-
1
-
-
84874194072
-
DNA methylation: roles in mammalian development
-
Smith Z.D., Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013, 14:204-220.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
2
-
-
78751470921
-
Structure and function of mammalian DNA methyltransferases
-
Jurkowska R.Z., Jurkowski T.P., Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem 2011, 12:206-222.
-
(2011)
Chembiochem
, vol.12
, pp. 206-222
-
-
Jurkowska, R.Z.1
Jurkowski, T.P.2
Jeltsch, A.3
-
3
-
-
84886860116
-
Tet, TDG and the dynamics of DNA demethylation
-
Kohli R.M., Zhang Y. Tet, TDG and the dynamics of DNA demethylation. Nature 2013, 502:472-479.
-
(2013)
Nature
, vol.502
, pp. 472-479
-
-
Kohli, R.M.1
Zhang, Y.2
-
4
-
-
84925762489
-
TET family proteins: oxidation activity, interacting molecules, and functions in diseases
-
Lu X., Zhao B.S., He C. TET family proteins: oxidation activity, interacting molecules, and functions in diseases. Chem Rev 2015, 115:2225-2239.
-
(2015)
Chem Rev
, vol.115
, pp. 2225-2239
-
-
Lu, X.1
Zhao, B.S.2
He, C.3
-
5
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
Pastor, W.A.4
Bandukwala, H.5
Brudno, Y.6
Agarwal, S.7
Iyer, L.M.8
Liu, D.R.9
Aravind, L.10
Rao, A.11
-
6
-
-
77956189495
-
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
-
Ito S., D'Alessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
D'Alessio, A.C.2
Taranova, O.V.3
Hong, K.4
Sowers, L.C.5
Zhang, Y.6
-
7
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He Y.F., Li B.Z., Li Z., Liu P., Wang Y., Tang Q., Ding J., Jia Y., Chen Z., Li L., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
Li, B.Z.2
Li, Z.3
Liu, P.4
Wang, Y.5
Tang, Q.6
Ding, J.7
Jia, Y.8
Chen, Z.9
Li, L.10
-
8
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S., Shen L., Dai Q., Wu S.C., Collins L.B., Swenberg J.A., He C., Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
Wu, S.C.4
Collins, L.B.5
Swenberg, J.A.6
He, C.7
Zhang, Y.8
-
9
-
-
79960626636
-
The discovery of 5-formylcytosine in embryonic stem cell DNA
-
Pfaffeneder T., Hackner B., Truss M., Munzel M., Muller M., Deiml C.A., Hagemeier C., Carell T. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed Engl 2011, 50:7008-7012.
-
(2011)
Angew Chem Int Ed Engl
, vol.50
, pp. 7008-7012
-
-
Pfaffeneder, T.1
Hackner, B.2
Truss, M.3
Munzel, M.4
Muller, M.5
Deiml, C.A.6
Hagemeier, C.7
Carell, T.8
-
10
-
-
84962428929
-
Structure of Naegleria Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA
-
Hashimoto H., Pais J.E., Dai N., Correa I.R., Zhang X., Zheng Y., Cheng X. Structure of Naegleria Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA. Nucleic Acids Res 2015, 43:10713-10721.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 10713-10721
-
-
Hashimoto, H.1
Pais, J.E.2
Dai, N.3
Correa, I.R.4
Zhang, X.5
Zheng, Y.6
Cheng, X.7
-
11
-
-
84946217906
-
Structural insight into substrate preference for TET-mediated oxidation
-
Hu L., Lu J., Cheng J., Rao Q., Li Z., Hou H., Lou Z., Zhang L., Li W., Gong W., et al. Structural insight into substrate preference for TET-mediated oxidation. Nature 2015, 527:118-122.
-
(2015)
Nature
, vol.527
, pp. 118-122
-
-
Hu, L.1
Lu, J.2
Cheng, J.3
Rao, Q.4
Li, Z.5
Hou, H.6
Lou, Z.7
Zhang, L.8
Li, W.9
Gong, W.10
-
12
-
-
84956811348
-
Tet2 catalyzes stepwise 5-methylcytosine oxidation by an iterative and de novo mechanism
-
Crawford D.J., Liu M.Y., Nabel C.S., Cao X.J., Garcia B.A., Kohli R.M. Tet2 catalyzes stepwise 5-methylcytosine oxidation by an iterative and de novo mechanism. J Am Chem Soc 2016, 138:730-733.
-
(2016)
J Am Chem Soc
, vol.138
, pp. 730-733
-
-
Crawford, D.J.1
Liu, M.Y.2
Nabel, C.S.3
Cao, X.J.4
Garcia, B.A.5
Kohli, R.M.6
-
13
-
-
84911493925
-
5-Hydroxymethylcytosine is a predominantly stable DNA modification
-
Bachman M., Uribe-Lewis S., Yang X., Williams M., Murrell A., Balasubramanian S. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 2014, 6:1049-1055.
-
(2014)
Nat Chem
, vol.6
, pp. 1049-1055
-
-
Bachman, M.1
Uribe-Lewis, S.2
Yang, X.3
Williams, M.4
Murrell, A.5
Balasubramanian, S.6
-
14
-
-
84937736036
-
5-Formylcytosine can be a stable DNA modification in mammals
-
Bachman M., Uribe-Lewis S., Yang X., Burgess H.E., Iurlaro M., Reik W., Murrell A., Balasubramanian S. 5-Formylcytosine can be a stable DNA modification in mammals. Nat Chem Biol 2015, 11:555-557.
-
(2015)
Nat Chem Biol
, vol.11
, pp. 555-557
-
-
Bachman, M.1
Uribe-Lewis, S.2
Yang, X.3
Burgess, H.E.4
Iurlaro, M.5
Reik, W.6
Murrell, A.7
Balasubramanian, S.8
-
15
-
-
84925780877
-
Chemical methods for decoding cytosine modifications in DNA
-
Booth M.J., Raiber E.A., Balasubramanian S. Chemical methods for decoding cytosine modifications in DNA. Chem Rev 2015, 115:2240-2254.
-
(2015)
Chem Rev
, vol.115
, pp. 2240-2254
-
-
Booth, M.J.1
Raiber, E.A.2
Balasubramanian, S.3
-
16
-
-
84964383428
-
Charting oxidized methylcytosines at base resolution
-
Yardimci H., Zhang Y. Charting oxidized methylcytosines at base resolution. Nat Struct Mol Biol 2015, 22:656-661.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 656-661
-
-
Yardimci, H.1
Zhang, Y.2
-
17
-
-
84889030206
-
CGmCGCG is a versatile substrate with which to evaluate Tet protein activity
-
Kizaki S., Sugiyama H. CGmCGCG is a versatile substrate with which to evaluate Tet protein activity. Org Biomol Chem 2014, 12:104-107.
-
(2014)
Org Biomol Chem
, vol.12
, pp. 104-107
-
-
Kizaki, S.1
Sugiyama, H.2
-
18
-
-
84906342396
-
Tet-mediated formation of 5-hydroxymethylcytosine in RNA
-
Fu L., Guerrero C.R., Zhong N., Amato N.J., Liu Y., Liu S., Cai Q., Ji D., Jin S.G., Niedernhofer L.J., et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc 2014, 136:11582-11585.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 11582-11585
-
-
Fu, L.1
Guerrero, C.R.2
Zhong, N.3
Amato, N.J.4
Liu, Y.5
Liu, S.6
Cai, Q.7
Ji, D.8
Jin, S.G.9
Niedernhofer, L.J.10
-
19
-
-
84924918523
-
Formation and abundance of 5-hydroxymethylcytosine in RNA
-
Huber S.M., van Delft P., Mendil L., Bachman M., Smollett K., Werner F., Miska E.A., Balasubramanian S. Formation and abundance of 5-hydroxymethylcytosine in RNA. Chembiochem 2015, 16:752-755.
-
(2015)
Chembiochem
, vol.16
, pp. 752-755
-
-
Huber, S.M.1
van Delft, P.2
Mendil, L.3
Bachman, M.4
Smollett, K.5
Werner, F.6
Miska, E.A.7
Balasubramanian, S.8
-
20
-
-
84954349048
-
Transcriptome-wide distribution and function of RNA hydroxymethylcytosine
-
Delatte B., Wang F., Ngoc L.V., Collignon E., Bonvin E., Deplus R., Calonne E., Hassabi B., Putmans P., Awe S., et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 2016, 351:282-285.
-
(2016)
Science
, vol.351
, pp. 282-285
-
-
Delatte, B.1
Wang, F.2
Ngoc, L.V.3
Collignon, E.4
Bonvin, E.5
Deplus, R.6
Calonne, E.7
Hassabi, B.8
Putmans, P.9
Awe, S.10
-
21
-
-
84902831568
-
Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA
-
Pfaffeneder T., Spada F., Wagner M., Brandmayr C., Laube S.K., Eisen D., Truss M., Steinbacher J., Hackner B., Kotljarova O., et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol 2014, 10:574-581.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 574-581
-
-
Pfaffeneder, T.1
Spada, F.2
Wagner, M.3
Brandmayr, C.4
Laube, S.K.5
Eisen, D.6
Truss, M.7
Steinbacher, J.8
Hackner, B.9
Kotljarova, O.10
-
22
-
-
84927724481
-
Detection of mismatched 5-hydroxymethyluracil in DNA by selective chemical labeling
-
Yu M., Song C.X., He C. Detection of mismatched 5-hydroxymethyluracil in DNA by selective chemical labeling. Methods 2015, 72:16-20.
-
(2015)
Methods
, vol.72
, pp. 16-20
-
-
Yu, M.1
Song, C.X.2
He, C.3
-
23
-
-
63249106600
-
JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes
-
Cliffe L.J., Kieft R., Southern T., Birkeland S.R., Marshall M., Sweeney K., Sabatini R. JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes. Nucleic Acids Res 2009, 37:1452-1462.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 1452-1462
-
-
Cliffe, L.J.1
Kieft, R.2
Southern, T.3
Birkeland, S.R.4
Marshall, M.5
Sweeney, K.6
Sabatini, R.7
-
24
-
-
84886810542
-
Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA
-
Iyer L.M., Zhang D., Burroughs A.M., Aravind L. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Res 2013, 41:7635-7655.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7635-7655
-
-
Iyer, L.M.1
Zhang, D.2
Burroughs, A.M.3
Aravind, L.4
-
25
-
-
84893431558
-
Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes
-
Iyer L.M., Zhang D., de Souza R.F., Pukkila P.J., Rao A., Aravind L. Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes. Proc Natl Acad Sci U S A 2014, 111:1676-1683.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 1676-1683
-
-
Iyer, L.M.1
Zhang, D.2
de Souza, R.F.3
Pukkila, P.J.4
Rao, A.5
Aravind, L.6
-
26
-
-
84897523964
-
A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine
-
Zhang L., Chen W., Iyer L.M., Hu J., Wang G., Fu Y., Yu M., Dai Q., Aravind L., He C. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. J Am Chem Soc 2014, 136:4801-4804.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 4801-4804
-
-
Zhang, L.1
Chen, W.2
Iyer, L.M.3
Hu, J.4
Wang, G.5
Fu, Y.6
Yu, M.7
Dai, Q.8
Aravind, L.9
He, C.10
-
27
-
-
84936157640
-
N6-methyladenine DNA modification in Drosophila
-
Zhang G., Huang H., Liu D., Cheng Y., Liu X., Zhang W., Yin R., Zhang D., Zhang P., Liu J., et al. N6-methyladenine DNA modification in Drosophila. Cell 2015, 161:893-906.
-
(2015)
Cell
, vol.161
, pp. 893-906
-
-
Zhang, G.1
Huang, H.2
Liu, D.3
Cheng, Y.4
Liu, X.5
Zhang, W.6
Yin, R.7
Zhang, D.8
Zhang, P.9
Liu, J.10
-
28
-
-
84890087878
-
Crystal structures of B-DNA dodecamer containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine
-
Renciuk D., Blacque O., Vorlickova M., Spingler B. Crystal structures of B-DNA dodecamer containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine. Nucleic Acids Res 2013, 41:9891-9900.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 9891-9900
-
-
Renciuk, D.1
Blacque, O.2
Vorlickova, M.3
Spingler, B.4
-
29
-
-
84885130399
-
Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine
-
Schiesser S., Pfaffeneder T., Sadeghian K., Hackner B., Steigenberger B., Schroder A.S., Steinbacher J., Kashiwazaki G., Hofner G., Wanner K.T., et al. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. J Am Chem Soc 2013, 135:14593-14599.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 14593-14599
-
-
Schiesser, S.1
Pfaffeneder, T.2
Sadeghian, K.3
Hackner, B.4
Steigenberger, B.5
Schroder, A.S.6
Steinbacher, J.7
Kashiwazaki, G.8
Hofner, G.9
Wanner, K.T.10
-
30
-
-
84922663293
-
Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine
-
Szulik M.W., Pallan P.S., Nocek B., Voehler M., Banerjee S., Brooks S., Joachimiak A., Egli M., Eichman B.F., Stone M.P. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Biochemistry 2015, 54:1294-1305.
-
(2015)
Biochemistry
, vol.54
, pp. 1294-1305
-
-
Szulik, M.W.1
Pallan, P.S.2
Nocek, B.3
Voehler, M.4
Banerjee, S.5
Brooks, S.6
Joachimiak, A.7
Egli, M.8
Eichman, B.F.9
Stone, M.P.10
-
31
-
-
84886468317
-
Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA
-
Maiti A., Michelson A.Z., Armwood C.J., Lee J.K., Drohat A.C. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA. J Am Chem Soc 2013, 135:15813-15822.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 15813-15822
-
-
Maiti, A.1
Michelson, A.Z.2
Armwood, C.J.3
Lee, J.K.4
Drohat, A.C.5
-
32
-
-
84959360038
-
Weakened N3 hydrogen bonding by 5-formylcytosine and 5-carboxylcytosine reduces their base-pairing stability
-
Dai Q., Sanstead P.J., Peng C.S., Han D., He C., Tokmakoff A. Weakened N3 hydrogen bonding by 5-formylcytosine and 5-carboxylcytosine reduces their base-pairing stability. ACS Chem Biol 2016, 11:470-477.
-
(2016)
ACS Chem Biol
, vol.11
, pp. 470-477
-
-
Dai, Q.1
Sanstead, P.J.2
Peng, C.S.3
Han, D.4
He, C.5
Tokmakoff, A.6
-
33
-
-
84922598841
-
5-Formylcytosine alters the structure of the DNA double helix
-
Raiber E.A., Murat P., Chirgadze D.Y., Beraldi D., Luisi B.F., Balasubramanian S. 5-Formylcytosine alters the structure of the DNA double helix. Nat Struct Mol Biol 2015, 22:44-49.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 44-49
-
-
Raiber, E.A.1
Murat, P.2
Chirgadze, D.Y.3
Beraldi, D.4
Luisi, B.F.5
Balasubramanian, S.6
-
34
-
-
84959432574
-
Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability
-
Ngo T.T., Yoo J., Dai Q., Zhang Q., He C., Aksimentiev A., Ha T. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nat Commun 2016, 7:10813.
-
(2016)
Nat Commun
, vol.7
, pp. 10813
-
-
Ngo, T.T.1
Yoo, J.2
Dai, Q.3
Zhang, Q.4
He, C.5
Aksimentiev, A.6
Ha, T.7
-
35
-
-
79956308473
-
Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells
-
Pastor W.A., Pape U.J., Huang Y., Henderson H.R., Lister R., Ko M., McLoughlin E.M., Brudno Y., Mahapatra S., Kapranov P., et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 2011, 473:394-397.
-
(2011)
Nature
, vol.473
, pp. 394-397
-
-
Pastor, W.A.1
Pape, U.J.2
Huang, Y.3
Henderson, H.R.4
Lister, R.5
Ko, M.6
McLoughlin, E.M.7
Brudno, Y.8
Mahapatra, S.9
Kapranov, P.10
-
36
-
-
78651280460
-
Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine
-
Song C.X., Szulwach K.E., Fu Y., Dai Q., Yi C., Li X., Li Y., Chen C.H., Zhang W., Jian X., et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 2011, 29:68-72.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 68-72
-
-
Song, C.X.1
Szulwach, K.E.2
Fu, Y.3
Dai, Q.4
Yi, C.5
Li, X.6
Li, Y.7
Chen, C.H.8
Zhang, W.9
Jian, X.10
-
37
-
-
84877313438
-
Selective chemical labelling of 5-formylcytosine in DNA by fluorescent dyes
-
Hu J., Xing X., Xu X., Wu F., Guo P., Yan S., Xu Z., Xu J., Weng X., Zhou X. Selective chemical labelling of 5-formylcytosine in DNA by fluorescent dyes. Chemistry 2013, 19:5836-5840.
-
(2013)
Chemistry
, vol.19
, pp. 5836-5840
-
-
Hu, J.1
Xing, X.2
Xu, X.3
Wu, F.4
Guo, P.5
Yan, S.6
Xu, Z.7
Xu, J.8
Weng, X.9
Zhou, X.10
-
38
-
-
84876907152
-
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
-
Song C.X., Szulwach K.E., Dai Q., Fu Y., Mao S.Q., Lin L., Street C., Li Y., Poidevin M., Wu H., et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 2013, 153:678-691.
-
(2013)
Cell
, vol.153
, pp. 678-691
-
-
Song, C.X.1
Szulwach, K.E.2
Dai, Q.3
Fu, Y.4
Mao, S.Q.5
Lin, L.6
Street, C.7
Li, Y.8
Poidevin, M.9
Wu, H.10
-
39
-
-
84907807685
-
Pyrene-based quantitative detection of the 5-formylcytosine loci symmetry in the CpG duplex content during TET-dependent demethylation
-
Xu L., Chen Y.C., Chong J., Fin A., McCoy L.S., Xu J., Zhang C., Wang D. Pyrene-based quantitative detection of the 5-formylcytosine loci symmetry in the CpG duplex content during TET-dependent demethylation. Angew Chem Int Ed Engl 2014, 53:11223-11227.
-
(2014)
Angew Chem Int Ed Engl
, vol.53
, pp. 11223-11227
-
-
Xu, L.1
Chen, Y.C.2
Chong, J.3
Fin, A.4
McCoy, L.S.5
Xu, J.6
Zhang, C.7
Wang, D.8
-
40
-
-
84879547408
-
Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA
-
Lu X., Song C.X., Szulwach K., Wang Z., Weidenbacher P., Jin P., He C. Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 2013, 135:9315-9317.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 9315-9317
-
-
Lu, X.1
Song, C.X.2
Szulwach, K.3
Wang, Z.4
Weidenbacher, P.5
Jin, P.6
He, C.7
-
41
-
-
84937116585
-
Deciphering epigenetic cytosine modifications by direct molecular recognition
-
Kubik G., Summerer D. Deciphering epigenetic cytosine modifications by direct molecular recognition. ACS Chem Biol 2015, 10:1580-1589.
-
(2015)
ACS Chem Biol
, vol.10
, pp. 1580-1589
-
-
Kubik, G.1
Summerer, D.2
-
42
-
-
84874267510
-
High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells
-
Sun Z., Terragni J., Borgaro J.G., Liu Y., Yu L., Guan S., Wang H., Sun D., Cheng X., Zhu Z., et al. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 2013, 3:567-576.
-
(2013)
Cell Rep
, vol.3
, pp. 567-576
-
-
Sun, Z.1
Terragni, J.2
Borgaro, J.G.3
Liu, Y.4
Yu, L.5
Guan, S.6
Wang, H.7
Sun, D.8
Cheng, X.9
Zhu, Z.10
-
43
-
-
84921019170
-
Programmable sensors of 5-hydroxymethylcytosine
-
Kubik G., Batke S., Summerer D. Programmable sensors of 5-hydroxymethylcytosine. J Am Chem Soc 2015, 137:2-5.
-
(2015)
J Am Chem Soc
, vol.137
, pp. 2-5
-
-
Kubik, G.1
Batke, S.2
Summerer, D.3
-
44
-
-
84890048526
-
Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins
-
Maeder M.L., Angstman J.F., Richardson M.E., Linder S.J., Cascio V.M., Tsai S.Q., Ho Q.H., Sander J.D., Reyon D., Bernstein B.E., et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 2013, 31:1137-1142.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 1137-1142
-
-
Maeder, M.L.1
Angstman, J.F.2
Richardson, M.E.3
Linder, S.J.4
Cascio, V.M.5
Tsai, S.Q.6
Ho, Q.H.7
Sander, J.D.8
Reyon, D.9
Bernstein, B.E.10
-
45
-
-
84894248678
-
Induced DNA demethylation by targeting ten-eleven translocation 2 to the human ICAM-1 promoter
-
Chen H., Kazemier H.G., de Groote M.L., Ruiters M.H., Xu G.L., Rots M.G. Induced DNA demethylation by targeting ten-eleven translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 2014, 42:1563-1574.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 1563-1574
-
-
Chen, H.1
Kazemier, H.G.2
de Groote, M.L.3
Ruiters, M.H.4
Xu, G.L.5
Rots, M.G.6
-
46
-
-
80053917872
-
Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
-
Maiti A., Drohat A.C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 2011, 286:35334-35338.
-
(2011)
J Biol Chem
, vol.286
, pp. 35334-35338
-
-
Maiti, A.1
Drohat, A.C.2
-
47
-
-
84960155228
-
Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism
-
Weber A.R., Krawczyk C., Robertson A.B., Kusnierczyk A., Vagbo C.B., Schuermann D., Klungland A., Schar P. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun 2016, 7:10806.
-
(2016)
Nat Commun
, vol.7
, pp. 10806
-
-
Weber, A.R.1
Krawczyk, C.2
Robertson, A.B.3
Kusnierczyk, A.4
Vagbo, C.B.5
Schuermann, D.6
Klungland, A.7
Schar, P.8
-
48
-
-
84899517644
-
Direct decarboxylation of 5-carboxylcytosine by DNA C5-methyltransferases
-
Liutkeviciute Z., Kriukiene E., Licyte J., Rudyte M., Urbanaviciute G., Klimasauskas S. Direct decarboxylation of 5-carboxylcytosine by DNA C5-methyltransferases. J Am Chem Soc 2014, 136:5884-5887.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 5884-5887
-
-
Liutkeviciute, Z.1
Kriukiene, E.2
Licyte, J.3
Rudyte, M.4
Urbanaviciute, G.5
Klimasauskas, S.6
-
49
-
-
67349212165
-
Cytosine-5-methyltransferases add aldehydes to DNA
-
Liutkeviciute Z., Lukinavicius G., Masevicius V., Daujotyte D., Klimasauskas S. Cytosine-5-methyltransferases add aldehydes to DNA. Nat Chem Biol 2009, 5:400-402.
-
(2009)
Nat Chem Biol
, vol.5
, pp. 400-402
-
-
Liutkeviciute, Z.1
Lukinavicius, G.2
Masevicius, V.3
Daujotyte, D.4
Klimasauskas, S.5
-
50
-
-
84866940776
-
The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases
-
Chen C.C., Wang K.Y., Shen C.K. The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J Biol Chem 2012, 287:33116-33121.
-
(2012)
J Biol Chem
, vol.287
, pp. 33116-33121
-
-
Chen, C.C.1
Wang, K.Y.2
Shen, C.K.3
-
51
-
-
84886035297
-
A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation
-
Iurlaro M., Ficz G., Oxley D., Raiber E.A., Bachman M., Booth M.J., Andrews S., Balasubramanian S., Reik W. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol 2013, 14:R119.
-
(2013)
Genome Biol
, vol.14
, pp. R119
-
-
Iurlaro, M.1
Ficz, G.2
Oxley, D.3
Raiber, E.A.4
Bachman, M.5
Booth, M.J.6
Andrews, S.7
Balasubramanian, S.8
Reik, W.9
-
52
-
-
84874771985
-
Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives
-
Spruijt C.G., Gnerlich F., Smits A.H., Pfaffeneder T., Jansen P.W., Bauer C., Munzel M., Wagner M., Muller M., Khan F., et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013, 152:1146-1159.
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
Gnerlich, F.2
Smits, A.H.3
Pfaffeneder, T.4
Jansen, P.W.5
Bauer, C.6
Munzel, M.7
Wagner, M.8
Muller, M.9
Khan, F.10
-
53
-
-
84871563384
-
MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system
-
Mellen M., Ayata P., Dewell S., Kriaucionis S., Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 2012, 151:1417-1430.
-
(2012)
Cell
, vol.151
, pp. 1417-1430
-
-
Mellen, M.1
Ayata, P.2
Dewell, S.3
Kriaucionis, S.4
Heintz, N.5
-
54
-
-
84908093905
-
Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence
-
Hashimoto H., Olanrewaju Y.O., Zheng Y., Wilson G.G., Zhang X., Cheng X. Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev 2014, 28:2304-2313.
-
(2014)
Genes Dev
, vol.28
, pp. 2304-2313
-
-
Hashimoto, H.1
Olanrewaju, Y.O.2
Zheng, Y.3
Wilson, G.G.4
Zhang, X.5
Cheng, X.6
-
55
-
-
84938411464
-
Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex
-
Wang L., Zhou Y., Xu L., Xiao R., Lu X., Chen L., Chong J., Li H., He C., Fu X.D., Wang D. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature 2015, 523:621-625.
-
(2015)
Nature
, vol.523
, pp. 621-625
-
-
Wang, L.1
Zhou, Y.2
Xu, L.3
Xiao, R.4
Lu, X.5
Chen, L.6
Chong, J.7
Li, H.8
He, C.9
Fu, X.D.10
Wang, D.11
-
56
-
-
84921989642
-
Connections between TET proteins and aberrant DNA modification in cancer
-
Huang Y., Rao A. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet 2014, 30:464-474.
-
(2014)
Trends Genet
, vol.30
, pp. 464-474
-
-
Huang, Y.1
Rao, A.2
-
57
-
-
84964614586
-
Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes
-
Laukka T., Mariani C.J., Ihantola T., Cao J.Z., Hokkanen J., Kaelin W.G., Godley L.A., Koivunen P. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J Biol Chem 2016, 291:4256-4265.
-
(2016)
J Biol Chem
, vol.291
, pp. 4256-4265
-
-
Laukka, T.1
Mariani, C.J.2
Ihantola, T.3
Cao, J.Z.4
Hokkanen, J.5
Kaelin, W.G.6
Godley, L.A.7
Koivunen, P.8
-
58
-
-
72049125350
-
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
-
Dang L., White D.W., Gross S., Bennett B.D., Bittinger M.A., Driggers E.M., Fantin V.R., Jang H.G., Jin S., Keenan M.C., et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462:739-744.
-
(2009)
Nature
, vol.462
, pp. 739-744
-
-
Dang, L.1
White, D.W.2
Gross, S.3
Bennett, B.D.4
Bittinger, M.A.5
Driggers, E.M.6
Fantin, V.R.7
Jang, H.G.8
Jin, S.9
Keenan, M.C.10
-
59
-
-
77649305610
-
The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate
-
Ward P.S., Patel J., Wise D.R., Abdel-Wahab O., Bennett B.D., Coller H.A., Cross J.R., Fantin V.R., Hedvat C.V., Perl A.E., et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010, 17:225-234.
-
(2010)
Cancer Cell
, vol.17
, pp. 225-234
-
-
Ward, P.S.1
Patel, J.2
Wise, D.R.3
Abdel-Wahab, O.4
Bennett, B.D.5
Coller, H.A.6
Cross, J.R.7
Fantin, V.R.8
Hedvat, C.V.9
Perl, A.E.10
-
60
-
-
78651463452
-
Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases
-
Xu W., Yang H., Liu Y., Yang Y., Wang P., Kim S., Ito S., Yang C., Wang P., Xiao M., et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011, 19:17-30.
-
(2011)
Cancer Cell
, vol.19
, pp. 17-30
-
-
Xu, W.1
Yang, H.2
Liu, Y.3
Yang, Y.4
Wang, P.5
Kim, S.6
Ito, S.7
Yang, C.8
Wang, P.9
Xiao, M.10
-
61
-
-
84961385300
-
Photoactivation of mutant isocitrate dehydrogenase 2 reveals rapid cancer-associated metabolic and epigenetic changes
-
Walker O.S., Elsasser S.J., Mahesh M., Bachman M., Balasubramanian S., Chin J.W. Photoactivation of mutant isocitrate dehydrogenase 2 reveals rapid cancer-associated metabolic and epigenetic changes. J Am Chem Soc 2016, 138:718-721.
-
(2016)
J Am Chem Soc
, vol.138
, pp. 718-721
-
-
Walker, O.S.1
Elsasser, S.J.2
Mahesh, M.3
Bachman, M.4
Balasubramanian, S.5
Chin, J.W.6
-
62
-
-
84938809941
-
CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer
-
Zauri M., Berridge G., Thezenas M.L., Pugh K.M., Goldin R., Kessler B.M., Kriaucionis S. CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer. Nature 2015, 524:114-118.
-
(2015)
Nature
, vol.524
, pp. 114-118
-
-
Zauri, M.1
Berridge, G.2
Thezenas, M.L.3
Pugh, K.M.4
Goldin, R.5
Kessler, B.M.6
Kriaucionis, S.7
|