메뉴 건너뛰기




Volumn 21, Issue 1, 2012, Pages 219-228

Sparse demixing of hyperspectral images

Author keywords

Dictionary learning; hyperspectral imaging; linear mixture model (LMM); sparse reconstruction

Indexed keywords

AIRBORNE VISIBLE/INFRARED IMAGING SPECTROMETERS; CONSTRAINED LEAST SQUARES; DE-MIXING; DICTIONARY LEARNING; ENDMEMBERS; HIGH-DIMENSIONAL; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGING; IMAGE SPECTRA; LINEAR MIXTURE MODELS; ORTHOGONAL MATCHING PURSUIT; SPARSE RECONSTRUCTION; SPECTRAL LIBRARIES;

EID: 84255178230     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2011.2160189     Document Type: Article
Times cited : (73)

References (34)
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • DOI 10.1109/TSP.2006.881199
    • M. Aharon, M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006. (Pubitemid 44637761)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 85076795223 scopus 로고
    • HYDICE system: Implementation and performance
    • M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, Eds.
    • R. W. Basedow, D. C. Carmer, and M. E. Anderson, "HYDICE system: Implementation and performance," in Proc. SPIE, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, Eds., 1995, vol. 2480, pp. 258-267.
    • (1995) Proc. SPIE , vol.2480 , pp. 258-267
    • Basedow, R.W.1    Carmer, D.C.2    Anderson, M.E.3
  • 4
    • 85076743622 scopus 로고
    • Analysis, understanding and visualization of hyperspectral data as convex sets in n-space
    • M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, Eds.
    • J. W. Boardman, "Analysis, understanding and visualization of hyperspectral data as convex sets in n-space," in Proc. SPIE, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, Eds., 1995, vol. 2480, pp. 14-22.
    • (1995) Proc. SPIE , vol.2480 , pp. 14-22
    • Boardman, J.W.1
  • 5
    • 77953776277 scopus 로고    scopus 로고
    • Endmember finding and spectral unmixing using least-angle regression
    • S. S. Shen and P. E. Lewis, Eds.
    • A. R. Boisvert, P. V. Villeneuve, and A. D. Stocker, "Endmember finding and spectral unmixing using least-angle regression," in Proc. SPIE, S. S. Shen and P. E. Lewis, Eds., 2010, vol. 7695, p. 7 6951N.
    • (2010) Proc. SPIE , vol.7695
    • Boisvert, A.R.1    Villeneuve, P.V.2    Stocker, A.D.3
  • 6
    • 42149186670 scopus 로고    scopus 로고
    • An optical real-time adaptive spectral identification system (ORASIS)
    • C.-I. Change, Ed. Hoboken, NJ: Wiley
    • J. H. Bowles and D. B. Gillis, "An optical real-time adaptive spectral identification system (ORASIS)," in Hyperspectral Data Exploitation: Theory and Applications, C.-I. Change, Ed. Hoboken, NJ: Wiley, 2007.
    • (2007) Hyperspectral Data Exploitation: Theory and Applications
    • Bowles, J.H.1    Gillis, D.B.2
  • 7
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • DOI 10.1109/TIT.2005.862083
    • E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. (Pubitemid 43174093)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 8
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • T.-H. Chan, C.-Y. Chi, Y. Huang, and W.-K. Ma, "A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.3    Ma, W.-K.4
  • 10
  • 11
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • Nov.
    • N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.-Y.4    Hero, A.O.5
  • 13
    • 58149483476 scopus 로고    scopus 로고
    • Spectral unmixing with negative and superunity abundances for subpixel anomaly detection
    • Jan.
    • O. Duran and M. Petrou, "Spectral unmixing with negative and superunity abundances for subpixel anomaly detection," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 152-156, Jan. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.1 , pp. 152-156
    • Duran, O.1    Petrou, M.2
  • 16
    • 2942640138 scopus 로고    scopus 로고
    • On sparse representations in arbitrary redundant bases
    • Jun.
    • J.-J. Fuchs, "On sparse representations in arbitrary redundant bases," IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1341-1344, Jun. 2004.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.6 , pp. 1341-1344
    • Fuchs, J.-J.1
  • 17
    • 69949128613 scopus 로고    scopus 로고
    • 1 unmixing and its application to hyperspectral image enhancement
    • S. S. Shen and P. E. Lewis, Eds.
    • 1unmixing and its application to hyperspectral image enhancement," in Proc. SPIE, S. S. Shen and P. E. Lewis, Eds., 2009, vol. 7334, pp. 73 341M-1-73 341M-9.
    • (2009) Proc. SPIE , vol.7334
    • Guo, Z.1    Wittman, T.2    Osher, S.3
  • 18
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan.
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pt. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 PART. 1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 19
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 20
    • 84855527983 scopus 로고    scopus 로고
    • Jet Propulsion Laboratory AVIRIS. Pasadena CA [Online]
    • Jet Propulsion Laboratory AVIRIS. Pasadena, CA [Online]. Available: http://aviris.jpl.nasa.gov
  • 22
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • Dec.
    • S. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, Dec. 1993.
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 24
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 25
    • 77953789782 scopus 로고    scopus 로고
    • 1 minimization and linear complementary programming
    • S. S. Shen and P. E. Lewis, Eds.
    • 1 minimization and linear complementary programming," in Proc. SPIE, S. S. Shen and P. E. Lewis, Eds., 2010, vol. 7695, p. 76 951M.
    • (2010) Proc. SPIE , vol.7695
    • Nguyen, D.1    Tran, T.2    Kwan, C.3    Ayhan, B.4
  • 27
    • 0031148467 scopus 로고    scopus 로고
    • Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A
    • R. G. Resmini, M. E. Kappus, W. S. Aldrich, J. C. Harsanyi, and M. Anderson, "Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A," Int. J. Remote Sens., vol. 18, no. 7, pp. 1553-1570, 1997.
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.7 , pp. 1553-1570
    • Resmini, R.G.1    Kappus, M.E.2    Aldrich, W.S.3    Harsanyi, J.C.4    Anderson, M.5
  • 28
    • 58149520173 scopus 로고    scopus 로고
    • Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing
    • Jan.
    • S. A. Robila and L. G. Maciak, "Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 57-61, Jan. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.1 , pp. 57-61
    • Robila, S.A.1    MacIak, L.G.2
  • 30
    • 78049320782 scopus 로고    scopus 로고
    • Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets
    • Nov.
    • J. L. Silván-Cárdenas and L. Wang, "Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3992-4002, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 3992-4002
    • Silván-Cárdenas, J.L.1    Wang, L.2
  • 31
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • Oct.
    • J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231-2242, Oct. 2004.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 32
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals in noise
    • DOI 10.1109/TIT.2005.864420
    • J. A. Tropp, "Just relax: Convex programming methods for identifying sparse signals in noise," IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1030-1051, Mar. 2006. (Pubitemid 46444890)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.3 , pp. 1030-1051
    • Tropp, J.A.1
  • 33
    • 78049303926 scopus 로고    scopus 로고
    • Merging the Minnaert-k parameter with spectral unmixing to map forest heterogeneity with CHRIS/PROBAdata
    • Nov.
    • J. Verrelst, J. G. P. W. Clevers, and M. E. Schaepman, "Merging the Minnaert-k parameter with spectral unmixing to map forest heterogeneity with CHRIS/PROBAdata," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4014-4022, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4014-4022
    • Verrelst, J.1    Clevers, J.G.P.W.2    Schaepman, M.E.3
  • 34
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. R. Descour and S. S. Shen, Eds.
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE, M. R. Descour and S. S. Shen, Eds., 1999, vol. 3753, pp. 266-275.
    • (1999) Proc. SPIE , vol.3753 , pp. 266-275
    • Winter, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.