
    • 83 Wang, H., et al. Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice. Endocrinology 156 (2015), 169–181.
    • (2015) Endocrinology , vol.156 , pp. 169-181
    • Wang, H.1
  • 84
    • 75749144215 scopus 로고    scopus 로고
    • XBP1: the last two decades
    • 84 Glimcher, L.H., XBP1: the last two decades. Ann. Rheum. Dis. 69 (2010), i67–i71.
    • (2010) Ann. Rheum. Dis. , vol.69 , pp. i67-i71
    • Glimcher, L.H.1
  • 85
    • 84862908245 scopus 로고    scopus 로고
    • Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice
    • 85 Jurczak, M.J., et al. Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J. Biol. Chem. 287 (2012), 2558–2567.
    • (2012) J. Biol. Chem. , vol.287 , pp. 2558-2567
    • Jurczak, M.J.1
  • 86
    • 84872005699 scopus 로고    scopus 로고
    • Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial
    • 86 Aeberli, I., et al. Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care 36 (2013), 150–156.
    • (2013) Diabetes Care , vol.36 , pp. 150-156
    • Aeberli, I.1
  • 87
    • 3543029821 scopus 로고    scopus 로고
    • Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease
    • 87 Samuel, V.T., et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279 (2004), 32345–32353.
    • (2004) J. Biol. Chem. , vol.279 , pp. 32345-32353
    • Samuel, V.T.1
  • 88
    • 0026040907 scopus 로고
    • Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats
    • 88 Kraegen, E.W., et al. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40 (1991), 1397–1403.
    • (1991) Diabetes , vol.40 , pp. 1397-1403
    • Kraegen, E.W.1
  • 89
    • 0345086474 scopus 로고    scopus 로고
    • Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade
    • 89 Griffin, M.E., et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48 (1999), 1270–1274.
    • (1999) Diabetes , vol.48 , pp. 1270-1274
    • Griffin, M.E.1
  • 90
    • 8544244084 scopus 로고    scopus 로고
    • PKC-theta knockout mice are protected from fat-induced insulin resistance
    • 90 Kim, J.K., et al. PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114 (2004), 823–827.
    • (2004) J Clin Invest , vol.114 , pp. 823-827
    • Kim, J.K.1
  • 91
    • 0035340548 scopus 로고    scopus 로고
    • Increased protein kinase C theta in skeletal muscle of diabetic patients
    • 91 Itani, S.I., et al. Increased protein kinase C theta in skeletal muscle of diabetic patients. Metabolism 50 (2001), 553–557.
    • (2001) Metabolism , vol.50 , pp. 553-557
    • Itani, S.I.1
  • 92
    • 33644654777 scopus 로고    scopus 로고
    • Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2
    • 92 Savage, D.B., et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 116 (2006), 817–824.
    • (2006) J. Clin. Invest. , vol.116 , pp. 817-824
    • Savage, D.B.1
  • 93
    • 53449099325 scopus 로고    scopus 로고
    • Inhibition of ADRP prevents diet-induced insulin resistance
    • 93 Varela, G.M., et al. Inhibition of ADRP prevents diet-induced insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008), G621–G628.
    • (2008) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.295 , pp. G621-G628
    • Varela, G.M.1
  • 94
    • 80053627289 scopus 로고    scopus 로고
    • Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease
    • 94 Kumashiro, N., et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Nat. Acad. Sci. U. S. A. 108 (2011), 16381–16385.
    • (2011) Proc. Nat. Acad. Sci. U. S. A. , vol.108 , pp. 16381-16385
    • Kumashiro, N.1
  • 95
    • 33847404482 scopus 로고    scopus 로고
    • Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease
    • 95 Samuel, V.T., et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117 (2007), 739–745.
    • (2007) J. Clin. Invest. , vol.117 , pp. 739-745
    • Samuel, V.T.1
  • 96
    • 84904337541 scopus 로고    scopus 로고
    • Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding
    • 96 Coate, K.C., et al. Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding. Am. J. Endocrinol. Metab. 307 (2014), E151–E160.
    • (2014) Am. J. Endocrinol. Metab. , vol.307 , pp. E151-E160
    • Coate, K.C.1
  • 97
    • 17744374590 scopus 로고    scopus 로고
    • The use and misuse of fruit juice in pediatrics
    • 97 Committee on, N., The use and misuse of fruit juice in pediatrics. Pediatrics 107 (2001), 1210–1213.
    • (2001) Pediatrics , vol.107 , pp. 1210-1213
    • Committee on, N.1
  • 98
    • 84924303258 scopus 로고    scopus 로고
    • Snacks, sweetened Beverages, added sugars, and schools
    • 98 Murray, R., et al. Snacks, sweetened Beverages, added sugars, and schools. Pediatrics 135 (2015), 575–583.
    • (2015) Pediatrics , vol.135 , pp. 575-583
    • Murray, R.1
  • 99
    • 33645036507 scopus 로고    scopus 로고
    • Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: a randomized, controlled pilot study
    • 99 Ebbeling, C.B., et al. Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: a randomized, controlled pilot study. Pediatrics 117 (2006), 673–680.
    • (2006) Pediatrics , vol.117 , pp. 673-680
    • Ebbeling, C.B.1
  • 100
    • 84959536714 scopus 로고    scopus 로고
    • Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: observational study
    • 100 Colchero, M.A., et al. Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: observational study. Brit. Med. J., 352, 2016, h6704.
    • (2016) Brit. Med. J. , vol.352 , pp. h6704
    • Colchero, M.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.