메뉴 건너뛰기




Volumn 119, Issue , 2016, Pages 49-63

Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery

Author keywords

Blind source separation; Hyperspectral remote sensing; Hyperspectral unmixing; Sparse component analysis

Indexed keywords

ALGORITHMS; IMAGE RECONSTRUCTION; OPTIMIZATION; REMOTE SENSING;

EID: 84973663811     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2016.04.008     Document Type: Article
Times cited : (78)

References (54)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
    • Aharon M., Elad M., Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54:4311-4322.
    • (2006) IEEE Trans. Signal Process. , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 5
    • 0035501128 scopus 로고    scopus 로고
    • Underdetermined blind source separation using sparse representations
    • Bofill P., Zibulevsky M. Underdetermined blind source separation using sparse representations. Signal Process. 2001, 81:2353-2362.
    • (2001) Signal Process. , vol.81 , pp. 2353-2362
    • Bofill, P.1    Zibulevsky, M.2
  • 6
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Boyd S., Parikh N., Chu E., Peleato B., Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 2011, 3:1-122.
    • (2011) Found. Trends® Mach. Learn. , vol.3 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 7
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Chan T.-H., Chi C.-Y., Huang Y.-M., Ma W.-K. A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Trans. Signal Process. 2009, 57:4418-4432.
    • (2009) IEEE Trans. Signal Process. , vol.57 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 9
    • 79957531516 scopus 로고    scopus 로고
    • Maximum orthogonal subspace projection approach to estimating the number of spectral signal sources in hyperspectral imagery
    • Chang C.-I., Xiong W., Chen H.-M., Chai J.-W. Maximum orthogonal subspace projection approach to estimating the number of spectral signal sources in hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 2011, 5:504-520.
    • (2011) IEEE J. Sel. Top. Signal Process. , vol.5 , pp. 504-520
    • Chang, C.-I.1    Xiong, W.2    Chen, H.-M.3    Chai, J.-W.4
  • 11
    • 77952740831 scopus 로고    scopus 로고
    • On the role of sparse and redundant representations in image processing
    • Elad M., Figueiredo M.A., Ma Y. On the role of sparse and redundant representations in image processing. Proc. IEEE 2010, 98:972-982.
    • (2010) Proc. IEEE , vol.98 , pp. 972-982
    • Elad, M.1    Figueiredo, M.A.2    Ma, Y.3
  • 12
    • 84906831360 scopus 로고    scopus 로고
    • Adaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery
    • Feng R., Zhong Y., Zhang L. Adaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97:9-24.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.97 , pp. 9-24
    • Feng, R.1    Zhong, Y.2    Zhang, L.3
  • 13
    • 84875790832 scopus 로고    scopus 로고
    • A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery
    • Geng X., Xiao Z., Ji L., Zhao Y., Wang F. A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2013, 70:211-218.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.70 , pp. 211-218
    • Geng, X.1    Xiao, Z.2    Ji, L.3    Zhao, Y.4    Wang, F.5
  • 15
    • 84255178230 scopus 로고    scopus 로고
    • Sparse demixing of hyperspectral images
    • Greer J.B. Sparse demixing of hyperspectral images. IEEE Trans. Image Process. 2012, 21:219-228.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 219-228
    • Greer, J.B.1
  • 16
    • 60749095388 scopus 로고    scopus 로고
    • K-hyperline clustering learning for sparse component analysis
    • He Z., Cichocki A., Li Y., Xie S., Sanei S. K-hyperline clustering learning for sparse component analysis. Signal Process. 2009, 89:1011-1022.
    • (2009) Signal Process. , vol.89 , pp. 1011-1022
    • He, Z.1    Cichocki, A.2    Li, Y.3    Xie, S.4    Sanei, S.5
  • 17
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Heinz D.C., Chang C.-I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39:529-545.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 18
    • 84862998205 scopus 로고    scopus 로고
    • A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data
    • Hendrix E.M., García I., Plaza J., Martín G., Plaza A. A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2012, 50:2744-2757.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 2744-2757
    • Hendrix, E.M.1    García, I.2    Plaza, J.3    Martín, G.4    Plaza, A.5
  • 20
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jia S., Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2009, 47:161-173.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 22
    • 33947654012 scopus 로고    scopus 로고
    • Sparse component analysis for blind source separation with less sensors than sources
    • Li Y., Cichocki A., Amari S.-I. Sparse component analysis for blind source separation with less sensors than sources. ICA2003 2003, 89-94.
    • (2003) ICA2003 , pp. 89-94
    • Li, Y.1    Cichocki, A.2    Amari, S.-I.3
  • 24
    • 84869402529 scopus 로고    scopus 로고
    • Sparse feedback synthesis via the alternating direction method of multipliers
    • Lin F., Fardad M., Jovanovic M.R. Sparse feedback synthesis via the alternating direction method of multipliers. IEEE American Control Conference (ACC) 2012, 4765-4770.
    • (2012) IEEE American Control Conference (ACC) , pp. 4765-4770
    • Lin, F.1    Fardad, M.2    Jovanovic, M.R.3
  • 25
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Liu X., Xia W., Wang B., Zhang L. An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2011, 49:757-772.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4
  • 28
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Miao L., Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 2007, 45:765-777.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 30
    • 44649197165 scopus 로고    scopus 로고
    • Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering
    • Naini F.M., Mohimani G.H., Babaie-Zadeh M., Jutten C. Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering. Neurocomputing 2008, 71:2330-2343.
    • (2008) Neurocomputing , vol.71 , pp. 2330-2343
    • Naini, F.M.1    Mohimani, G.H.2    Babaie-Zadeh, M.3    Jutten, C.4
  • 31
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • Nascimento J.M., Dias J.M.B. Does independent component analysis play a role in unmixing hyperspectral data?. IEEE Trans. Geosci. Remote Sens. 2005, 43:175-187.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 175-187
    • Nascimento, J.M.1    Dias, J.M.B.2
  • 32
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: a fast algorithm to unmix hyperspectral data
    • Nascimento J.M., Dias J.M.B. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43:898-910.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 898-910
    • Nascimento, J.M.1    Dias, J.M.B.2
  • 33
    • 23044451368 scopus 로고    scopus 로고
    • Sparse component analysis and blind source separation of underdetermined mixtures
    • Pando G., Fabian T., Andrzej C. Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Networks 2005, 16:992-996.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 992-996
    • Pando, G.1    Fabian, T.2    Andrzej, C.3
  • 34
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization
    • Qian Y., Jia S., Zhou J., Robles-Kelly A. Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 2011, 49:4282-4297.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 37
    • 31344458539 scopus 로고    scopus 로고
    • Median-based clustering for underdetermined blind signal processing
    • Theis F.J., Puntonet C.G., Lang E.W. Median-based clustering for underdetermined blind signal processing. IEEE Signal Process. Lett. 2006, 13:96-99.
    • (2006) IEEE Signal Process. Lett. , vol.13 , pp. 96-99
    • Theis, F.J.1    Puntonet, C.G.2    Lang, E.W.3
  • 38
    • 84869504065 scopus 로고    scopus 로고
    • Mixing matrix estimation using discriminative clustering for blind source separation
    • Thiagarajan J.J., Ramamurthy K.N., Spanias A. Mixing matrix estimation using discriminative clustering for blind source separation. Dig. Signal Process. 2013, 23:9-18.
    • (2013) Dig. Signal Process. , vol.23 , pp. 9-18
    • Thiagarajan, J.J.1    Ramamurthy, K.N.2    Spanias, A.3
  • 40
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp J. Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004, 50:2231-2242.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , pp. 2231-2242
    • Tropp, J.1
  • 41
    • 0030822321 scopus 로고    scopus 로고
    • A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection
    • Tu T.-M., Chen C.-H., Chang C.-I. A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection. IEEE Trans. Geosci. Remote Sens. 1997, 35:127-139.
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , pp. 127-139
    • Tu, T.-M.1    Chen, C.-H.2    Chang, C.-I.3
  • 42
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • Wang J., Chang C.-I. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44:2601-2616.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 43
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • Winter M.E. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation 1999, 266-275. International Society for Optics and Photonics.
    • (1999) SPIE's International Symposium on Optical Science, Engineering, and Instrumentation , pp. 266-275
    • Winter, M.E.1
  • 44
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Wright J., Ma Y., Mairal J., Sapiro G., Huang T.S., Yan S. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98:1031-1044.
    • (2010) Proc. IEEE , vol.98 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.6
  • 45
    • 79957650412 scopus 로고    scopus 로고
    • Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints
    • Xia W., Liu X., Wang B., Zhang L. Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints. IEEE Trans. Geosci. Remote Sens. 2011, 49:2165-2179.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 2165-2179
    • Xia, W.1    Liu, X.2    Wang, B.3    Zhang, L.4
  • 47
    • 3142694930 scopus 로고    scopus 로고
    • Blind separation of speech mixtures via time-frequency masking
    • Yilmaz O., Rickard S. Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Signal Process. 2004, 52:1830-1847.
    • (2004) IEEE Trans. Signal Process. , vol.52 , pp. 1830-1847
    • Yilmaz, O.1    Rickard, S.2
  • 49
    • 70350517770 scopus 로고    scopus 로고
    • An iterative bayesian algorithm for sparse component analysis in presence of noise
    • Zayyani H., Babaie-Zadeh M., Jutten C. An iterative bayesian algorithm for sparse component analysis in presence of noise. IEEE Trans. Signal Process. 2009, 57:4378-4390.
    • (2009) IEEE Trans. Signal Process. , vol.57 , pp. 4378-4390
    • Zayyani, H.1    Babaie-Zadeh, M.2    Jutten, C.3
  • 50
    • 53149137084 scopus 로고    scopus 로고
    • Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals
    • Zdunek R., Cichocki A. Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals. IEEE Trans. Signal Process. 2008, 56:4752-4761.
    • (2008) IEEE Trans. Signal Process. , vol.56 , pp. 4752-4761
    • Zdunek, R.1    Cichocki, A.2
  • 51
    • 80455164727 scopus 로고    scopus 로고
    • Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm
    • Zhang B., Sun X., Gao L., Yang L. Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49:4173-4176.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 4173-4176
    • Zhang, B.1    Sun, X.2    Gao, L.3    Yang, L.4
  • 54
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • Zibulevsky M., Pearlmutter B. Blind source separation by sparse decomposition in a signal dictionary. Neural Comput. 2001, 13:863-882.
    • (2001) Neural Comput. , vol.13 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.