-
1
-
-
78649336706
-
The DNA damage response: Making it safe to play with knives
-
Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179-204
-
(2010)
Mol. Cell
, vol.40
, pp. 179-204
-
-
Ciccia, A.1
Elledge, S.J.2
-
3
-
-
70349859881
-
DNA damage, aging, and cancer
-
Hoeijmakers JH. 2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361:1475-85
-
(2009)
N. Engl. J. Med.
, vol.361
, pp. 1475-1485
-
-
Hoeijmakers, J.H.1
-
4
-
-
84855843599
-
-
ed. RA Pagon, MP Adam, HH Ardinger, SE Wallace, A Amemiya, et al. Seattle (WA)
-
Sanz MM, German J. 1993. In GeneReviews, ed. RA Pagon, MP Adam, HH Ardinger, SE Wallace, A Amemiya, et al. Seattle (WA)
-
(1993)
GeneReviews
-
-
Sanz, M.M.1
German, J.2
-
5
-
-
84872578210
-
Fanconi anaemia and the repair of Watson and Crick DNA crosslinks
-
Kottemann MC, Smogorzewska A. 2013. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493:356-63
-
(2013)
Nature
, vol.493
, pp. 356-363
-
-
Kottemann, M.C.1
Smogorzewska, A.2
-
7
-
-
0030737725
-
Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription
-
Kogoma T. 1997. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61:212-38
-
(1997)
Microbiol. Mol. Biol. Rev.
, vol.61
, pp. 212-238
-
-
Kogoma, T.1
-
8
-
-
0034176335
-
Initiation of genetic recombination and recombination-dependent replication
-
Kowalczykowski SC. 2000. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25:156-65
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 156-165
-
-
Kowalczykowski, S.C.1
-
10
-
-
0034595010
-
The importance of repairing stalled replication forks
-
Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ. 2000. The importance of repairing stalled replication forks. Nature 404:37-41
-
(2000)
Nature
, vol.404
, pp. 37-41
-
-
Cox, M.M.1
Goodman, M.F.2
Kreuzer, K.N.3
Sherratt, D.J.4
Sandler, S.J.5
Marians, K.J.6
-
11
-
-
0242300088
-
Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer
-
Vilenchik MM, Knudson AG. 2003. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. PNAS 100:12871-76
-
(2003)
PNAS
, vol.100
, pp. 12871-12876
-
-
Vilenchik, M.M.1
Knudson, A.G.2
-
12
-
-
77950862944
-
Double Holliday junctions are intermediates of DNA break repair
-
Bzymek M, Thayer NH, Oh SD, Kleckner N, Hunter N. 2010. Double Holliday junctions are intermediates of DNA break repair. Nature 464:937-41
-
(2010)
Nature
, vol.464
, pp. 937-941
-
-
Bzymek, M.1
Thayer, N.H.2
Oh, S.D.3
Kleckner, N.4
Hunter, N.5
-
13
-
-
0017638486
-
Sister chromatid exchange
-
Wolff S. 1977. Sister chromatid exchange. Annu. Rev. Genet. 11:183-201
-
(1977)
Annu. Rev. Genet.
, vol.11
, pp. 183-201
-
-
Wolff, S.1
-
14
-
-
0346351375
-
A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes
-
Chaganti RS, Schonberg S, German J. 1974. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. PNAS 71:4508-12
-
(1974)
PNAS
, vol.71
, pp. 4508-4512
-
-
Chaganti, R.S.1
Schonberg, S.2
German, J.3
-
16
-
-
0000880652
-
Isolation and characterization of recombination-deficient mutants of Escherichia coli K12
-
Clark AJ, Margulies AD. 1965. Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. PNAS 53:451-59
-
(1965)
PNAS
, vol.53
, pp. 451-459
-
-
Clark, A.J.1
Margulies, A.D.2
-
17
-
-
84946423579
-
An overview of the molecular mechanisms of recombinational DNA repair
-
Kowalczykowski SC. 2015. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb Perspect. Biol. 7:a016410
-
(2015)
Cold Spring Harb Perspect. Biol.
, vol.7
, pp. a016410
-
-
Kowalczykowski, S.C.1
-
18
-
-
84940050527
-
Regulation of recombination and genomic maintenance
-
Heyer WD. 2015. Regulation of recombination and genomic maintenancE. Cold Spring Harb. Perspect. Biol. 7:a016501
-
(2015)
Cold Spring Harb. Perspect. Biol.
, vol.7
, pp. a016501
-
-
Heyer, W.D.1
-
19
-
-
77957023630
-
Watching individual proteins acting on single molecules of DNA
-
Amitani I, Liu B, Dombrowski CC, Baskin RJ, Kowalczykowski SC. 2010. Watching individual proteins acting on single molecules of DNA. Methods Enzymol. 472:261-91
-
(2010)
Methods Enzymol.
, vol.472
, pp. 261-291
-
-
Amitani, I.1
Liu, B.2
Dombrowski, C.C.3
Baskin, R.J.4
Kowalczykowski, S.C.5
-
20
-
-
84875192701
-
Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy
-
Forget AL, Dombrowski CC, Amitani I, Kowalczykowski SC. 2013. Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nat. Protoc. 8:525-38
-
(2013)
Nat. Protoc.
, vol.8
, pp. 525-538
-
-
Forget, A.L.1
Dombrowski, C.C.2
Amitani, I.3
Kowalczykowski, S.C.4
-
21
-
-
85015087906
-
Ten years of tension: Single-moleculeDNAmechanics
-
Bustamante C, Bryant Z, Smith SB. 2003. Ten years of tension: single-moleculeDNAmechanics. Nature 421:423-27
-
(2003)
Nature
, vol.421
, pp. 423-427
-
-
Bustamante, C.1
Bryant, Z.2
Smith, S.B.3
-
22
-
-
84861374075
-
Single-molecule views of protein movement on single-stranded DNA
-
Ha T, Kozlov AG, Lohman TM. 2012. Single-molecule views of protein movement on single-stranded DNA. Annu. Rev. Biophys. 41:295-319
-
(2012)
Annu. Rev. Biophys.
, vol.41
, pp. 295-319
-
-
Ha, T.1
Kozlov, A.G.2
Lohman, T.M.3
-
24
-
-
79951703348
-
Revisiting the central dogma one molecule at a time
-
Bustamante C, Cheng W, Mejia YX. 2011. Revisiting the central dogma one molecule at a timE. Cell 144:480-97
-
(2011)
Cell
, vol.144
, pp. 480-497
-
-
Bustamante, C.1
Cheng, W.2
Mejia, Y.X.3
-
26
-
-
0028766419
-
Relaxation of a single DNA molecule observed by optical microscopy
-
Perkins TT, Quake SR, Smith DE, Chu S. 1994. Relaxation of a single DNA molecule observed by optical microscopy. Science 264:822-26
-
(1994)
Science
, vol.264
, pp. 822-826
-
-
Perkins, T.T.1
Quake, S.R.2
Smith, D.E.3
Chu, S.4
-
27
-
-
44449105176
-
Laminar flow cells for single-molecule studies of DNA-protein interactions
-
Brewer LR, Bianco PR. 2008. Laminar flow cells for single-molecule studies of DNA-protein interactions. Nat. Methods 5:517-25
-
(2008)
Nat. Methods
, vol.5
, pp. 517-525
-
-
Brewer, L.R.1
Bianco, P.R.2
-
28
-
-
0035905687
-
Processive translocation and DNA unwinding by individual RecBCD enzyme molecules
-
Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, et al. 2001. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409:374-78
-
(2001)
Nature
, vol.409
, pp. 374-378
-
-
Bianco, P.R.1
Brewer, L.R.2
Corzett, M.3
Balhorn, R.4
Yeh, Y.5
-
29
-
-
33750296934
-
Direct observation of individual RecA filaments assembling on single DNA molecules
-
Galletto R, Amitani I, Baskin RJ, Kowalczykowski SC. 2006. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443:875-78
-
(2006)
Nature
, vol.443
, pp. 875-878
-
-
Galletto, R.1
Amitani, I.2
Baskin, R.J.3
Kowalczykowski, S.C.4
-
30
-
-
84882823133
-
DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate
-
Liu B, Baskin RJ, Kowalczykowski SC. 2013. DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate. Nature 500:482-85
-
(2013)
Nature
, vol.500
, pp. 482-485
-
-
Liu, B.1
Baskin, R.J.2
Kowalczykowski, S.C.3
-
31
-
-
84887333913
-
Advances in surface-based assays for single molecules
-
ed. P Selvin, T Ha, Cold Spring Harbor, NY: Cold Spring Harb. Lab.
-
Fordyce PM, Valentine MT, Block SM. 2008. Advances in surface-based assays for single molecules. In Single-Molecule Techniques: A Laboratory Manual, ed. P Selvin, T Ha, 20:431-460. Cold Spring Harbor, NY: Cold Spring Harb. Lab.
-
(2008)
Single-Molecule Techniques: A Laboratory Manual
, vol.20
, pp. 431-460
-
-
Fordyce, P.M.1
Valentine, M.T.2
Block, S.M.3
-
32
-
-
0029987587
-
Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor
-
Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S. 1996. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. PNAS 93:6264-68
-
(1996)
PNAS
, vol.93
, pp. 6264-6268
-
-
Ha, T.1
Enderle, T.2
Ogletree, D.F.3
Chemla, D.S.4
Selvin, P.R.5
Weiss, S.6
-
33
-
-
50649121477
-
Advances in single-molecule fluorescencemethods for molecular biology
-
JooC, Balci H, Ishitsuka Y, Buranachai C, HaT. 2008. Advances in single-molecule fluorescencemethods for molecular biology. Annu. Rev. Biochem. 77:51-76
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 51-76
-
-
Joo, C.1
Balci, H.2
Ishitsuka, Y.3
Buranachai, C.4
Ha, T.5
-
34
-
-
18344386476
-
Structural transitions of a twisted and stretched DNA molecule
-
Léger JF, Romano G, Sarkar A, Robert J, Bourdieu L, et al. 1999. Structural transitions of a twisted and stretched DNA molecule. Phys. Rev. Lett. 83:1066-69
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 1066-1069
-
-
Léger, J.F.1
Romano, G.2
Sarkar, A.3
Robert, J.4
Bourdieu, L.5
-
36
-
-
79960804204
-
SSB functions as a sliding platform that migrates on DNA via reptation
-
Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, et al. 2011. SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146:222-32
-
(2011)
Cell
, vol.146
, pp. 222-232
-
-
Zhou, R.1
Kozlov, A.G.2
Roy, R.3
Zhang, J.4
Korolev, S.5
-
39
-
-
9144271294
-
Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks
-
Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB. 2004. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432:187-93
-
(2004)
Nature
, vol.432
, pp. 187-193
-
-
Singleton, M.R.1
Dillingham, M.S.2
Gaudier, M.3
Kowalczykowski, S.C.4
Wigley, D.B.5
-
41
-
-
0037698985
-
RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity
-
Taylor AF, Smith GR. 2003. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423:889-93
-
(2003)
Nature
, vol.423
, pp. 889-893
-
-
Taylor, A.F.1
Smith, G.R.2
-
42
-
-
0019457036
-
Structure of chi hotspots of generalized recombination
-
SmithGR, Kunes SM, SchultzDW, Taylor A, Triman KL. 1981. Structure of chi hotspots of generalized recombination. Cell 24:429-36
-
(1981)
Cell
, vol.24
, pp. 429-436
-
-
Smith, G.R.1
Kunes, S.M.2
Schultz, D.W.3
Taylor, A.4
Triman, K.L.5
-
43
-
-
0034647421
-
A novel, 11 nucleotide variant of One of a class of sequences defining the Escherichia coli recombination hotspot?
-
Arnold DA, Handa N, Kobayashi I, Kowalczykowski SC. 2000. A novel, 11 nucleotide variant of one of a class of sequences defining the Escherichia coli recombination hotspot ?. J. Mol. Biol. 300:469-79
-
(2000)
J. Mol. Biol.
, vol.300
, pp. 469-479
-
-
Arnold, D.A.1
Handa, N.2
Kobayashi, I.3
Kowalczykowski, S.C.4
-
44
-
-
84861889126
-
Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, ?, by RecBCD enzyme
-
Handa N, Yang L, Dillingham MS, Kobayashi I, Wigley DB, Kowalczykowski SC. 2012. Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, ?, by RecBCD enzyme. PNAS 109:8901-6
-
(2012)
PNAS
, vol.109
, pp. 8901-8906
-
-
Handa, N.1
Yang, L.2
Dillingham, M.S.3
Kobayashi, I.4
Wigley, D.B.5
Kowalczykowski, S.C.6
-
45
-
-
84861860703
-
Alteration of ? Recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control
-
Yang L, Handa N, Liu B, Dillingham MS, Wigley DB, Kowalczykowski SC. 2012. Alteration of ? recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control. PNAS 109:8907-12
-
(2012)
PNAS
, vol.109
, pp. 8907-8912
-
-
Yang, L.1
Handa, N.2
Liu, B.3
Dillingham, M.S.4
Wigley, D.B.5
Kowalczykowski, S.C.6
-
46
-
-
22144474444
-
Chi: A little sequence controls a big enzyme
-
Stahl FW. 2005. Chi: A little sequence controls a big enzyme. Genetics 170:487-93
-
(2005)
Genetics
, vol.170
, pp. 487-493
-
-
Stahl, F.W.1
-
47
-
-
0141540814
-
A molecular throttle: The recombination hotspot ? Controls DNA translocation by the RecBCD helicase
-
Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC. 2003. A molecular throttle: The recombination hotspot ? controls DNA translocation by the RecBCD helicasE. Cell 114:647-54
-
(2003)
Cell
, vol.114
, pp. 647-654
-
-
Spies, M.1
Bianco, P.R.2
Dillingham, M.S.3
Handa, N.4
Baskin, R.J.5
Kowalczykowski, S.C.6
-
48
-
-
0025902330
-
Homologous pairing in vitro stimulated by the recombination hotspot, Chi
-
Dixon DA, Kowalczykowski SC. 1991. Homologous pairing in vitro stimulated by the recombination hotspot, Chi. Cell 66:361-71
-
(1991)
Cell
, vol.66
, pp. 361-371
-
-
Dixon, D.A.1
Kowalczykowski, S.C.2
-
49
-
-
0027511858
-
The recombination hotspot ? Is a regulatory sequence that acts by attenuating the nuclease activity of the E. Coli RecBCD enzyme
-
Dixon DA, Kowalczykowski SC. 1993. The recombination hotspot ? is a regulatory sequence that acts by attenuating the nuclease activity of the E. Coli RecBCD enzymE. Cell 73:87-96
-
(1993)
Cell
, vol.73
, pp. 87-96
-
-
Dixon, D.A.1
Kowalczykowski, S.C.2
-
50
-
-
27744469165
-
BipolarDNAtranslocation contributes to highly processive DNA unwinding by RecBCD enzyme
-
Dillingham MS, WebbMR, Kowalczykowski SC. 2005. BipolarDNAtranslocation contributes to highly processive DNA unwinding by RecBCD enzyme. J. Biol. Chem. 280:37069-77
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 37069-37077
-
-
Dillingham, M.S.1
Webb, M.R.2
Kowalczykowski, S.C.3
-
51
-
-
27744497422
-
Translocation by the RecB motor is an absolute requirement for recognition and RecA protein loading by RecBCD enzyme
-
Spies M, Dillingham MS, Kowalczykowski SC. 2005. Translocation by the RecB motor is an absolute requirement for recognition and RecA protein loading by RecBCD enzyme. J. Biol. Chem. 280:37078-87
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 37078-37087
-
-
Spies, M.1
Dillingham, M.S.2
Kowalczykowski, S.C.3
-
52
-
-
14644412914
-
Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after ?recognition
-
HandaN, Bianco PR, Baskin RJ, Kowalczykowski SC. 2005. Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after ?recognition. Mol. Cell 17:745-50
-
(2005)
Mol. Cell
, vol.17
, pp. 745-750
-
-
Handa, N.1
Bianco, P.R.2
Baskin, R.J.3
Kowalczykowski, S.C.4
-
53
-
-
36049052525
-
RecBCD enzyme switches lead motor subunits in response to ?recognition
-
SpiesM, Amitani I, Baskin RJ, Kowalczykowski SC. 2007. RecBCD enzyme switches lead motor subunits in response to ?recognition. Cell 131:694-705
-
(2007)
Cell
, vol.131
, pp. 694-705
-
-
Spies, M.1
Amitani, I.2
Baskin, R.J.3
Kowalczykowski, S.C.4
-
54
-
-
0034614654
-
A single nuclease active site of the Escherichia coli RecBCD enzyme catalyzes single-stranded DNA degradation in both directions
-
Wang J, Chen R, Julin DA. 2000. A single nuclease active site of the Escherichia coli RecBCD enzyme catalyzes single-stranded DNA degradation in both directions. J. Biol. Chem. 275:507-13
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 507-513
-
-
Wang, J.1
Chen, R.2
Julin, D.A.3
-
55
-
-
0031444642
-
The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a regulated manner
-
Anderson DG, Kowalczykowski SC. 1997. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a regulated manner. Cell 90:77-86
-
(1997)
Cell
, vol.90
, pp. 77-86
-
-
Anderson, D.G.1
Kowalczykowski, S.C.2
-
56
-
-
0034697325
-
Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme
-
Arnold DA, Kowalczykowski SC. 2000. Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J. Biol. Chem. 275:12261-65
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 12261-12265
-
-
Arnold, D.A.1
Kowalczykowski, S.C.2
-
57
-
-
32444451553
-
The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins
-
Spies M, Kowalczykowski SC. 2006. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol. Cell 21:573-80
-
(2006)
Mol. Cell
, vol.21
, pp. 573-580
-
-
Spies, M.1
Kowalczykowski, S.C.2
-
58
-
-
84928473578
-
CRISPR adaptation biases explain preference for acquisition of foreign DNA
-
Levy A, Goren MG, Yosef I, Auster O, Manor M, et al. 2015. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505-10
-
(2015)
Nature
, vol.520
, pp. 505-510
-
-
Levy, A.1
Goren, M.G.2
Yosef, I.3
Auster, O.4
Manor, M.5
-
59
-
-
78650307167
-
Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase
-
Finkelstein IJ, Visnapuu ML, Greene EC. 2010. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468:983-87
-
(2010)
Nature
, vol.468
, pp. 983-987
-
-
Finkelstein, I.J.1
Visnapuu, M.L.2
Greene, E.C.3
-
61
-
-
35548960837
-
RecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV-irradiated Escherichia coli
-
Chow KH, Courcelle J. 2007. RecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV-irradiated Escherichia coli. Radiat. Res. 168:499-506
-
(2007)
Radiat. Res.
, vol.168
, pp. 499-506
-
-
Chow, K.H.1
Courcelle, J.2
-
62
-
-
34249789279
-
Spontaneous DNA breakage in single living Escherichia coli cells
-
Pennington JM, Rosenberg SM. 2007. Spontaneous DNA breakage in single living Escherichia coli cells. Nat. Genet. 39:797-802
-
(2007)
Nat. Genet.
, vol.39
, pp. 797-802
-
-
Pennington, J.M.1
Rosenberg, S.M.2
-
63
-
-
84915746628
-
RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination
-
Morimatsu K, Kowalczykowski SC. 2014. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination. PNAS 111:E5133-42
-
(2014)
PNAS
, vol.111
, pp. E5133-E5142
-
-
Morimatsu, K.1
Kowalczykowski, S.C.2
-
64
-
-
0035808456
-
Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase
-
Harmon FG, Kowalczykowski SC. 2001. Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase. J. Biol. Chem. 276:232-43
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 232-243
-
-
Harmon, F.G.1
Kowalczykowski, S.C.2
-
65
-
-
59649104376
-
Identification of the SSB binding site on E. Coli RecQ reveals a conserved surface for binding SSB's C terminus
-
Shereda RD, Reiter NJ, Butcher SE, Keck JL. 2009. Identification of the SSB binding site on E. Coli RecQ reveals a conserved surface for binding SSB's C terminus. J. Mol. Biol. 386:612-25
-
(2009)
J. Mol. Biol.
, vol.386
, pp. 612-625
-
-
Shereda, R.D.1
Reiter, N.J.2
Butcher, S.E.3
Keck, J.L.4
-
66
-
-
84859397679
-
Translocation of E. Coli RecQ helicase on single-stranded DNA
-
Rad B, Kowalczykowski SC. 2012. Translocation of E. Coli RecQ helicase on single-stranded DNA. Biochemistry 51:2921-29
-
(2012)
Biochemistry
, vol.51
, pp. 2921-2929
-
-
Rad, B.1
Kowalczykowski, S.C.2
-
67
-
-
84857137035
-
Efficient coupling of ATP hydrolysis to translocation by RecQ helicase
-
Rad B, Kowalczykowski SC. 2012. Efficient coupling of ATP hydrolysis to translocation by RecQ helicase. PNAS 109:1443-48
-
(2012)
PNAS
, vol.109
, pp. 1443-1448
-
-
Rad, B.1
Kowalczykowski, S.C.2
-
68
-
-
84950103610
-
Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding
-
Rad B, Forget AL, Baskin RJ, Kowalczykowski SC. 2015. Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding. PNAS 112(50):E6851-61
-
(2015)
PNAS
, vol.112
, Issue.50
, pp. E6851-E6861
-
-
Rad, B.1
Forget, A.L.2
Baskin, R.J.3
Kowalczykowski, S.C.4
-
69
-
-
84950349773
-
Fine tuning of a DNA fork by the RecQ helicase
-
Byrd AK, Raney KD. 2015. Fine tuning of a DNA fork by the RecQ helicase. PNAS 112:15263-64
-
(2015)
PNAS
, vol.112
, pp. 15263-15264
-
-
Byrd, A.K.1
Raney, K.D.2
-
70
-
-
84905493192
-
End resection at double-strand breaks: Mechanism and regulation
-
Symington LS. 2014. End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb. Perspect. Biol. 6:a016436
-
(2014)
Cold Spring Harb. Perspect. Biol.
, vol.6
, pp. a016436
-
-
Symington, L.S.1
-
71
-
-
84908045717
-
Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
-
Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514:122-25
-
(2014)
Nature
, vol.514
, pp. 122-125
-
-
Cannavo, E.1
Cejka, P.2
-
72
-
-
77950900571
-
The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds Holliday junctions
-
Cejka P, Kowalczykowski SC. 2010. The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds Holliday junctions. J. Biol. Chem. 285:8290-301
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 8290-8301
-
-
Cejka, P.1
Kowalczykowski, S.C.2
-
74
-
-
77956325620
-
DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2
-
Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, et al. 2010. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467:112-16
-
(2010)
Nature
, vol.467
, pp. 112-116
-
-
Cejka, P.1
Cannavo, E.2
Polaczek, P.3
Masuda-Sasa, T.4
Pokharel, S.5
-
75
-
-
77956302112
-
Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae
-
Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W, et al. 2010. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467:108-11
-
(2010)
Nature
, vol.467
, pp. 108-111
-
-
Niu, H.1
Chung, W.H.2
Zhu, Z.3
Kwon, Y.4
Zhao, W.5
-
76
-
-
84878437546
-
Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity
-
Levikova M, KlaueD, Seidel R, Cejka P. 2013. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity. PNAS 110:E1992-2001
-
(2013)
PNAS
, vol.110
, pp. E1992-2001
-
-
Levikova, M.1
Klaue, D.2
Seidel, R.3
Cejka, P.4
-
77
-
-
84876896603
-
Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection
-
Cannavo E, Cejka P, Kowalczykowski SC. 2013. Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. PNAS 110:E1661-68
-
(2013)
PNAS
, vol.110
, pp. E1661-E1668
-
-
Cannavo, E.1
Cejka, P.2
Kowalczykowski, S.C.3
-
78
-
-
79951688343
-
BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair
-
Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, et al. 2011. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25:350-62
-
(2011)
Genes Dev.
, vol.25
, pp. 350-362
-
-
Nimonkar, A.V.1
Genschel, J.2
Kinoshita, E.3
Polaczek, P.4
Campbell, J.L.5
-
79
-
-
55949105327
-
Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair
-
Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC. 2008. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. PNAS 105:16906-11
-
(2008)
PNAS
, vol.105
, pp. 16906-16911
-
-
Nimonkar, A.V.1
Ozsoy, A.Z.2
Genschel, J.3
Modrich, P.4
Kowalczykowski, S.C.5
-
80
-
-
77957786786
-
Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks
-
Shim EY, Chung WH, Nicolette ML, Zhang Y, Davis M, et al. 2010. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J. 29:3370-80
-
(2010)
EMBO J.
, vol.29
, pp. 3370-3380
-
-
Shim, E.Y.1
Chung, W.H.2
Nicolette, M.L.3
Zhang, Y.4
Davis, M.5
-
81
-
-
54349118941
-
SSB as an organizer/mobilizer of genome maintenance complexes
-
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. 2008. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 43:289-318
-
(2008)
Crit. Rev. Biochem. Mol. Biol.
, vol.43
, pp. 289-318
-
-
Shereda, R.D.1
Kozlov, A.G.2
Lohman, T.M.3
Cox, M.M.4
Keck, J.L.5
-
83
-
-
0023135142
-
Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein: Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA
-
Kowalczykowski SC, Krupp RA. 1987. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein: evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J. Mol. Biol. 193:97-113
-
(1987)
J. Mol. Biol.
, vol.193
, pp. 97-113
-
-
Kowalczykowski, S.C.1
Krupp, R.A.2
-
84
-
-
70350488396
-
SSB protein diffusion on single-strandedDNA stimulates RecA filament formation
-
Roy R, Kozlov AG, Lohman TM, Ha T. 2009. SSB protein diffusion on single-strandedDNA stimulates RecA filament formation. Nature 461:1092-97
-
(2009)
Nature
, vol.461
, pp. 1092-1097
-
-
Roy, R.1
Kozlov, A.G.2
Lohman, T.M.3
Ha, T.4
-
85
-
-
34248664689
-
Dynamic structural rearrangements between DNA binding modes of E. Coli SSB protein
-
Roy R, Kozlov AG, Lohman TM, Ha T. 2007. Dynamic structural rearrangements between DNA binding modes of E. Coli SSB protein. J. Mol. Biol. 369:1244-57
-
(2007)
J. Mol. Biol.
, vol.369
, pp. 1244-1257
-
-
Roy, R.1
Kozlov, A.G.2
Lohman, T.M.3
Ha, T.4
-
86
-
-
84901768289
-
Ultrafast redistribution of E. Coli SSB along long single-stranded DNA via intersegment transfer
-
Lee KS, Marciel AB, Kozlov AG, Schroeder CM, Lohman TM, Ha T. 2014. Ultrafast redistribution of E. Coli SSB along long single-stranded DNA via intersegment transfer. J. Mol. Biol. 426:2413-21
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 2413-2421
-
-
Lee, K.S.1
Marciel, A.B.2
Kozlov, A.G.3
Schroeder, C.M.4
Lohman, T.M.5
Ha, T.6
-
87
-
-
0036786227
-
Kinetic mechanism of direct transfer of Escherichia coli SSB tetramers between single-stranded DNA molecules
-
Kozlov AG, Lohman TM. 2002. Kinetic mechanism of direct transfer of Escherichia coli SSB tetramers between single-stranded DNA molecules. Biochemistry 41:11611-27
-
(2002)
Biochemistry
, vol.41
, pp. 11611-11627
-
-
Kozlov, A.G.1
Lohman, T.M.2
-
88
-
-
84949952959
-
Imaging and energetics of single SSB-ssDNAmolecules reveal intramolecular condensation and insight into RecOR function
-
Bell JC, Liu B, Kowalczykowski SC. 2015. Imaging and energetics of single SSB-ssDNAmolecules reveal intramolecular condensation and insight into RecOR function. ELife 4:e08646
-
(2015)
ELife
, vol.4
, pp. e08646
-
-
Bell, J.C.1
Liu, B.2
Kowalczykowski, S.C.3
-
89
-
-
84919774724
-
Replication protein A: Single-strandedDNA's first responder: DynamicDNAinteractions allow replication proteinAto direct single-strandDNAintermediates into different pathways for synthesis or repair
-
Chen R, Wold MS. 2014. Replication protein A: single-strandedDNA's first responder: DynamicDNAinteractions allow replication proteinAto direct single-strandDNAintermediates into different pathways for synthesis or repair. BioEssays 36:1156-61
-
(2014)
BioEssays
, vol.36
, pp. 1156-1161
-
-
Chen, R.1
Wold, M.S.2
-
90
-
-
0030908093
-
Replication protein A: A heterotrimeric, single-strandedDNA-binding protein required for eukaryotic DNA metabolism
-
Wold MS. 1997. Replication protein A: A heterotrimeric, single-strandedDNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66:61-92
-
(1997)
Annu. Rev. Biochem.
, vol.66
, pp. 61-92
-
-
Wold, M.S.1
-
91
-
-
0033575671
-
The crystal structure of the complex of replication protein A subunitsRPA32 and RPA14 reveals amechanism for single-strandedDNAbinding
-
Bochkarev A, Bochkareva E, Frappier L, Edwards AM. 1999. The crystal structure of the complex of replication protein A subunitsRPA32 and RPA14 reveals amechanism for single-strandedDNAbinding. EMBO J. 18:4498-504
-
(1999)
EMBO J.
, vol.18
, pp. 4498-4504
-
-
Bochkarev, A.1
Bochkareva, E.2
Frappier, L.3
Edwards, A.M.4
-
92
-
-
0031030449
-
Structure of the single-stranded-DNAbinding domain of replication protein A bound to DNA
-
Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L. 1997. Structure of the single-stranded-DNAbinding domain of replication protein A bound to DNA. Nature 385:176-81
-
(1997)
Nature
, vol.385
, pp. 176-181
-
-
Bochkarev, A.1
Pfuetzner, R.A.2
Edwards, A.M.3
Frappier, L.4
-
93
-
-
84920112472
-
Diffusion of human replication protein A along single-stranded DNA
-
Nguyen B, Sokoloski J, Galletto R, Elson EL, Wold MS, Lohman TM. 2014. Diffusion of human replication protein A along single-stranded DNA. J. Mol. Biol. 426:3246-61
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 3246-3261
-
-
Nguyen, B.1
Sokoloski, J.2
Galletto, R.3
Elson, E.L.4
Wold, M.S.5
Lohman, T.M.6
-
94
-
-
84896873779
-
Concentration-dependent exchange of replication proteinAon single-strandedDNArevealed by single-molecule imaging
-
Gibb B, Ye LF, Gergoudis SC, Kwon Y, Niu H, et al. 2014. Concentration-dependent exchange of replication proteinAon single-strandedDNArevealed by single-molecule imaging. PLOSONE9:e87922
-
(2014)
PLOSONE
, vol.9
, pp. e87922
-
-
Gibb, B.1
Ye, L.F.2
Gergoudis, S.C.3
Kwon, Y.4
Niu, H.5
-
95
-
-
75749151650
-
Mechanism of interaction between single-stranded DNA binding protein and DNA
-
Kunzelmann S, Morris C, Chavda AP, Eccleston JF, WebbMR. 2010. Mechanism of interaction between single-stranded DNA binding protein and DNA. Biochemistry 49:843-52
-
(2010)
Biochemistry
, vol.49
, pp. 843-852
-
-
Kunzelmann, S.1
Morris, C.2
Chavda, A.P.3
Eccleston, J.F.4
Webb, M.R.5
-
96
-
-
84868615392
-
Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA
-
Bell JC, Plank JL, Dombrowski CC, Kowalczykowski SC. 2012. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 491:274-78
-
(2012)
Nature
, vol.491
, pp. 274-278
-
-
Bell, J.C.1
Plank, J.L.2
Dombrowski, C.C.3
Kowalczykowski, S.C.4
-
97
-
-
84899015574
-
Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins
-
Sing CE, Olvera de la Cruz M, Marko JF. 2014. Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins. Nucleic Acids Res. 42:3783-91
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 3783-3791
-
-
Sing, C.E.1
De La Olvera Cruz, M.2
Marko, J.F.3
-
99
-
-
0027238208
-
Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein
-
Umezu K, Chi NW, Kolodner RD. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. PNAS 90:3875-79
-
(1993)
PNAS
, vol.90
, pp. 3875-3879
-
-
Umezu, K.1
Chi, N.W.2
Kolodner, R.D.3
-
100
-
-
0023108585
-
Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA: Demonstration of competitive binding and the lack of a specific protein-protein interaction
-
Kowalczykowski SC, Clow J, Somani R, Varghese A. 1987. Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA: demonstration of competitive binding and the lack of a specific protein-protein interaction. J. Mol. Biol. 193:81-95
-
(1987)
J. Mol. Biol.
, vol.193
, pp. 81-95
-
-
Kowalczykowski, S.C.1
Clow, J.2
Somani, R.3
Varghese, A.4
-
101
-
-
0016698509
-
Kinetics of the cooperative association of actin to actin filaments
-
Wegner A, Engel J. 1975. Kinetics of the cooperative association of actin to actin filaments. Biophys. Chem. 3:215-25
-
(1975)
Biophys. Chem.
, vol.3
, pp. 215-225
-
-
Wegner, A.1
Engel, J.2
-
102
-
-
0017151228
-
A quantitative analysis of microtubule elongation
-
Bryan J. 1976. A quantitative analysis of microtubule elongation. J. Cell Biol. 71:749-67
-
(1976)
J. Cell Biol.
, vol.71
, pp. 749-767
-
-
Bryan, J.1
-
103
-
-
33746713745
-
Real-time observation of RecA filament dynamics with single monomer resolution
-
Joo C, McKinney SA, Nakamura M, Rasnik I, Myong S, Ha T. 2006. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126:515-27
-
(2006)
Cell
, vol.126
, pp. 515-527
-
-
Joo, C.1
McKinney, S.A.2
Nakamura, M.3
Rasnik, I.4
Myong, S.5
Ha, T.6
-
104
-
-
0038392868
-
RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair
-
Morimatsu K, Kowalczykowski SC. 2003. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair. Mol. Cell 11:1337-47
-
(2003)
Mol. Cell
, vol.11
, pp. 1337-1347
-
-
Morimatsu, K.1
Kowalczykowski, S.C.2
-
105
-
-
0021243712
-
Molecular analysis of the recF gene of Escherichia coli
-
Blanar MA, Sandler SJ, ArmengodME, Ream LW, Clark AJ. 1984. Molecular analysis of the recF gene of Escherichia coli. PNAS 81:4622-26
-
(1984)
PNAS
, vol.81
, pp. 4622-4626
-
-
Blanar, M.A.1
Sandler, S.J.2
Armengod, M.E.3
Ream, L.W.4
Clark, A.J.5
-
106
-
-
84867406977
-
RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5- terminus: Implication for repair of stalled replication forks
-
Morimatsu K, Wu Y, Kowalczykowski SC. 2012. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5- terminus: implication for repair of stalled replication forks. J. Biol. Chem. 287:35621-30
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 35621-35630
-
-
Morimatsu, K.1
Wu, Y.2
Kowalczykowski, S.C.3
-
107
-
-
0030666945
-
Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
-
Sung P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272:28194-97
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 28194-28197
-
-
Sung, P.1
-
108
-
-
0032556898
-
Stimulation by Rad52 of yeast Rad51-mediated recombination
-
Shinohara A, Ogawa T. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391:404-7
-
(1998)
Nature
, vol.391
, pp. 404-407
-
-
Shinohara, A.1
Ogawa, T.2
-
109
-
-
0032556870
-
Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A
-
New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391:407-10
-
(1998)
Nature
, vol.391
, pp. 407-410
-
-
New, J.H.1
Sugiyama, T.2
Zaitseva, E.3
Kowalczykowski, S.C.4
-
110
-
-
0032568595
-
DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-strandedDNA
-
Sugiyama T, New JH, Kowalczykowski SC. 1998. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-strandedDNA. PNAS 95:6049-54
-
(1998)
PNAS
, vol.95
, pp. 6049-6054
-
-
Sugiyama, T.1
New, J.H.2
Kowalczykowski, S.C.3
-
111
-
-
84919774962
-
Protein dynamics during presynapticcomplex assembly on individual single-stranded DNA molecules
-
Gibb B, Ye LF, Kwon Y, Niu H, Sung P, Greene EC. 2014. Protein dynamics during presynapticcomplex assembly on individual single-stranded DNA molecules. Nat. Struct. Mol. Biol. 21:893-900
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 893-900
-
-
Gibb, B.1
Ye, L.F.2
Kwon, Y.3
Niu, H.4
Sung, P.5
Greene, E.C.6
-
112
-
-
84876988376
-
Anew protein complex promoting the assembly of Rad51 filaments
-
Sasanuma H, Tawaramoto MS, Lao JP, HosakaH, Sanda E, et al. 2013. Anew protein complex promoting the assembly of Rad51 filaments. Nat. Commun. 4:1676
-
(2013)
Nat. Commun.
, vol.4
, pp. 1676
-
-
Sasanuma, H.1
Tawaramoto, M.S.2
Lao, J.P.3
Hosaka, H.4
Sanda, E.5
-
113
-
-
0037124355
-
Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes
-
Fortin GS, Symington LS. 2002. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes. EMBO J. 21:3160-70
-
(2002)
EMBO J.
, vol.21
, pp. 3160-3170
-
-
Fortin, G.S.1
Symington, L.S.2
-
114
-
-
67650281109
-
Suppression of the double-strand-break-repair defect of the Saccharomyces cerevisiae rad57 mutant
-
Fung CW, Mozlin AM, Symington LS. 2009. Suppression of the double-strand-break-repair defect of the Saccharomyces cerevisiae rad57 mutant. Genetics 181:1195-206
-
(2009)
Genetics
, vol.181
, pp. 1195-1206
-
-
Fung, C.W.1
Mozlin, A.M.2
Symington, L.S.3
-
115
-
-
80855132890
-
Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
-
Liu J, Renault L, Veaute X, Fabre F, Stahlberg H, Heyer WD. 2011. Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479:245-48
-
(2011)
Nature
, vol.479
, pp. 245-248
-
-
Liu, J.1
Renault, L.2
Veaute, X.3
Fabre, F.4
Stahlberg, H.5
Heyer, W.D.6
-
116
-
-
79955499183
-
The Shu complex, which contains Rad51 paralogues, promotesDNA repair through inhibition of the Srs2 anti-recombinase
-
BernsteinKA, Reid RJ, Sunjevaric I, DemuthK, Burgess RC, Rothstein R. 2011. The Shu complex, which contains Rad51 paralogues, promotesDNA repair through inhibition of the Srs2 anti-recombinase. Mol. Biol. Cell 22:1599-607
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 1599-1607
-
-
Bernstein, K.A.1
Reid, R.J.2
Sunjevaric, I.3
Demuth, K.4
Burgess, R.C.5
Rothstein, R.6
-
117
-
-
17444391598
-
A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: Four genes involved in error-free DNA repair
-
Shor E, Weinstein J, Rothstein R. 2005. A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: four genes involved in error-free DNA repair. Genetics 169:1275-89
-
(2005)
Genetics
, vol.169
, pp. 1275-1289
-
-
Shor, E.1
Weinstein, J.2
Rothstein, R.3
-
118
-
-
84938153185
-
Promotion of presynaptic filament assembly by the ensemble of S. Cerevisiae Rad51 paralogues with Rad52
-
Gaines WA, Godin SK, Kabbinavar FF, Rao T, VanDemark AP, et al. 2015. Promotion of presynaptic filament assembly by the ensemble of S. cerevisiae Rad51 paralogues with Rad52. Nat. Commun. 6:7834
-
(2015)
Nat. Commun.
, vol.6
, pp. 7834
-
-
Gaines, W.A.1
Godin, S.K.2
Kabbinavar, F.F.3
Rao, T.4
VanDemark, A.P.5
-
119
-
-
77957975815
-
Purified human BRCA2 stimulates RAD51-mediated recombination
-
Jensen RB, Carreira A, Kowalczykowski SC. 2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678-83
-
(2010)
Nature
, vol.467
, pp. 678-683
-
-
Jensen, R.B.1
Carreira, A.2
Kowalczykowski, S.C.3
-
120
-
-
77957804215
-
Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA
-
Liu J, Doty T, Gibson B, Heyer WD. 2010. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat. Struct. Mol. Biol. 17:1260-62
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1260-1262
-
-
Liu, J.1
Doty, T.2
Gibson, B.3
Heyer, W.D.4
-
121
-
-
0031466027
-
RAD51interactswith the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2
-
WongAK, PeroR, Ormonde PA, Tavtigian SV, BartelPL. 1997. RAD51interactswith the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem. 272:31941-44
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 31941-31944
-
-
Wong, A.K.1
Pero, R.2
Ormonde, P.A.3
Tavtigian, S.V.4
Bartel, P.L.5
-
122
-
-
0031022191
-
The BRC repeats are conserved in mammalian BRCA2 proteins
-
Bignell G, Micklem G, StrattonMR, Ashworth A, Wooster R. 1997. The BRC repeats are conserved in mammalian BRCA2 proteins. Hum. Mol. Genet. 6:53-58
-
(1997)
Hum. Mol. Genet.
, vol.6
, pp. 53-58
-
-
Bignell, G.1
Micklem, G.2
Stratton, M.R.3
Ashworth, A.4
Wooster, R.5
-
123
-
-
58849096231
-
Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules
-
Hilario J, Amitani I, Baskin RJ, Kowalczykowski SC. 2009. Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. PNAS 106:361-68
-
(2009)
PNAS
, vol.106
, pp. 361-368
-
-
Hilario, J.1
Amitani, I.2
Baskin, R.J.3
Kowalczykowski, S.C.4
-
124
-
-
75649090767
-
Two modules in the BRC repeats of BRCA2 mediate structural and functional interactions with the RAD51 recombinase
-
Rajendra E, Venkitaraman AR. 2010. Two modules in the BRC repeats of BRCA2 mediate structural and functional interactions with the RAD51 recombinase. Nucleic Acids Res. 38:82-96
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 82-96
-
-
Rajendra, E.1
Venkitaraman, A.R.2
-
125
-
-
62149104415
-
The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51
-
Carreira A, Hilario J, Amitani I, Baskin RJ, ShivjiMK, et al. 2009. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell 136:1032-43
-
(2009)
Cell
, vol.136
, pp. 1032-1043
-
-
Carreira, A.1
Hilario, J.2
Amitani, I.3
Baskin, R.J.4
Shivji, M.K.5
-
126
-
-
69449089443
-
The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single-versus double-stranded DNA to stimulate strand exchange
-
ShivjiMK, Mukund SR, Rajendra E, Chen S, Short JM, et al. 2009. The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single-versus double-stranded DNA to stimulate strand exchange. PNAS 106:13254-59
-
(2009)
PNAS
, vol.106
, pp. 13254-13259
-
-
Shivji, M.K.1
Mukund, S.R.2
Rajendra, E.3
Chen, S.4
Short, J.M.5
-
127
-
-
79960597176
-
Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms
-
Carreira A, Kowalczykowski SC. 2011. Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms. PNAS 108:10448-53
-
(2011)
PNAS
, vol.108
, pp. 10448-10453
-
-
Carreira, A.1
Kowalczykowski, S.C.2
-
128
-
-
84908044967
-
Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor
-
Shahid T, Soroka J, Kong EH, Malivert L, McIlwraith MJ, et al. 2014. Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor. Nat. Struct. Mol. Biol. 21:962-68
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 962-968
-
-
Shahid, T.1
Soroka, J.2
Kong, E.H.3
Malivert, L.4
McIlwraith, M.J.5
-
129
-
-
84919968901
-
BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells
-
Reuter M, Zelensky A, Smal I, Meijering E, van CappellenWA, et al. 2014. BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells. J. Cell Biol. 207:599-613
-
(2014)
J. Cell Biol.
, vol.207
, pp. 599-613
-
-
Reuter, M.1
Zelensky, A.2
Smal, I.3
Meijering, E.4
Van Cappellen, W.A.5
-
130
-
-
84937410808
-
Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry
-
Zhao W, Vaithiyalingam S, San Filippo J, Maranon DG, Jimenez-Sainz J, et al. 2015. Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry. Mol. Cell 59:176-87
-
(2015)
Mol. Cell
, vol.59
, pp. 176-187
-
-
Zhao, W.1
Vaithiyalingam, S.2
San Filippo, J.3
Maranon, D.G.4
Jimenez-Sainz, J.5
-
131
-
-
84926432359
-
Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins
-
Prakash R, Zhang Y, Feng W, Jasin M. 2015. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7:a016600
-
(2015)
Cold Spring Harb. Perspect. Biol.
, vol.7
, pp. a016600
-
-
Prakash, R.1
Zhang, Y.2
Feng, W.3
Jasin, M.4
-
132
-
-
84962195712
-
BRCA2 regulates DMC1-mediated recombination through the BRC repeats
-
Martinez JS, von Nicolai C, Kim T, Ehlen A, Mazin AV, et al. 2016. BRCA2 regulates DMC1-mediated recombination through the BRC repeats. PNAS 113:3515-20
-
(2016)
PNAS
, vol.113
, pp. 3515-3520
-
-
Martinez, J.S.1
Von Nicolai, C.2
Kim, T.3
Ehlen, A.4
Mazin, A.V.5
-
133
-
-
77956498326
-
Sequence-and structure-specific RNA processing by a CRISPR endonuclease
-
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 2010. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355-58
-
(2010)
Science
, vol.329
, pp. 1355-1358
-
-
Haurwitz, R.E.1
Jinek, M.2
Wiedenheft, B.3
Zhou, K.4
Doudna, J.A.5
-
134
-
-
0025891414
-
Biochemistry of genetic recombination: Energetics and mechanism of DNA strand exchange
-
Kowalczykowski SC. 1991. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu. Rev. Biophys. Biophys. Chem. 20:539-75
-
(1991)
Annu. Rev. Biophys. Biophys. Chem.
, vol.20
, pp. 539-575
-
-
Kowalczykowski, S.C.1
-
135
-
-
0025848721
-
Biochemical and biological function of Escherichia coli RecA protein: Behavior of mutant RecA proteins
-
Kowalczykowski SC. 1991. Biochemical and biological function of Escherichia coli RecA protein: behavior of mutant RecA proteins. Biochimie 73:289-304
-
(1991)
Biochimie
, vol.73
, pp. 289-304
-
-
Kowalczykowski, S.C.1
-
136
-
-
44349162159
-
Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures
-
Chen Z, Yang H, Pavletich NP. 2008. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453:489-94
-
(2008)
Nature
, vol.453
, pp. 489-494
-
-
Chen, Z.1
Yang, H.2
Pavletich, N.P.3
-
137
-
-
44349104598
-
Structural biology: Snapshots of DNA repair
-
Kowalczykowski SC. 2008. Structural biology: snapshots of DNA repair. Nature 453:463-66
-
(2008)
Nature
, vol.453
, pp. 463-466
-
-
Kowalczykowski, S.C.1
-
138
-
-
0029762349
-
The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange
-
Mazin AV, Kowalczykowski SC. 1996. The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange. PNAS 93:10673-78
-
(1996)
PNAS
, vol.93
, pp. 10673-10678
-
-
Mazin, A.V.1
Kowalczykowski, S.C.2
-
139
-
-
84857118715
-
Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search
-
Forget AL, Kowalczykowski SC. 2012. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482:423-27
-
(2012)
Nature
, vol.482
, pp. 423-427
-
-
Forget, A.L.1
Kowalczykowski, S.C.2
-
140
-
-
0019887628
-
Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory
-
Berg OG, Winter RB, von Hippel PH. 1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20:6929-48
-
(1981)
Biochemistry
, vol.20
, pp. 6929-6948
-
-
Berg, O.G.1
Winter, R.B.2
Von Hippel, P.H.3
-
141
-
-
80051527439
-
Real-time observation of strand exchange reaction with high spatiotemporal resolution
-
Ragunathan K, Joo C, Ha T. 2011. Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 19:1064-73
-
(2011)
Structure
, vol.19
, pp. 1064-1073
-
-
Ragunathan, K.1
Joo, C.2
Ha, T.3
-
142
-
-
84881494657
-
RecA filament sliding on DNA facilitates homology search
-
Ragunathan K, Liu C, Ha T. 2012. RecA filament sliding on DNA facilitates homology search. ELife 1:e00067
-
(2012)
ELife
, vol.1
, pp. e00067
-
-
Ragunathan, K.1
Liu, C.2
Ha, T.3
-
143
-
-
78049378633
-
Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments
-
Saladin A, Amourda C, Poulain P, Ferey N, Baaden M, et al. 2010. Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments. Nucleic Acids Res. 38:6313-23
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 6313-6323
-
-
Saladin, A.1
Amourda, C.2
Poulain, P.3
Ferey, N.4
Baaden, M.5
-
144
-
-
77956062712
-
RecA-mediated homology search as a nearly optimal signal detection system
-
Savir Y, Tlusty T. 2010. RecA-mediated homology search as a nearly optimal signal detection system. Mol. Cell 40:388-96
-
(2010)
Mol. Cell
, vol.40
, pp. 388-396
-
-
Savir, Y.1
Tlusty, T.2
-
145
-
-
84939630096
-
The poor homology stringency in the heteroduplex allows strand exchange to incorporate desirable mismatches without sacrificing recognition in vivo
-
Danilowicz C, Yang D, Kelley C, Prevost C, Prentiss M. 2015. The poor homology stringency in the heteroduplex allows strand exchange to incorporate desirable mismatches without sacrificing recognition in vivo. Nucleic Acids Res. 43:6473-85
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 6473-6485
-
-
Danilowicz, C.1
Yang, D.2
Kelley, C.3
Prevost, C.4
Prentiss, M.5
-
146
-
-
84923369935
-
DNA sequence alignment by microhomology sampling during homologous recombination
-
Qi Z, Redding S, Lee JY, Gibb B, Kwon Y, et al. 2015. DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160:856-69
-
(2015)
Cell
, vol.160
, pp. 856-869
-
-
Qi, Z.1
Redding, S.2
Lee, J.Y.3
Gibb, B.4
Kwon, Y.5
-
147
-
-
84893945960
-
RecA bundles mediate homology pairing between distant sisters during DNA break repair
-
Lesterlin C, Ball G, Schermelleh L, Sherratt DJ. 2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506:249-53
-
(2014)
Nature
, vol.506
, pp. 249-253
-
-
Lesterlin, C.1
Ball, G.2
Schermelleh, L.3
Sherratt, D.J.4
-
148
-
-
0031581811
-
Structure and subunit composition of the RuvAB-Holliday junction complex
-
Yu X, West SC, Egelman EH. 1997. Structure and subunit composition of the RuvAB-Holliday junction complex. J. Mol. Biol. 266:217-22
-
(1997)
J. Mol. Biol.
, vol.266
, pp. 217-222
-
-
Yu, X.1
West, S.C.2
Egelman, E.H.3
-
149
-
-
4143135445
-
Single-molecule study of RuvAB-mediated Holliday-junction migration
-
Dawid A, Croquette V, Grigoriev M, Heslot F. 2004. Single-molecule study of RuvAB-mediated Holliday-junction migration. PNAS 101:11611-16
-
(2004)
PNAS
, vol.101
, pp. 11611-11616
-
-
Dawid, A.1
Croquette, V.2
Grigoriev, M.3
Heslot, F.4
-
150
-
-
0035377356
-
Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51
-
Wu L, Davies SL, Levitt NC, Hickson ID. 2001. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J. Biol. Chem. 276:19375-81
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 19375-19381
-
-
Wu, L.1
Davies, S.L.2
Levitt, N.C.3
Hickson, I.D.4
-
151
-
-
0037364415
-
RecQ helicases: Caretakers of the genome
-
Hickson ID. 2003. RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3:169-78
-
(2003)
Nat. Rev. Cancer
, vol.3
, pp. 169-178
-
-
Hickson, I.D.1
-
152
-
-
0001865832
-
DNA strand exchange proteins: A biochemical and physical comparison
-
Bianco PR, Tracy RB, Kowalczykowski SC. 1998. DNA strand exchange proteins: A biochemical and physical comparison. Front. Biosci. 3:D570-603
-
(1998)
Front. Biosci.
, vol.3
, pp. D570-603
-
-
Bianco, P.R.1
Tracy, R.B.2
Kowalczykowski, S.C.3
-
153
-
-
3042791448
-
Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity
-
Bugreev DV, Mazin AV. 2004. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. PNAS 101:9988-93
-
(2004)
PNAS
, vol.101
, pp. 9988-9993
-
-
Bugreev, D.V.1
Mazin, A.V.2
-
154
-
-
0037177845
-
Biochemical characterization of the human RAD51 protein. II. Adenosine nucleotide binding and competition
-
Tombline G, Shim KS, Fishel R. 2002. Biochemical characterization of the human RAD51 protein. II. Adenosine nucleotide binding and competition. J. Biol. Chem. 277:14426-33
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 14426-14433
-
-
Tombline, G.1
Shim, K.S.2
Fishel, R.3
-
155
-
-
3142682325
-
HXRCC2 enhances ADP/ATP processing and strand exchange by hRAD51
-
Shim KS, Schmutte C, Tombline G, Heinen CD, Fishel R. 2004. hXRCC2 enhances ADP/ATP processing and strand exchange by hRAD51. J. Biol. Chem. 279:30385-94
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 30385-30394
-
-
Shim, K.S.1
Schmutte, C.2
Tombline, G.3
Heinen, C.D.4
Fishel, R.5
-
156
-
-
0029112483
-
DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA
-
Sung P, Robberson DL. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453-61
-
(1995)
Cell
, vol.82
, pp. 453-461
-
-
Sung, P.1
Robberson, D.L.2
-
157
-
-
84930423588
-
Initiation of meiotic homologous recombination: Flexibility, impact of histone modifications, and chromatin remodeling
-
Szekvolgyi L, Ohta K, Nicolas A. 2015. Initiation of meiotic homologous recombination: flexibility, impact of histone modifications, and chromatin remodeling. Cold Spring Harb. Perspect. Biol. 7:a016527
-
(2015)
Cold Spring Harb. Perspect. Biol.
, vol.7
, pp. a016527
-
-
Szekvolgyi, L.1
Ohta, K.2
Nicolas, A.3
-
158
-
-
84855843599
-
-
Seattle, WA: Univ. Wash.
-
Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al. , eds. 1993-2015. GeneReviews. Seattle, WA: Univ. Wash. http://www. ncbi. nlm. nih. gov/books/NBK1116/
-
(1993)
GeneReviews
-
-
Pagon, R.A.1
Adam, M.P.2
Ardinger, H.H.3
Wallace, S.E.4
Amemiya, A.5
-
159
-
-
84938579589
-
A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination
-
Wang AT, Kim T, Wagner JE, Conti BA, Lach FP, et al. 2015. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol. Cell 59:478-90
-
(2015)
Mol. Cell
, vol.59
, pp. 478-490
-
-
Wang, A.T.1
Kim, T.2
Wagner, J.E.3
Conti, B.A.4
Lach, F.P.5
-
160
-
-
80053894780
-
-
See Ref 158, updated Feb. 7, 2013
-
Alter BP, Kupfer G. Fanconi anemia. 2002. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/ NBK1401/, updated Feb. 7, 2013
-
(2002)
Fanconi Anemia
-
-
Alter, B.P.1
Kupfer, G.2
-
161
-
-
84968749870
-
-
See Ref 158, , updated Mar. 28, 2013
-
Sanz MM, German J. Bloom's syndrome. 2006. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/ NBK1398/, updated Mar. 28, 2013
-
(2006)
Bloom's Syndrome
-
-
Sanz, M.M.1
German, J.2
-
162
-
-
85000474085
-
-
See Ref 158, , updated May 8, 2014
-
Varon R, Demuth I, Digweed M. Nijmegen breakage syndrome. 1999. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/NBK1176/, updated May 8, 2014
-
(1999)
Nijmegen Breakage Syndrome
-
-
Varon, R.1
Demuth, I.2
Digweed, M.3
-
163
-
-
79953718190
-
-
See Ref 158, , updated Sep. 26, 2013
-
Petrucelli N, Daly MB, Feldman GL. BRCA1 and BRCA2 hereditary breast and ovarian cancer. 1998. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/NBK1247/, updated Sep. 26, 2013
-
(1998)
BRCA1 and BRCA2 Hereditary Breast and Ovarian Cancer
-
-
Petrucelli, N.1
Daly, M.B.2
Feldman, G.L.3
-
164
-
-
84930092326
-
GermlineRECQLmutations are associated with breast cancer susceptibility
-
CybulskiC, Carrot-Zhang J, KluzniakW, Rivera B, Kashyap A, et al. 2015. GermlineRECQLmutations are associated with breast cancer susceptibility. Nat. Genet. 47:643-46
-
(2015)
Nat. Genet.
, vol.47
, pp. 643-646
-
-
Cybulski, C.1
Carrot-Zhang, J.2
Kluzniak, W.3
Rivera, B.4
Kashyap, A.5
-
165
-
-
84930534513
-
Mutations in RECQL gene are associated with predisposition to breast cancer
-
Sun J, Wang Y, Xia Y, Xu Y, Ouyang T, et al. 2015. Mutations in RECQL gene are associated with predisposition to breast cancer. PLOS Genet. 11:e1005228
-
(2015)
PLOS Genet.
, vol.11
, pp. e1005228
-
-
Sun, J.1
Wang, Y.2
Xia, Y.3
Xu, Y.4
Ouyang, T.5
-
167
-
-
84902187810
-
Human RecQ helicases in DNA repair, recombination, and replication
-
Croteau DL, Popuri V, Opresko PL, Bohr VA. 2014. Human RecQ helicases in DNA repair, recombination, and replication. Annu. Rev. Biochem. 83:519-52
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 519-552
-
-
Croteau, D.L.1
Popuri, V.2
Opresko, P.L.3
Bohr, V.A.4
-
168
-
-
0343059561
-
-
See Ref 158 updated Mar. 11, 2010
-
Gatti R. Ataxia-telangiectasia. 1999. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/NBK26468/, updated Mar. 11, 2010
-
(1999)
Ataxia-telangiectasia
-
-
Gatti, R.1
-
169
-
-
79955108048
-
-
updated June 6, 2013 See Ref. 158
-
Wang LL, Plon SE. Rothmund-Thomson syndrome. 1999. See Ref. 158, http://www. ncbi. nlm. nih. gov/books/NBK1237/, updated June 6, 2013
-
(1999)
Rothmund-Thomson Syndrome
-
-
Wang, L.L.1
Plon, S.E.2
-
170
-
-
0142180061
-
RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase II
-
Harmon FG, Brockman JP, Kowalczykowski SC. 2003. RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase II. J. Biol. Chem. 278:42668-78
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 42668-42678
-
-
Harmon, F.G.1
Brockman, J.P.2
Kowalczykowski, S.C.3
|