메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 193-226

Mechanics and Single-Molecule Interrogation of DNA Recombination

Author keywords

BRCA2; DNA repair; Helicase; Microscopy; RecA RAD51; Visual biochemistry

Indexed keywords

BRCA2 PROTEIN; CHAPERONE; DNA; DNA2 PROTEIN; DOUBLE STRANDED DNA; EXO1 PROTEIN; EXODEOXYRIBONUCLEASE V; MRE11 PROTEIN; PROTEIN; RAD50 PROTEIN; RAD51 PROTEIN; RECA PROTEIN; RECF PROTEIN; RECJ PROTEIN; RECQ HELICASE; RECR PROTEIN; SGS1 PROTEIN; SINGLE STRANDED DNA BINDING PROTEIN; UNCLASSIFIED DRUG; XRS2 PROTEIN; DEOXYRIBONUCLEASE; DNA BINDING PROTEIN; EXODEOXYRIBONUCLEASE; MRE11 PROTEIN, S CEREVISIAE; RAD50 PROTEIN, S CEREVISIAE; RAD52 PROTEIN; RECQ PROTEIN, E COLI; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84974715499     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060614-034352     Document Type: Article
Times cited : (69)

References (171)
  • 1
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: Making it safe to play with knives
    • Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179-204
    • (2010) Mol. Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 3
    • 70349859881 scopus 로고    scopus 로고
    • DNA damage, aging, and cancer
    • Hoeijmakers JH. 2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361:1475-85
    • (2009) N. Engl. J. Med. , vol.361 , pp. 1475-1485
    • Hoeijmakers, J.H.1
  • 4
    • 84855843599 scopus 로고
    • ed. RA Pagon, MP Adam, HH Ardinger, SE Wallace, A Amemiya, et al. Seattle (WA)
    • Sanz MM, German J. 1993. In GeneReviews, ed. RA Pagon, MP Adam, HH Ardinger, SE Wallace, A Amemiya, et al. Seattle (WA)
    • (1993) GeneReviews
    • Sanz, M.M.1    German, J.2
  • 5
    • 84872578210 scopus 로고    scopus 로고
    • Fanconi anaemia and the repair of Watson and Crick DNA crosslinks
    • Kottemann MC, Smogorzewska A. 2013. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493:356-63
    • (2013) Nature , vol.493 , pp. 356-363
    • Kottemann, M.C.1    Smogorzewska, A.2
  • 7
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription
    • Kogoma T. 1997. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61:212-38
    • (1997) Microbiol. Mol. Biol. Rev. , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 8
    • 0034176335 scopus 로고    scopus 로고
    • Initiation of genetic recombination and recombination-dependent replication
    • Kowalczykowski SC. 2000. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25:156-65
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 156-165
    • Kowalczykowski, S.C.1
  • 11
    • 0242300088 scopus 로고    scopus 로고
    • Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer
    • Vilenchik MM, Knudson AG. 2003. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. PNAS 100:12871-76
    • (2003) PNAS , vol.100 , pp. 12871-12876
    • Vilenchik, M.M.1    Knudson, A.G.2
  • 12
    • 77950862944 scopus 로고    scopus 로고
    • Double Holliday junctions are intermediates of DNA break repair
    • Bzymek M, Thayer NH, Oh SD, Kleckner N, Hunter N. 2010. Double Holliday junctions are intermediates of DNA break repair. Nature 464:937-41
    • (2010) Nature , vol.464 , pp. 937-941
    • Bzymek, M.1    Thayer, N.H.2    Oh, S.D.3    Kleckner, N.4    Hunter, N.5
  • 13
    • 0017638486 scopus 로고
    • Sister chromatid exchange
    • Wolff S. 1977. Sister chromatid exchange. Annu. Rev. Genet. 11:183-201
    • (1977) Annu. Rev. Genet. , vol.11 , pp. 183-201
    • Wolff, S.1
  • 14
    • 0346351375 scopus 로고
    • A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes
    • Chaganti RS, Schonberg S, German J. 1974. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. PNAS 71:4508-12
    • (1974) PNAS , vol.71 , pp. 4508-4512
    • Chaganti, R.S.1    Schonberg, S.2    German, J.3
  • 16
    • 0000880652 scopus 로고
    • Isolation and characterization of recombination-deficient mutants of Escherichia coli K12
    • Clark AJ, Margulies AD. 1965. Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. PNAS 53:451-59
    • (1965) PNAS , vol.53 , pp. 451-459
    • Clark, A.J.1    Margulies, A.D.2
  • 17
    • 84946423579 scopus 로고    scopus 로고
    • An overview of the molecular mechanisms of recombinational DNA repair
    • Kowalczykowski SC. 2015. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb Perspect. Biol. 7:a016410
    • (2015) Cold Spring Harb Perspect. Biol. , vol.7 , pp. a016410
    • Kowalczykowski, S.C.1
  • 18
    • 84940050527 scopus 로고    scopus 로고
    • Regulation of recombination and genomic maintenance
    • Heyer WD. 2015. Regulation of recombination and genomic maintenancE. Cold Spring Harb. Perspect. Biol. 7:a016501
    • (2015) Cold Spring Harb. Perspect. Biol. , vol.7 , pp. a016501
    • Heyer, W.D.1
  • 20
    • 84875192701 scopus 로고    scopus 로고
    • Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy
    • Forget AL, Dombrowski CC, Amitani I, Kowalczykowski SC. 2013. Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nat. Protoc. 8:525-38
    • (2013) Nat. Protoc. , vol.8 , pp. 525-538
    • Forget, A.L.1    Dombrowski, C.C.2    Amitani, I.3    Kowalczykowski, S.C.4
  • 21
    • 85015087906 scopus 로고    scopus 로고
    • Ten years of tension: Single-moleculeDNAmechanics
    • Bustamante C, Bryant Z, Smith SB. 2003. Ten years of tension: single-moleculeDNAmechanics. Nature 421:423-27
    • (2003) Nature , vol.421 , pp. 423-427
    • Bustamante, C.1    Bryant, Z.2    Smith, S.B.3
  • 22
    • 84861374075 scopus 로고    scopus 로고
    • Single-molecule views of protein movement on single-stranded DNA
    • Ha T, Kozlov AG, Lohman TM. 2012. Single-molecule views of protein movement on single-stranded DNA. Annu. Rev. Biophys. 41:295-319
    • (2012) Annu. Rev. Biophys. , vol.41 , pp. 295-319
    • Ha, T.1    Kozlov, A.G.2    Lohman, T.M.3
  • 23
  • 24
    • 79951703348 scopus 로고    scopus 로고
    • Revisiting the central dogma one molecule at a time
    • Bustamante C, Cheng W, Mejia YX. 2011. Revisiting the central dogma one molecule at a timE. Cell 144:480-97
    • (2011) Cell , vol.144 , pp. 480-497
    • Bustamante, C.1    Cheng, W.2    Mejia, Y.X.3
  • 25
    • 84897041610 scopus 로고    scopus 로고
    • DNA dynamics and single-molecule biology
    • Duzdevich D, Redding S, Greene EC. 2014. DNA dynamics and single-molecule biology. Chem. Rev. 114:3072-86
    • (2014) Chem. Rev. , vol.114 , pp. 3072-3086
    • Duzdevich, D.1    Redding, S.2    Greene, E.C.3
  • 26
    • 0028766419 scopus 로고
    • Relaxation of a single DNA molecule observed by optical microscopy
    • Perkins TT, Quake SR, Smith DE, Chu S. 1994. Relaxation of a single DNA molecule observed by optical microscopy. Science 264:822-26
    • (1994) Science , vol.264 , pp. 822-826
    • Perkins, T.T.1    Quake, S.R.2    Smith, D.E.3    Chu, S.4
  • 27
    • 44449105176 scopus 로고    scopus 로고
    • Laminar flow cells for single-molecule studies of DNA-protein interactions
    • Brewer LR, Bianco PR. 2008. Laminar flow cells for single-molecule studies of DNA-protein interactions. Nat. Methods 5:517-25
    • (2008) Nat. Methods , vol.5 , pp. 517-525
    • Brewer, L.R.1    Bianco, P.R.2
  • 28
    • 0035905687 scopus 로고    scopus 로고
    • Processive translocation and DNA unwinding by individual RecBCD enzyme molecules
    • Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, et al. 2001. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409:374-78
    • (2001) Nature , vol.409 , pp. 374-378
    • Bianco, P.R.1    Brewer, L.R.2    Corzett, M.3    Balhorn, R.4    Yeh, Y.5
  • 29
    • 33750296934 scopus 로고    scopus 로고
    • Direct observation of individual RecA filaments assembling on single DNA molecules
    • Galletto R, Amitani I, Baskin RJ, Kowalczykowski SC. 2006. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443:875-78
    • (2006) Nature , vol.443 , pp. 875-878
    • Galletto, R.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 30
    • 84882823133 scopus 로고    scopus 로고
    • DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate
    • Liu B, Baskin RJ, Kowalczykowski SC. 2013. DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate. Nature 500:482-85
    • (2013) Nature , vol.500 , pp. 482-485
    • Liu, B.1    Baskin, R.J.2    Kowalczykowski, S.C.3
  • 31
    • 84887333913 scopus 로고    scopus 로고
    • Advances in surface-based assays for single molecules
    • ed. P Selvin, T Ha, Cold Spring Harbor, NY: Cold Spring Harb. Lab.
    • Fordyce PM, Valentine MT, Block SM. 2008. Advances in surface-based assays for single molecules. In Single-Molecule Techniques: A Laboratory Manual, ed. P Selvin, T Ha, 20:431-460. Cold Spring Harbor, NY: Cold Spring Harb. Lab.
    • (2008) Single-Molecule Techniques: A Laboratory Manual , vol.20 , pp. 431-460
    • Fordyce, P.M.1    Valentine, M.T.2    Block, S.M.3
  • 32
    • 0029987587 scopus 로고    scopus 로고
    • Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor
    • Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S. 1996. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. PNAS 93:6264-68
    • (1996) PNAS , vol.93 , pp. 6264-6268
    • Ha, T.1    Enderle, T.2    Ogletree, D.F.3    Chemla, D.S.4    Selvin, P.R.5    Weiss, S.6
  • 36
    • 79960804204 scopus 로고    scopus 로고
    • SSB functions as a sliding platform that migrates on DNA via reptation
    • Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, et al. 2011. SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146:222-32
    • (2011) Cell , vol.146 , pp. 222-232
    • Zhou, R.1    Kozlov, A.G.2    Roy, R.3    Zhang, J.4    Korolev, S.5
  • 41
    • 0037698985 scopus 로고    scopus 로고
    • RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity
    • Taylor AF, Smith GR. 2003. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423:889-93
    • (2003) Nature , vol.423 , pp. 889-893
    • Taylor, A.F.1    Smith, G.R.2
  • 43
    • 0034647421 scopus 로고    scopus 로고
    • A novel, 11 nucleotide variant of One of a class of sequences defining the Escherichia coli recombination hotspot?
    • Arnold DA, Handa N, Kobayashi I, Kowalczykowski SC. 2000. A novel, 11 nucleotide variant of one of a class of sequences defining the Escherichia coli recombination hotspot ?. J. Mol. Biol. 300:469-79
    • (2000) J. Mol. Biol. , vol.300 , pp. 469-479
    • Arnold, D.A.1    Handa, N.2    Kobayashi, I.3    Kowalczykowski, S.C.4
  • 44
    • 84861889126 scopus 로고    scopus 로고
    • Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, ?, by RecBCD enzyme
    • Handa N, Yang L, Dillingham MS, Kobayashi I, Wigley DB, Kowalczykowski SC. 2012. Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, ?, by RecBCD enzyme. PNAS 109:8901-6
    • (2012) PNAS , vol.109 , pp. 8901-8906
    • Handa, N.1    Yang, L.2    Dillingham, M.S.3    Kobayashi, I.4    Wigley, D.B.5    Kowalczykowski, S.C.6
  • 45
    • 84861860703 scopus 로고    scopus 로고
    • Alteration of ? Recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control
    • Yang L, Handa N, Liu B, Dillingham MS, Wigley DB, Kowalczykowski SC. 2012. Alteration of ? recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control. PNAS 109:8907-12
    • (2012) PNAS , vol.109 , pp. 8907-8912
    • Yang, L.1    Handa, N.2    Liu, B.3    Dillingham, M.S.4    Wigley, D.B.5    Kowalczykowski, S.C.6
  • 46
    • 22144474444 scopus 로고    scopus 로고
    • Chi: A little sequence controls a big enzyme
    • Stahl FW. 2005. Chi: A little sequence controls a big enzyme. Genetics 170:487-93
    • (2005) Genetics , vol.170 , pp. 487-493
    • Stahl, F.W.1
  • 47
    • 0141540814 scopus 로고    scopus 로고
    • A molecular throttle: The recombination hotspot ? Controls DNA translocation by the RecBCD helicase
    • Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC. 2003. A molecular throttle: The recombination hotspot ? controls DNA translocation by the RecBCD helicasE. Cell 114:647-54
    • (2003) Cell , vol.114 , pp. 647-654
    • Spies, M.1    Bianco, P.R.2    Dillingham, M.S.3    Handa, N.4    Baskin, R.J.5    Kowalczykowski, S.C.6
  • 48
    • 0025902330 scopus 로고
    • Homologous pairing in vitro stimulated by the recombination hotspot, Chi
    • Dixon DA, Kowalczykowski SC. 1991. Homologous pairing in vitro stimulated by the recombination hotspot, Chi. Cell 66:361-71
    • (1991) Cell , vol.66 , pp. 361-371
    • Dixon, D.A.1    Kowalczykowski, S.C.2
  • 49
    • 0027511858 scopus 로고
    • The recombination hotspot ? Is a regulatory sequence that acts by attenuating the nuclease activity of the E. Coli RecBCD enzyme
    • Dixon DA, Kowalczykowski SC. 1993. The recombination hotspot ? is a regulatory sequence that acts by attenuating the nuclease activity of the E. Coli RecBCD enzymE. Cell 73:87-96
    • (1993) Cell , vol.73 , pp. 87-96
    • Dixon, D.A.1    Kowalczykowski, S.C.2
  • 50
    • 27744469165 scopus 로고    scopus 로고
    • BipolarDNAtranslocation contributes to highly processive DNA unwinding by RecBCD enzyme
    • Dillingham MS, WebbMR, Kowalczykowski SC. 2005. BipolarDNAtranslocation contributes to highly processive DNA unwinding by RecBCD enzyme. J. Biol. Chem. 280:37069-77
    • (2005) J. Biol. Chem. , vol.280 , pp. 37069-37077
    • Dillingham, M.S.1    Webb, M.R.2    Kowalczykowski, S.C.3
  • 51
    • 27744497422 scopus 로고    scopus 로고
    • Translocation by the RecB motor is an absolute requirement for recognition and RecA protein loading by RecBCD enzyme
    • Spies M, Dillingham MS, Kowalczykowski SC. 2005. Translocation by the RecB motor is an absolute requirement for recognition and RecA protein loading by RecBCD enzyme. J. Biol. Chem. 280:37078-87
    • (2005) J. Biol. Chem. , vol.280 , pp. 37078-37087
    • Spies, M.1    Dillingham, M.S.2    Kowalczykowski, S.C.3
  • 52
    • 14644412914 scopus 로고    scopus 로고
    • Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after ?recognition
    • HandaN, Bianco PR, Baskin RJ, Kowalczykowski SC. 2005. Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after ?recognition. Mol. Cell 17:745-50
    • (2005) Mol. Cell , vol.17 , pp. 745-750
    • Handa, N.1    Bianco, P.R.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 53
    • 36049052525 scopus 로고    scopus 로고
    • RecBCD enzyme switches lead motor subunits in response to ?recognition
    • SpiesM, Amitani I, Baskin RJ, Kowalczykowski SC. 2007. RecBCD enzyme switches lead motor subunits in response to ?recognition. Cell 131:694-705
    • (2007) Cell , vol.131 , pp. 694-705
    • Spies, M.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 54
    • 0034614654 scopus 로고    scopus 로고
    • A single nuclease active site of the Escherichia coli RecBCD enzyme catalyzes single-stranded DNA degradation in both directions
    • Wang J, Chen R, Julin DA. 2000. A single nuclease active site of the Escherichia coli RecBCD enzyme catalyzes single-stranded DNA degradation in both directions. J. Biol. Chem. 275:507-13
    • (2000) J. Biol. Chem. , vol.275 , pp. 507-513
    • Wang, J.1    Chen, R.2    Julin, D.A.3
  • 55
    • 0031444642 scopus 로고    scopus 로고
    • The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a regulated manner
    • Anderson DG, Kowalczykowski SC. 1997. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a regulated manner. Cell 90:77-86
    • (1997) Cell , vol.90 , pp. 77-86
    • Anderson, D.G.1    Kowalczykowski, S.C.2
  • 56
    • 0034697325 scopus 로고    scopus 로고
    • Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme
    • Arnold DA, Kowalczykowski SC. 2000. Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J. Biol. Chem. 275:12261-65
    • (2000) J. Biol. Chem. , vol.275 , pp. 12261-12265
    • Arnold, D.A.1    Kowalczykowski, S.C.2
  • 57
    • 32444451553 scopus 로고    scopus 로고
    • The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins
    • Spies M, Kowalczykowski SC. 2006. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol. Cell 21:573-80
    • (2006) Mol. Cell , vol.21 , pp. 573-580
    • Spies, M.1    Kowalczykowski, S.C.2
  • 58
    • 84928473578 scopus 로고    scopus 로고
    • CRISPR adaptation biases explain preference for acquisition of foreign DNA
    • Levy A, Goren MG, Yosef I, Auster O, Manor M, et al. 2015. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505-10
    • (2015) Nature , vol.520 , pp. 505-510
    • Levy, A.1    Goren, M.G.2    Yosef, I.3    Auster, O.4    Manor, M.5
  • 59
    • 78650307167 scopus 로고    scopus 로고
    • Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase
    • Finkelstein IJ, Visnapuu ML, Greene EC. 2010. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468:983-87
    • (2010) Nature , vol.468 , pp. 983-987
    • Finkelstein, I.J.1    Visnapuu, M.L.2    Greene, E.C.3
  • 61
    • 35548960837 scopus 로고    scopus 로고
    • RecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV-irradiated Escherichia coli
    • Chow KH, Courcelle J. 2007. RecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV-irradiated Escherichia coli. Radiat. Res. 168:499-506
    • (2007) Radiat. Res. , vol.168 , pp. 499-506
    • Chow, K.H.1    Courcelle, J.2
  • 62
    • 34249789279 scopus 로고    scopus 로고
    • Spontaneous DNA breakage in single living Escherichia coli cells
    • Pennington JM, Rosenberg SM. 2007. Spontaneous DNA breakage in single living Escherichia coli cells. Nat. Genet. 39:797-802
    • (2007) Nat. Genet. , vol.39 , pp. 797-802
    • Pennington, J.M.1    Rosenberg, S.M.2
  • 63
    • 84915746628 scopus 로고    scopus 로고
    • RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination
    • Morimatsu K, Kowalczykowski SC. 2014. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination. PNAS 111:E5133-42
    • (2014) PNAS , vol.111 , pp. E5133-E5142
    • Morimatsu, K.1    Kowalczykowski, S.C.2
  • 64
    • 0035808456 scopus 로고    scopus 로고
    • Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase
    • Harmon FG, Kowalczykowski SC. 2001. Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase. J. Biol. Chem. 276:232-43
    • (2001) J. Biol. Chem. , vol.276 , pp. 232-243
    • Harmon, F.G.1    Kowalczykowski, S.C.2
  • 65
    • 59649104376 scopus 로고    scopus 로고
    • Identification of the SSB binding site on E. Coli RecQ reveals a conserved surface for binding SSB's C terminus
    • Shereda RD, Reiter NJ, Butcher SE, Keck JL. 2009. Identification of the SSB binding site on E. Coli RecQ reveals a conserved surface for binding SSB's C terminus. J. Mol. Biol. 386:612-25
    • (2009) J. Mol. Biol. , vol.386 , pp. 612-625
    • Shereda, R.D.1    Reiter, N.J.2    Butcher, S.E.3    Keck, J.L.4
  • 66
    • 84859397679 scopus 로고    scopus 로고
    • Translocation of E. Coli RecQ helicase on single-stranded DNA
    • Rad B, Kowalczykowski SC. 2012. Translocation of E. Coli RecQ helicase on single-stranded DNA. Biochemistry 51:2921-29
    • (2012) Biochemistry , vol.51 , pp. 2921-2929
    • Rad, B.1    Kowalczykowski, S.C.2
  • 67
    • 84857137035 scopus 로고    scopus 로고
    • Efficient coupling of ATP hydrolysis to translocation by RecQ helicase
    • Rad B, Kowalczykowski SC. 2012. Efficient coupling of ATP hydrolysis to translocation by RecQ helicase. PNAS 109:1443-48
    • (2012) PNAS , vol.109 , pp. 1443-1448
    • Rad, B.1    Kowalczykowski, S.C.2
  • 68
    • 84950103610 scopus 로고    scopus 로고
    • Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding
    • Rad B, Forget AL, Baskin RJ, Kowalczykowski SC. 2015. Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding. PNAS 112(50):E6851-61
    • (2015) PNAS , vol.112 , Issue.50 , pp. E6851-E6861
    • Rad, B.1    Forget, A.L.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 69
    • 84950349773 scopus 로고    scopus 로고
    • Fine tuning of a DNA fork by the RecQ helicase
    • Byrd AK, Raney KD. 2015. Fine tuning of a DNA fork by the RecQ helicase. PNAS 112:15263-64
    • (2015) PNAS , vol.112 , pp. 15263-15264
    • Byrd, A.K.1    Raney, K.D.2
  • 70
    • 84905493192 scopus 로고    scopus 로고
    • End resection at double-strand breaks: Mechanism and regulation
    • Symington LS. 2014. End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb. Perspect. Biol. 6:a016436
    • (2014) Cold Spring Harb. Perspect. Biol. , vol.6 , pp. a016436
    • Symington, L.S.1
  • 71
    • 84908045717 scopus 로고    scopus 로고
    • Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
    • Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514:122-25
    • (2014) Nature , vol.514 , pp. 122-125
    • Cannavo, E.1    Cejka, P.2
  • 72
    • 77950900571 scopus 로고    scopus 로고
    • The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds Holliday junctions
    • Cejka P, Kowalczykowski SC. 2010. The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds Holliday junctions. J. Biol. Chem. 285:8290-301
    • (2010) J. Biol. Chem. , vol.285 , pp. 8290-8301
    • Cejka, P.1    Kowalczykowski, S.C.2
  • 74
    • 77956325620 scopus 로고    scopus 로고
    • DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2
    • Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, et al. 2010. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467:112-16
    • (2010) Nature , vol.467 , pp. 112-116
    • Cejka, P.1    Cannavo, E.2    Polaczek, P.3    Masuda-Sasa, T.4    Pokharel, S.5
  • 75
    • 77956302112 scopus 로고    scopus 로고
    • Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae
    • Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W, et al. 2010. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467:108-11
    • (2010) Nature , vol.467 , pp. 108-111
    • Niu, H.1    Chung, W.H.2    Zhu, Z.3    Kwon, Y.4    Zhao, W.5
  • 76
    • 84878437546 scopus 로고    scopus 로고
    • Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity
    • Levikova M, KlaueD, Seidel R, Cejka P. 2013. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity. PNAS 110:E1992-2001
    • (2013) PNAS , vol.110 , pp. E1992-2001
    • Levikova, M.1    Klaue, D.2    Seidel, R.3    Cejka, P.4
  • 77
    • 84876896603 scopus 로고    scopus 로고
    • Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection
    • Cannavo E, Cejka P, Kowalczykowski SC. 2013. Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. PNAS 110:E1661-68
    • (2013) PNAS , vol.110 , pp. E1661-E1668
    • Cannavo, E.1    Cejka, P.2    Kowalczykowski, S.C.3
  • 78
    • 79951688343 scopus 로고    scopus 로고
    • BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair
    • Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, et al. 2011. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25:350-62
    • (2011) Genes Dev. , vol.25 , pp. 350-362
    • Nimonkar, A.V.1    Genschel, J.2    Kinoshita, E.3    Polaczek, P.4    Campbell, J.L.5
  • 79
    • 55949105327 scopus 로고    scopus 로고
    • Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair
    • Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC. 2008. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. PNAS 105:16906-11
    • (2008) PNAS , vol.105 , pp. 16906-16911
    • Nimonkar, A.V.1    Ozsoy, A.Z.2    Genschel, J.3    Modrich, P.4    Kowalczykowski, S.C.5
  • 80
    • 77957786786 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks
    • Shim EY, Chung WH, Nicolette ML, Zhang Y, Davis M, et al. 2010. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J. 29:3370-80
    • (2010) EMBO J. , vol.29 , pp. 3370-3380
    • Shim, E.Y.1    Chung, W.H.2    Nicolette, M.L.3    Zhang, Y.4    Davis, M.5
  • 83
    • 0023135142 scopus 로고
    • Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein: Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA
    • Kowalczykowski SC, Krupp RA. 1987. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein: evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J. Mol. Biol. 193:97-113
    • (1987) J. Mol. Biol. , vol.193 , pp. 97-113
    • Kowalczykowski, S.C.1    Krupp, R.A.2
  • 84
    • 70350488396 scopus 로고    scopus 로고
    • SSB protein diffusion on single-strandedDNA stimulates RecA filament formation
    • Roy R, Kozlov AG, Lohman TM, Ha T. 2009. SSB protein diffusion on single-strandedDNA stimulates RecA filament formation. Nature 461:1092-97
    • (2009) Nature , vol.461 , pp. 1092-1097
    • Roy, R.1    Kozlov, A.G.2    Lohman, T.M.3    Ha, T.4
  • 85
    • 34248664689 scopus 로고    scopus 로고
    • Dynamic structural rearrangements between DNA binding modes of E. Coli SSB protein
    • Roy R, Kozlov AG, Lohman TM, Ha T. 2007. Dynamic structural rearrangements between DNA binding modes of E. Coli SSB protein. J. Mol. Biol. 369:1244-57
    • (2007) J. Mol. Biol. , vol.369 , pp. 1244-1257
    • Roy, R.1    Kozlov, A.G.2    Lohman, T.M.3    Ha, T.4
  • 86
    • 84901768289 scopus 로고    scopus 로고
    • Ultrafast redistribution of E. Coli SSB along long single-stranded DNA via intersegment transfer
    • Lee KS, Marciel AB, Kozlov AG, Schroeder CM, Lohman TM, Ha T. 2014. Ultrafast redistribution of E. Coli SSB along long single-stranded DNA via intersegment transfer. J. Mol. Biol. 426:2413-21
    • (2014) J. Mol. Biol. , vol.426 , pp. 2413-2421
    • Lee, K.S.1    Marciel, A.B.2    Kozlov, A.G.3    Schroeder, C.M.4    Lohman, T.M.5    Ha, T.6
  • 87
    • 0036786227 scopus 로고    scopus 로고
    • Kinetic mechanism of direct transfer of Escherichia coli SSB tetramers between single-stranded DNA molecules
    • Kozlov AG, Lohman TM. 2002. Kinetic mechanism of direct transfer of Escherichia coli SSB tetramers between single-stranded DNA molecules. Biochemistry 41:11611-27
    • (2002) Biochemistry , vol.41 , pp. 11611-11627
    • Kozlov, A.G.1    Lohman, T.M.2
  • 88
    • 84949952959 scopus 로고    scopus 로고
    • Imaging and energetics of single SSB-ssDNAmolecules reveal intramolecular condensation and insight into RecOR function
    • Bell JC, Liu B, Kowalczykowski SC. 2015. Imaging and energetics of single SSB-ssDNAmolecules reveal intramolecular condensation and insight into RecOR function. ELife 4:e08646
    • (2015) ELife , vol.4 , pp. e08646
    • Bell, J.C.1    Liu, B.2    Kowalczykowski, S.C.3
  • 89
    • 84919774724 scopus 로고    scopus 로고
    • Replication protein A: Single-strandedDNA's first responder: DynamicDNAinteractions allow replication proteinAto direct single-strandDNAintermediates into different pathways for synthesis or repair
    • Chen R, Wold MS. 2014. Replication protein A: single-strandedDNA's first responder: DynamicDNAinteractions allow replication proteinAto direct single-strandDNAintermediates into different pathways for synthesis or repair. BioEssays 36:1156-61
    • (2014) BioEssays , vol.36 , pp. 1156-1161
    • Chen, R.1    Wold, M.S.2
  • 90
    • 0030908093 scopus 로고    scopus 로고
    • Replication protein A: A heterotrimeric, single-strandedDNA-binding protein required for eukaryotic DNA metabolism
    • Wold MS. 1997. Replication protein A: A heterotrimeric, single-strandedDNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66:61-92
    • (1997) Annu. Rev. Biochem. , vol.66 , pp. 61-92
    • Wold, M.S.1
  • 91
    • 0033575671 scopus 로고    scopus 로고
    • The crystal structure of the complex of replication protein A subunitsRPA32 and RPA14 reveals amechanism for single-strandedDNAbinding
    • Bochkarev A, Bochkareva E, Frappier L, Edwards AM. 1999. The crystal structure of the complex of replication protein A subunitsRPA32 and RPA14 reveals amechanism for single-strandedDNAbinding. EMBO J. 18:4498-504
    • (1999) EMBO J. , vol.18 , pp. 4498-4504
    • Bochkarev, A.1    Bochkareva, E.2    Frappier, L.3    Edwards, A.M.4
  • 92
    • 0031030449 scopus 로고    scopus 로고
    • Structure of the single-stranded-DNAbinding domain of replication protein A bound to DNA
    • Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L. 1997. Structure of the single-stranded-DNAbinding domain of replication protein A bound to DNA. Nature 385:176-81
    • (1997) Nature , vol.385 , pp. 176-181
    • Bochkarev, A.1    Pfuetzner, R.A.2    Edwards, A.M.3    Frappier, L.4
  • 94
    • 84896873779 scopus 로고    scopus 로고
    • Concentration-dependent exchange of replication proteinAon single-strandedDNArevealed by single-molecule imaging
    • Gibb B, Ye LF, Gergoudis SC, Kwon Y, Niu H, et al. 2014. Concentration-dependent exchange of replication proteinAon single-strandedDNArevealed by single-molecule imaging. PLOSONE9:e87922
    • (2014) PLOSONE , vol.9 , pp. e87922
    • Gibb, B.1    Ye, L.F.2    Gergoudis, S.C.3    Kwon, Y.4    Niu, H.5
  • 96
    • 84868615392 scopus 로고    scopus 로고
    • Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA
    • Bell JC, Plank JL, Dombrowski CC, Kowalczykowski SC. 2012. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 491:274-78
    • (2012) Nature , vol.491 , pp. 274-278
    • Bell, J.C.1    Plank, J.L.2    Dombrowski, C.C.3    Kowalczykowski, S.C.4
  • 97
    • 84899015574 scopus 로고    scopus 로고
    • Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins
    • Sing CE, Olvera de la Cruz M, Marko JF. 2014. Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins. Nucleic Acids Res. 42:3783-91
    • (2014) Nucleic Acids Res. , vol.42 , pp. 3783-3791
    • Sing, C.E.1    De La Olvera Cruz, M.2    Marko, J.F.3
  • 99
    • 0027238208 scopus 로고
    • Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein
    • Umezu K, Chi NW, Kolodner RD. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. PNAS 90:3875-79
    • (1993) PNAS , vol.90 , pp. 3875-3879
    • Umezu, K.1    Chi, N.W.2    Kolodner, R.D.3
  • 100
    • 0023108585 scopus 로고
    • Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA: Demonstration of competitive binding and the lack of a specific protein-protein interaction
    • Kowalczykowski SC, Clow J, Somani R, Varghese A. 1987. Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA: demonstration of competitive binding and the lack of a specific protein-protein interaction. J. Mol. Biol. 193:81-95
    • (1987) J. Mol. Biol. , vol.193 , pp. 81-95
    • Kowalczykowski, S.C.1    Clow, J.2    Somani, R.3    Varghese, A.4
  • 101
    • 0016698509 scopus 로고
    • Kinetics of the cooperative association of actin to actin filaments
    • Wegner A, Engel J. 1975. Kinetics of the cooperative association of actin to actin filaments. Biophys. Chem. 3:215-25
    • (1975) Biophys. Chem. , vol.3 , pp. 215-225
    • Wegner, A.1    Engel, J.2
  • 102
    • 0017151228 scopus 로고
    • A quantitative analysis of microtubule elongation
    • Bryan J. 1976. A quantitative analysis of microtubule elongation. J. Cell Biol. 71:749-67
    • (1976) J. Cell Biol. , vol.71 , pp. 749-767
    • Bryan, J.1
  • 103
    • 33746713745 scopus 로고    scopus 로고
    • Real-time observation of RecA filament dynamics with single monomer resolution
    • Joo C, McKinney SA, Nakamura M, Rasnik I, Myong S, Ha T. 2006. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126:515-27
    • (2006) Cell , vol.126 , pp. 515-527
    • Joo, C.1    McKinney, S.A.2    Nakamura, M.3    Rasnik, I.4    Myong, S.5    Ha, T.6
  • 104
    • 0038392868 scopus 로고    scopus 로고
    • RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair
    • Morimatsu K, Kowalczykowski SC. 2003. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair. Mol. Cell 11:1337-47
    • (2003) Mol. Cell , vol.11 , pp. 1337-1347
    • Morimatsu, K.1    Kowalczykowski, S.C.2
  • 106
    • 84867406977 scopus 로고    scopus 로고
    • RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5- terminus: Implication for repair of stalled replication forks
    • Morimatsu K, Wu Y, Kowalczykowski SC. 2012. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5- terminus: implication for repair of stalled replication forks. J. Biol. Chem. 287:35621-30
    • (2012) J. Biol. Chem. , vol.287 , pp. 35621-35630
    • Morimatsu, K.1    Wu, Y.2    Kowalczykowski, S.C.3
  • 107
    • 0030666945 scopus 로고    scopus 로고
    • Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
    • Sung P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272:28194-97
    • (1997) J. Biol. Chem. , vol.272 , pp. 28194-28197
    • Sung, P.1
  • 108
    • 0032556898 scopus 로고    scopus 로고
    • Stimulation by Rad52 of yeast Rad51-mediated recombination
    • Shinohara A, Ogawa T. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391:404-7
    • (1998) Nature , vol.391 , pp. 404-407
    • Shinohara, A.1    Ogawa, T.2
  • 109
    • 0032556870 scopus 로고    scopus 로고
    • Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A
    • New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391:407-10
    • (1998) Nature , vol.391 , pp. 407-410
    • New, J.H.1    Sugiyama, T.2    Zaitseva, E.3    Kowalczykowski, S.C.4
  • 110
    • 0032568595 scopus 로고    scopus 로고
    • DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-strandedDNA
    • Sugiyama T, New JH, Kowalczykowski SC. 1998. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-strandedDNA. PNAS 95:6049-54
    • (1998) PNAS , vol.95 , pp. 6049-6054
    • Sugiyama, T.1    New, J.H.2    Kowalczykowski, S.C.3
  • 111
    • 84919774962 scopus 로고    scopus 로고
    • Protein dynamics during presynapticcomplex assembly on individual single-stranded DNA molecules
    • Gibb B, Ye LF, Kwon Y, Niu H, Sung P, Greene EC. 2014. Protein dynamics during presynapticcomplex assembly on individual single-stranded DNA molecules. Nat. Struct. Mol. Biol. 21:893-900
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 893-900
    • Gibb, B.1    Ye, L.F.2    Kwon, Y.3    Niu, H.4    Sung, P.5    Greene, E.C.6
  • 113
    • 0037124355 scopus 로고    scopus 로고
    • Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes
    • Fortin GS, Symington LS. 2002. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes. EMBO J. 21:3160-70
    • (2002) EMBO J. , vol.21 , pp. 3160-3170
    • Fortin, G.S.1    Symington, L.S.2
  • 114
    • 67650281109 scopus 로고    scopus 로고
    • Suppression of the double-strand-break-repair defect of the Saccharomyces cerevisiae rad57 mutant
    • Fung CW, Mozlin AM, Symington LS. 2009. Suppression of the double-strand-break-repair defect of the Saccharomyces cerevisiae rad57 mutant. Genetics 181:1195-206
    • (2009) Genetics , vol.181 , pp. 1195-1206
    • Fung, C.W.1    Mozlin, A.M.2    Symington, L.S.3
  • 115
    • 80855132890 scopus 로고    scopus 로고
    • Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
    • Liu J, Renault L, Veaute X, Fabre F, Stahlberg H, Heyer WD. 2011. Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479:245-48
    • (2011) Nature , vol.479 , pp. 245-248
    • Liu, J.1    Renault, L.2    Veaute, X.3    Fabre, F.4    Stahlberg, H.5    Heyer, W.D.6
  • 116
    • 79955499183 scopus 로고    scopus 로고
    • The Shu complex, which contains Rad51 paralogues, promotesDNA repair through inhibition of the Srs2 anti-recombinase
    • BernsteinKA, Reid RJ, Sunjevaric I, DemuthK, Burgess RC, Rothstein R. 2011. The Shu complex, which contains Rad51 paralogues, promotesDNA repair through inhibition of the Srs2 anti-recombinase. Mol. Biol. Cell 22:1599-607
    • (2011) Mol. Biol. Cell , vol.22 , pp. 1599-1607
    • Bernstein, K.A.1    Reid, R.J.2    Sunjevaric, I.3    Demuth, K.4    Burgess, R.C.5    Rothstein, R.6
  • 117
    • 17444391598 scopus 로고    scopus 로고
    • A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: Four genes involved in error-free DNA repair
    • Shor E, Weinstein J, Rothstein R. 2005. A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: four genes involved in error-free DNA repair. Genetics 169:1275-89
    • (2005) Genetics , vol.169 , pp. 1275-1289
    • Shor, E.1    Weinstein, J.2    Rothstein, R.3
  • 118
    • 84938153185 scopus 로고    scopus 로고
    • Promotion of presynaptic filament assembly by the ensemble of S. Cerevisiae Rad51 paralogues with Rad52
    • Gaines WA, Godin SK, Kabbinavar FF, Rao T, VanDemark AP, et al. 2015. Promotion of presynaptic filament assembly by the ensemble of S. cerevisiae Rad51 paralogues with Rad52. Nat. Commun. 6:7834
    • (2015) Nat. Commun. , vol.6 , pp. 7834
    • Gaines, W.A.1    Godin, S.K.2    Kabbinavar, F.F.3    Rao, T.4    VanDemark, A.P.5
  • 119
    • 77957975815 scopus 로고    scopus 로고
    • Purified human BRCA2 stimulates RAD51-mediated recombination
    • Jensen RB, Carreira A, Kowalczykowski SC. 2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678-83
    • (2010) Nature , vol.467 , pp. 678-683
    • Jensen, R.B.1    Carreira, A.2    Kowalczykowski, S.C.3
  • 120
    • 77957804215 scopus 로고    scopus 로고
    • Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA
    • Liu J, Doty T, Gibson B, Heyer WD. 2010. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat. Struct. Mol. Biol. 17:1260-62
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1260-1262
    • Liu, J.1    Doty, T.2    Gibson, B.3    Heyer, W.D.4
  • 121
    • 0031466027 scopus 로고    scopus 로고
    • RAD51interactswith the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2
    • WongAK, PeroR, Ormonde PA, Tavtigian SV, BartelPL. 1997. RAD51interactswith the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem. 272:31941-44
    • (1997) J. Biol. Chem. , vol.272 , pp. 31941-31944
    • Wong, A.K.1    Pero, R.2    Ormonde, P.A.3    Tavtigian, S.V.4    Bartel, P.L.5
  • 123
    • 58849096231 scopus 로고    scopus 로고
    • Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules
    • Hilario J, Amitani I, Baskin RJ, Kowalczykowski SC. 2009. Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. PNAS 106:361-68
    • (2009) PNAS , vol.106 , pp. 361-368
    • Hilario, J.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 124
    • 75649090767 scopus 로고    scopus 로고
    • Two modules in the BRC repeats of BRCA2 mediate structural and functional interactions with the RAD51 recombinase
    • Rajendra E, Venkitaraman AR. 2010. Two modules in the BRC repeats of BRCA2 mediate structural and functional interactions with the RAD51 recombinase. Nucleic Acids Res. 38:82-96
    • (2010) Nucleic Acids Res. , vol.38 , pp. 82-96
    • Rajendra, E.1    Venkitaraman, A.R.2
  • 125
    • 62149104415 scopus 로고    scopus 로고
    • The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51
    • Carreira A, Hilario J, Amitani I, Baskin RJ, ShivjiMK, et al. 2009. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell 136:1032-43
    • (2009) Cell , vol.136 , pp. 1032-1043
    • Carreira, A.1    Hilario, J.2    Amitani, I.3    Baskin, R.J.4    Shivji, M.K.5
  • 126
    • 69449089443 scopus 로고    scopus 로고
    • The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single-versus double-stranded DNA to stimulate strand exchange
    • ShivjiMK, Mukund SR, Rajendra E, Chen S, Short JM, et al. 2009. The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single-versus double-stranded DNA to stimulate strand exchange. PNAS 106:13254-59
    • (2009) PNAS , vol.106 , pp. 13254-13259
    • Shivji, M.K.1    Mukund, S.R.2    Rajendra, E.3    Chen, S.4    Short, J.M.5
  • 127
    • 79960597176 scopus 로고    scopus 로고
    • Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms
    • Carreira A, Kowalczykowski SC. 2011. Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms. PNAS 108:10448-53
    • (2011) PNAS , vol.108 , pp. 10448-10453
    • Carreira, A.1    Kowalczykowski, S.C.2
  • 129
    • 84919968901 scopus 로고    scopus 로고
    • BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells
    • Reuter M, Zelensky A, Smal I, Meijering E, van CappellenWA, et al. 2014. BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells. J. Cell Biol. 207:599-613
    • (2014) J. Cell Biol. , vol.207 , pp. 599-613
    • Reuter, M.1    Zelensky, A.2    Smal, I.3    Meijering, E.4    Van Cappellen, W.A.5
  • 130
    • 84937410808 scopus 로고    scopus 로고
    • Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry
    • Zhao W, Vaithiyalingam S, San Filippo J, Maranon DG, Jimenez-Sainz J, et al. 2015. Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry. Mol. Cell 59:176-87
    • (2015) Mol. Cell , vol.59 , pp. 176-187
    • Zhao, W.1    Vaithiyalingam, S.2    San Filippo, J.3    Maranon, D.G.4    Jimenez-Sainz, J.5
  • 131
    • 84926432359 scopus 로고    scopus 로고
    • Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins
    • Prakash R, Zhang Y, Feng W, Jasin M. 2015. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7:a016600
    • (2015) Cold Spring Harb. Perspect. Biol. , vol.7 , pp. a016600
    • Prakash, R.1    Zhang, Y.2    Feng, W.3    Jasin, M.4
  • 132
    • 84962195712 scopus 로고    scopus 로고
    • BRCA2 regulates DMC1-mediated recombination through the BRC repeats
    • Martinez JS, von Nicolai C, Kim T, Ehlen A, Mazin AV, et al. 2016. BRCA2 regulates DMC1-mediated recombination through the BRC repeats. PNAS 113:3515-20
    • (2016) PNAS , vol.113 , pp. 3515-3520
    • Martinez, J.S.1    Von Nicolai, C.2    Kim, T.3    Ehlen, A.4    Mazin, A.V.5
  • 133
    • 77956498326 scopus 로고    scopus 로고
    • Sequence-and structure-specific RNA processing by a CRISPR endonuclease
    • Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 2010. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355-58
    • (2010) Science , vol.329 , pp. 1355-1358
    • Haurwitz, R.E.1    Jinek, M.2    Wiedenheft, B.3    Zhou, K.4    Doudna, J.A.5
  • 134
    • 0025891414 scopus 로고
    • Biochemistry of genetic recombination: Energetics and mechanism of DNA strand exchange
    • Kowalczykowski SC. 1991. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu. Rev. Biophys. Biophys. Chem. 20:539-75
    • (1991) Annu. Rev. Biophys. Biophys. Chem. , vol.20 , pp. 539-575
    • Kowalczykowski, S.C.1
  • 135
    • 0025848721 scopus 로고
    • Biochemical and biological function of Escherichia coli RecA protein: Behavior of mutant RecA proteins
    • Kowalczykowski SC. 1991. Biochemical and biological function of Escherichia coli RecA protein: behavior of mutant RecA proteins. Biochimie 73:289-304
    • (1991) Biochimie , vol.73 , pp. 289-304
    • Kowalczykowski, S.C.1
  • 136
    • 44349162159 scopus 로고    scopus 로고
    • Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures
    • Chen Z, Yang H, Pavletich NP. 2008. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453:489-94
    • (2008) Nature , vol.453 , pp. 489-494
    • Chen, Z.1    Yang, H.2    Pavletich, N.P.3
  • 137
    • 44349104598 scopus 로고    scopus 로고
    • Structural biology: Snapshots of DNA repair
    • Kowalczykowski SC. 2008. Structural biology: snapshots of DNA repair. Nature 453:463-66
    • (2008) Nature , vol.453 , pp. 463-466
    • Kowalczykowski, S.C.1
  • 138
    • 0029762349 scopus 로고    scopus 로고
    • The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange
    • Mazin AV, Kowalczykowski SC. 1996. The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange. PNAS 93:10673-78
    • (1996) PNAS , vol.93 , pp. 10673-10678
    • Mazin, A.V.1    Kowalczykowski, S.C.2
  • 139
    • 84857118715 scopus 로고    scopus 로고
    • Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search
    • Forget AL, Kowalczykowski SC. 2012. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482:423-27
    • (2012) Nature , vol.482 , pp. 423-427
    • Forget, A.L.1    Kowalczykowski, S.C.2
  • 140
    • 0019887628 scopus 로고
    • Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory
    • Berg OG, Winter RB, von Hippel PH. 1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20:6929-48
    • (1981) Biochemistry , vol.20 , pp. 6929-6948
    • Berg, O.G.1    Winter, R.B.2    Von Hippel, P.H.3
  • 141
    • 80051527439 scopus 로고    scopus 로고
    • Real-time observation of strand exchange reaction with high spatiotemporal resolution
    • Ragunathan K, Joo C, Ha T. 2011. Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 19:1064-73
    • (2011) Structure , vol.19 , pp. 1064-1073
    • Ragunathan, K.1    Joo, C.2    Ha, T.3
  • 142
    • 84881494657 scopus 로고    scopus 로고
    • RecA filament sliding on DNA facilitates homology search
    • Ragunathan K, Liu C, Ha T. 2012. RecA filament sliding on DNA facilitates homology search. ELife 1:e00067
    • (2012) ELife , vol.1 , pp. e00067
    • Ragunathan, K.1    Liu, C.2    Ha, T.3
  • 143
    • 78049378633 scopus 로고    scopus 로고
    • Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments
    • Saladin A, Amourda C, Poulain P, Ferey N, Baaden M, et al. 2010. Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments. Nucleic Acids Res. 38:6313-23
    • (2010) Nucleic Acids Res. , vol.38 , pp. 6313-6323
    • Saladin, A.1    Amourda, C.2    Poulain, P.3    Ferey, N.4    Baaden, M.5
  • 144
    • 77956062712 scopus 로고    scopus 로고
    • RecA-mediated homology search as a nearly optimal signal detection system
    • Savir Y, Tlusty T. 2010. RecA-mediated homology search as a nearly optimal signal detection system. Mol. Cell 40:388-96
    • (2010) Mol. Cell , vol.40 , pp. 388-396
    • Savir, Y.1    Tlusty, T.2
  • 145
    • 84939630096 scopus 로고    scopus 로고
    • The poor homology stringency in the heteroduplex allows strand exchange to incorporate desirable mismatches without sacrificing recognition in vivo
    • Danilowicz C, Yang D, Kelley C, Prevost C, Prentiss M. 2015. The poor homology stringency in the heteroduplex allows strand exchange to incorporate desirable mismatches without sacrificing recognition in vivo. Nucleic Acids Res. 43:6473-85
    • (2015) Nucleic Acids Res. , vol.43 , pp. 6473-6485
    • Danilowicz, C.1    Yang, D.2    Kelley, C.3    Prevost, C.4    Prentiss, M.5
  • 146
    • 84923369935 scopus 로고    scopus 로고
    • DNA sequence alignment by microhomology sampling during homologous recombination
    • Qi Z, Redding S, Lee JY, Gibb B, Kwon Y, et al. 2015. DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160:856-69
    • (2015) Cell , vol.160 , pp. 856-869
    • Qi, Z.1    Redding, S.2    Lee, J.Y.3    Gibb, B.4    Kwon, Y.5
  • 147
    • 84893945960 scopus 로고    scopus 로고
    • RecA bundles mediate homology pairing between distant sisters during DNA break repair
    • Lesterlin C, Ball G, Schermelleh L, Sherratt DJ. 2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506:249-53
    • (2014) Nature , vol.506 , pp. 249-253
    • Lesterlin, C.1    Ball, G.2    Schermelleh, L.3    Sherratt, D.J.4
  • 148
    • 0031581811 scopus 로고    scopus 로고
    • Structure and subunit composition of the RuvAB-Holliday junction complex
    • Yu X, West SC, Egelman EH. 1997. Structure and subunit composition of the RuvAB-Holliday junction complex. J. Mol. Biol. 266:217-22
    • (1997) J. Mol. Biol. , vol.266 , pp. 217-222
    • Yu, X.1    West, S.C.2    Egelman, E.H.3
  • 149
    • 4143135445 scopus 로고    scopus 로고
    • Single-molecule study of RuvAB-mediated Holliday-junction migration
    • Dawid A, Croquette V, Grigoriev M, Heslot F. 2004. Single-molecule study of RuvAB-mediated Holliday-junction migration. PNAS 101:11611-16
    • (2004) PNAS , vol.101 , pp. 11611-11616
    • Dawid, A.1    Croquette, V.2    Grigoriev, M.3    Heslot, F.4
  • 150
    • 0035377356 scopus 로고    scopus 로고
    • Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51
    • Wu L, Davies SL, Levitt NC, Hickson ID. 2001. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J. Biol. Chem. 276:19375-81
    • (2001) J. Biol. Chem. , vol.276 , pp. 19375-19381
    • Wu, L.1    Davies, S.L.2    Levitt, N.C.3    Hickson, I.D.4
  • 151
    • 0037364415 scopus 로고    scopus 로고
    • RecQ helicases: Caretakers of the genome
    • Hickson ID. 2003. RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3:169-78
    • (2003) Nat. Rev. Cancer , vol.3 , pp. 169-178
    • Hickson, I.D.1
  • 152
    • 0001865832 scopus 로고    scopus 로고
    • DNA strand exchange proteins: A biochemical and physical comparison
    • Bianco PR, Tracy RB, Kowalczykowski SC. 1998. DNA strand exchange proteins: A biochemical and physical comparison. Front. Biosci. 3:D570-603
    • (1998) Front. Biosci. , vol.3 , pp. D570-603
    • Bianco, P.R.1    Tracy, R.B.2    Kowalczykowski, S.C.3
  • 153
    • 3042791448 scopus 로고    scopus 로고
    • Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity
    • Bugreev DV, Mazin AV. 2004. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. PNAS 101:9988-93
    • (2004) PNAS , vol.101 , pp. 9988-9993
    • Bugreev, D.V.1    Mazin, A.V.2
  • 154
    • 0037177845 scopus 로고    scopus 로고
    • Biochemical characterization of the human RAD51 protein. II. Adenosine nucleotide binding and competition
    • Tombline G, Shim KS, Fishel R. 2002. Biochemical characterization of the human RAD51 protein. II. Adenosine nucleotide binding and competition. J. Biol. Chem. 277:14426-33
    • (2002) J. Biol. Chem. , vol.277 , pp. 14426-14433
    • Tombline, G.1    Shim, K.S.2    Fishel, R.3
  • 156
    • 0029112483 scopus 로고
    • DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA
    • Sung P, Robberson DL. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453-61
    • (1995) Cell , vol.82 , pp. 453-461
    • Sung, P.1    Robberson, D.L.2
  • 157
    • 84930423588 scopus 로고    scopus 로고
    • Initiation of meiotic homologous recombination: Flexibility, impact of histone modifications, and chromatin remodeling
    • Szekvolgyi L, Ohta K, Nicolas A. 2015. Initiation of meiotic homologous recombination: flexibility, impact of histone modifications, and chromatin remodeling. Cold Spring Harb. Perspect. Biol. 7:a016527
    • (2015) Cold Spring Harb. Perspect. Biol. , vol.7 , pp. a016527
    • Szekvolgyi, L.1    Ohta, K.2    Nicolas, A.3
  • 159
    • 84938579589 scopus 로고    scopus 로고
    • A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination
    • Wang AT, Kim T, Wagner JE, Conti BA, Lach FP, et al. 2015. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol. Cell 59:478-90
    • (2015) Mol. Cell , vol.59 , pp. 478-490
    • Wang, A.T.1    Kim, T.2    Wagner, J.E.3    Conti, B.A.4    Lach, F.P.5
  • 160
    • 80053894780 scopus 로고    scopus 로고
    • See Ref 158, updated Feb. 7, 2013
    • Alter BP, Kupfer G. Fanconi anemia. 2002. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/ NBK1401/, updated Feb. 7, 2013
    • (2002) Fanconi Anemia
    • Alter, B.P.1    Kupfer, G.2
  • 161
    • 84968749870 scopus 로고    scopus 로고
    • See Ref 158, , updated Mar. 28, 2013
    • Sanz MM, German J. Bloom's syndrome. 2006. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/ NBK1398/, updated Mar. 28, 2013
    • (2006) Bloom's Syndrome
    • Sanz, M.M.1    German, J.2
  • 164
  • 165
    • 84930534513 scopus 로고    scopus 로고
    • Mutations in RECQL gene are associated with predisposition to breast cancer
    • Sun J, Wang Y, Xia Y, Xu Y, Ouyang T, et al. 2015. Mutations in RECQL gene are associated with predisposition to breast cancer. PLOS Genet. 11:e1005228
    • (2015) PLOS Genet. , vol.11 , pp. e1005228
    • Sun, J.1    Wang, Y.2    Xia, Y.3    Xu, Y.4    Ouyang, T.5
  • 167
  • 168
    • 0343059561 scopus 로고    scopus 로고
    • See Ref 158 updated Mar. 11, 2010
    • Gatti R. Ataxia-telangiectasia. 1999. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/NBK26468/, updated Mar. 11, 2010
    • (1999) Ataxia-telangiectasia
    • Gatti, R.1
  • 169
    • 79955108048 scopus 로고    scopus 로고
    • updated June 6, 2013 See Ref. 158
    • Wang LL, Plon SE. Rothmund-Thomson syndrome. 1999. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/NBK1237/, updated June 6, 2013
    • (1999) Rothmund-Thomson Syndrome
    • Wang, L.L.1    Plon, S.E.2
  • 170
    • 0142180061 scopus 로고    scopus 로고
    • RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase II
    • Harmon FG, Brockman JP, Kowalczykowski SC. 2003. RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase II. J. Biol. Chem. 278:42668-78
    • (2003) J. Biol. Chem. , vol.278 , pp. 42668-42678
    • Harmon, F.G.1    Brockman, J.P.2    Kowalczykowski, S.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.