-
1
-
-
33750383209
-
K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
-
Aharon M., Elad M., Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54:4311-4322.
-
(2006)
IEEE Trans. Signal Process.
, vol.54
, pp. 4311-4322
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
3
-
-
84888349041
-
Hyperspectral remote sensing data analysis and future challenges
-
Bioucas-Dias J.M., Plaza A., Camps-Valls G., Scheunders P., Nasrabadi N.M., Chanussot J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1:6-36.
-
(2013)
IEEE Geosci. Remote Sens. Mag.
, vol.1
, pp. 6-36
-
-
Bioucas-Dias, J.M.1
Plaza, A.2
Camps-Valls, G.3
Scheunders, P.4
Nasrabadi, N.M.5
Chanussot, J.6
-
4
-
-
84861772901
-
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
-
Bioucas-Dias J.M., Plaza A., Dobigeon N., Parente M., Du Q., Gader P., Chanussot J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5:354-379.
-
(2012)
IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
, vol.5
, pp. 354-379
-
-
Bioucas-Dias, J.M.1
Plaza, A.2
Dobigeon, N.3
Parente, M.4
Du, Q.5
Gader, P.6
Chanussot, J.7
-
5
-
-
0035501128
-
Underdetermined blind source separation using sparse representations
-
Bofill P., Zibulevsky M. Underdetermined blind source separation using sparse representations. Signal Process. 2001, 81:2353-2362.
-
(2001)
Signal Process.
, vol.81
, pp. 2353-2362
-
-
Bofill, P.1
Zibulevsky, M.2
-
6
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
Boyd S., Parikh N., Chu E., Peleato B., Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 2011, 3:1-122.
-
(2011)
Found. Trends® Mach. Learn.
, vol.3
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
7
-
-
70350488509
-
A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
-
Chan T.-H., Chi C.-Y., Huang Y.-M., Ma W.-K. A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Trans. Signal Process. 2009, 57:4418-4432.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, pp. 4418-4432
-
-
Chan, T.-H.1
Chi, C.-Y.2
Huang, Y.-M.3
Ma, W.-K.4
-
8
-
-
84887415911
-
A new growing method for simplex-based endmember extraction algorithm
-
Chang C.-I., Wu C.-C., Liu W.-M., Ouyang Y.-C. A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44:2804-2819.
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, pp. 2804-2819
-
-
Chang, C.-I.1
Wu, C.-C.2
Liu, W.-M.3
Ouyang, Y.-C.4
-
9
-
-
79957531516
-
Maximum orthogonal subspace projection approach to estimating the number of spectral signal sources in hyperspectral imagery
-
Chang C.-I., Xiong W., Chen H.-M., Chai J.-W. Maximum orthogonal subspace projection approach to estimating the number of spectral signal sources in hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 2011, 5:504-520.
-
(2011)
IEEE J. Sel. Top. Signal Process.
, vol.5
, pp. 504-520
-
-
Chang, C.-I.1
Xiong, W.2
Chen, H.-M.3
Chai, J.-W.4
-
11
-
-
77952740831
-
On the role of sparse and redundant representations in image processing
-
Elad M., Figueiredo M.A., Ma Y. On the role of sparse and redundant representations in image processing. Proc. IEEE 2010, 98:972-982.
-
(2010)
Proc. IEEE
, vol.98
, pp. 972-982
-
-
Elad, M.1
Figueiredo, M.A.2
Ma, Y.3
-
12
-
-
84906831360
-
Adaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery
-
Feng R., Zhong Y., Zhang L. Adaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97:9-24.
-
(2014)
ISPRS J. Photogramm. Remote Sens.
, vol.97
, pp. 9-24
-
-
Feng, R.1
Zhong, Y.2
Zhang, L.3
-
13
-
-
84875790832
-
A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery
-
Geng X., Xiao Z., Ji L., Zhao Y., Wang F. A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2013, 70:211-218.
-
(2013)
ISPRS J. Photogramm. Remote Sens.
, vol.70
, pp. 211-218
-
-
Geng, X.1
Xiao, Z.2
Ji, L.3
Zhao, Y.4
Wang, F.5
-
15
-
-
84255178230
-
Sparse demixing of hyperspectral images
-
Greer J.B. Sparse demixing of hyperspectral images. IEEE Trans. Image Process. 2012, 21:219-228.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 219-228
-
-
Greer, J.B.1
-
16
-
-
60749095388
-
K-hyperline clustering learning for sparse component analysis
-
He Z., Cichocki A., Li Y., Xie S., Sanei S. K-hyperline clustering learning for sparse component analysis. Signal Process. 2009, 89:1011-1022.
-
(2009)
Signal Process.
, vol.89
, pp. 1011-1022
-
-
He, Z.1
Cichocki, A.2
Li, Y.3
Xie, S.4
Sanei, S.5
-
17
-
-
0035273728
-
Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
-
Heinz D.C., Chang C.-I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39:529-545.
-
(2001)
IEEE Trans. Geosci. Remote Sens.
, vol.39
, pp. 529-545
-
-
Heinz, D.C.1
Chang, C.-I.2
-
18
-
-
84862998205
-
A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data
-
Hendrix E.M., García I., Plaza J., Martín G., Plaza A. A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2012, 50:2744-2757.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, pp. 2744-2757
-
-
Hendrix, E.M.1
García, I.2
Plaza, J.3
Martín, G.4
Plaza, A.5
-
20
-
-
58149131252
-
Constrained nonnegative matrix factorization for hyperspectral unmixing
-
Jia S., Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2009, 47:161-173.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, pp. 161-173
-
-
Jia, S.1
Qian, Y.2
-
22
-
-
33947654012
-
Sparse component analysis for blind source separation with less sensors than sources
-
Li Y., Cichocki A., Amari S.-I. Sparse component analysis for blind source separation with less sensors than sources. ICA2003 2003, 89-94.
-
(2003)
ICA2003
, pp. 89-94
-
-
Li, Y.1
Cichocki, A.2
Amari, S.-I.3
-
25
-
-
85027952549
-
An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
-
Liu X., Xia W., Wang B., Zhang L. An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2011, 49:757-772.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, pp. 757-772
-
-
Liu, X.1
Xia, W.2
Wang, B.3
Zhang, L.4
-
26
-
-
84885021995
-
Manifold regularized sparse NMF for hyperspectral unmixing
-
Lu X., Wu H., Yuan Y., Yan P.-G., Li X. Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2013, 51:2815-2826.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, pp. 2815-2826
-
-
Lu, X.1
Wu, H.2
Yuan, Y.3
Yan, P.-G.4
Li, X.5
-
27
-
-
85032751209
-
A signal processing perspective on hyperspectral unmixing: insights from remote sensing
-
Ma W.-K., Bioucas-Dias J.M., Chan T.-H., Gillis N., Gader P., Plaza A.J., Ambikapathi A., Chi C.-Y. A signal processing perspective on hyperspectral unmixing: insights from remote sensing. IEEE Signal Process. Mag. 2014, 31:67-81.
-
(2014)
IEEE Signal Process. Mag.
, vol.31
, pp. 67-81
-
-
Ma, W.-K.1
Bioucas-Dias, J.M.2
Chan, T.-H.3
Gillis, N.4
Gader, P.5
Plaza, A.J.6
Ambikapathi, A.7
Chi, C.-Y.8
-
28
-
-
33847733865
-
Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
-
Miao L., Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 2007, 45:765-777.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, pp. 765-777
-
-
Miao, L.1
Qi, H.2
-
29
-
-
44649130165
-
On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation
-
Moussaoui S., Hauksdottir H., Schmidt F., Jutten C., Chanussot J., Brie D., Douté S., Benediktsson J.A. On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation. Neurocomputing 2008, 71:2194-2208.
-
(2008)
Neurocomputing
, vol.71
, pp. 2194-2208
-
-
Moussaoui, S.1
Hauksdottir, H.2
Schmidt, F.3
Jutten, C.4
Chanussot, J.5
Brie, D.6
Douté, S.7
Benediktsson, J.A.8
-
30
-
-
44649197165
-
Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering
-
Naini F.M., Mohimani G.H., Babaie-Zadeh M., Jutten C. Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering. Neurocomputing 2008, 71:2330-2343.
-
(2008)
Neurocomputing
, vol.71
, pp. 2330-2343
-
-
Naini, F.M.1
Mohimani, G.H.2
Babaie-Zadeh, M.3
Jutten, C.4
-
31
-
-
12844266861
-
Does independent component analysis play a role in unmixing hyperspectral data?
-
Nascimento J.M., Dias J.M.B. Does independent component analysis play a role in unmixing hyperspectral data?. IEEE Trans. Geosci. Remote Sens. 2005, 43:175-187.
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, pp. 175-187
-
-
Nascimento, J.M.1
Dias, J.M.B.2
-
32
-
-
16444373735
-
Vertex component analysis: a fast algorithm to unmix hyperspectral data
-
Nascimento J.M., Dias J.M.B. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43:898-910.
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, pp. 898-910
-
-
Nascimento, J.M.1
Dias, J.M.B.2
-
33
-
-
23044451368
-
Sparse component analysis and blind source separation of underdetermined mixtures
-
Pando G., Fabian T., Andrzej C. Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Networks 2005, 16:992-996.
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, pp. 992-996
-
-
Pando, G.1
Fabian, T.2
Andrzej, C.3
-
34
-
-
80455174031
-
Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization
-
Qian Y., Jia S., Zhou J., Robles-Kelly A. Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 2011, 49:4282-4297.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, pp. 4282-4297
-
-
Qian, Y.1
Jia, S.2
Zhou, J.3
Robles-Kelly, A.4
-
35
-
-
34547857004
-
Underdetermined anechoic blind source separation via-basis-pursuit with
-
Saab R., Yilmaz Ö., McKeown M.J., Abugharbieh R. Underdetermined anechoic blind source separation via-basis-pursuit with. IEEE Trans. Signal Process. 2007, 55:4004-4017.
-
(2007)
IEEE Trans. Signal Process.
, vol.55
, pp. 4004-4017
-
-
Saab, R.1
Yilmaz, Ö.2
McKeown, M.J.3
Abugharbieh, R.4
-
37
-
-
31344458539
-
Median-based clustering for underdetermined blind signal processing
-
Theis F.J., Puntonet C.G., Lang E.W. Median-based clustering for underdetermined blind signal processing. IEEE Signal Process. Lett. 2006, 13:96-99.
-
(2006)
IEEE Signal Process. Lett.
, vol.13
, pp. 96-99
-
-
Theis, F.J.1
Puntonet, C.G.2
Lang, E.W.3
-
38
-
-
84869504065
-
Mixing matrix estimation using discriminative clustering for blind source separation
-
Thiagarajan J.J., Ramamurthy K.N., Spanias A. Mixing matrix estimation using discriminative clustering for blind source separation. Dig. Signal Process. 2013, 23:9-18.
-
(2013)
Dig. Signal Process.
, vol.23
, pp. 9-18
-
-
Thiagarajan, J.J.1
Ramamurthy, K.N.2
Spanias, A.3
-
40
-
-
5444237123
-
Greed is good: algorithmic results for sparse approximation
-
Tropp J. Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004, 50:2231-2242.
-
(2004)
IEEE Trans. Inf. Theory
, vol.50
, pp. 2231-2242
-
-
Tropp, J.1
-
41
-
-
0030822321
-
A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection
-
Tu T.-M., Chen C.-H., Chang C.-I. A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection. IEEE Trans. Geosci. Remote Sens. 1997, 35:127-139.
-
(1997)
IEEE Trans. Geosci. Remote Sens.
, vol.35
, pp. 127-139
-
-
Tu, T.-M.1
Chen, C.-H.2
Chang, C.-I.3
-
42
-
-
33748312145
-
Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
-
Wang J., Chang C.-I. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44:2601-2616.
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, pp. 2601-2616
-
-
Wang, J.1
Chang, C.-I.2
-
43
-
-
0033310314
-
N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data
-
Winter M.E. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation 1999, 266-275. International Society for Optics and Photonics.
-
(1999)
SPIE's International Symposium on Optical Science, Engineering, and Instrumentation
, pp. 266-275
-
-
Winter, M.E.1
-
44
-
-
77952717202
-
Sparse representation for computer vision and pattern recognition
-
Wright J., Ma Y., Mairal J., Sapiro G., Huang T.S., Yan S. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98:1031-1044.
-
(2010)
Proc. IEEE
, vol.98
, pp. 1031-1044
-
-
Wright, J.1
Ma, Y.2
Mairal, J.3
Sapiro, G.4
Huang, T.S.5
Yan, S.6
-
45
-
-
79957650412
-
Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints
-
Xia W., Liu X., Wang B., Zhang L. Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints. IEEE Trans. Geosci. Remote Sens. 2011, 49:2165-2179.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, pp. 2165-2179
-
-
Xia, W.1
Liu, X.2
Wang, B.3
Zhang, L.4
-
46
-
-
79952957026
-
Blind spectral unmixing based on sparse nonnegative matrix factorization
-
Yang Z., Zhou G., Xie S., Ding S., Yang J.-M., Zhang J. Blind spectral unmixing based on sparse nonnegative matrix factorization. IEEE Trans. Image Process. 2011, 20:1112-1125.
-
(2011)
IEEE Trans. Image Process.
, vol.20
, pp. 1112-1125
-
-
Yang, Z.1
Zhou, G.2
Xie, S.3
Ding, S.4
Yang, J.-M.5
Zhang, J.6
-
47
-
-
3142694930
-
Blind separation of speech mixtures via time-frequency masking
-
Yilmaz O., Rickard S. Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Signal Process. 2004, 52:1830-1847.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, pp. 1830-1847
-
-
Yilmaz, O.1
Rickard, S.2
-
49
-
-
70350517770
-
An iterative bayesian algorithm for sparse component analysis in presence of noise
-
Zayyani H., Babaie-Zadeh M., Jutten C. An iterative bayesian algorithm for sparse component analysis in presence of noise. IEEE Trans. Signal Process. 2009, 57:4378-4390.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, pp. 4378-4390
-
-
Zayyani, H.1
Babaie-Zadeh, M.2
Jutten, C.3
-
50
-
-
53149137084
-
Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals
-
Zdunek R., Cichocki A. Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals. IEEE Trans. Signal Process. 2008, 56:4752-4761.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, pp. 4752-4761
-
-
Zdunek, R.1
Cichocki, A.2
-
51
-
-
80455164727
-
Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm
-
Zhang B., Sun X., Gao L., Yang L. Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49:4173-4176.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, pp. 4173-4176
-
-
Zhang, B.1
Sun, X.2
Gao, L.3
Yang, L.4
-
52
-
-
84891131750
-
Structured sparse method for hyperspectral unmixing
-
Zhu F., Wang Y., Xiang S., Fan B., Pan C. Structured sparse method for hyperspectral unmixing. ISPRS J. Photogramm. Remote Sens. 2014, 88:101-118.
-
(2014)
ISPRS J. Photogramm. Remote Sens.
, vol.88
, pp. 101-118
-
-
Zhu, F.1
Wang, Y.2
Xiang, S.3
Fan, B.4
Pan, C.5
-
53
-
-
85027937942
-
Normal endmember spectral unmixing method for hyperspectral imagery
-
Zhuang L., Zhang B., Gao L., Li J., Plaza A. Normal endmember spectral unmixing method for hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8:2598-2606.
-
(2015)
IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
, vol.8
, pp. 2598-2606
-
-
Zhuang, L.1
Zhang, B.2
Gao, L.3
Li, J.4
Plaza, A.5
-
54
-
-
0000660321
-
Blind source separation by sparse decomposition in a signal dictionary
-
Zibulevsky M., Pearlmutter B. Blind source separation by sparse decomposition in a signal dictionary. Neural Comput. 2001, 13:863-882.
-
(2001)
Neural Comput.
, vol.13
, pp. 863-882
-
-
Zibulevsky, M.1
Pearlmutter, B.2
|