-
2
-
-
33750383209
-
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
-
DOI 10.1109/TSP.2006.881199
-
M. Aharon, M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006. (Pubitemid 44637761)
-
(2006)
IEEE Transactions on Signal Processing
, vol.54
, Issue.11
, pp. 4311-4322
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
3
-
-
85076795223
-
HYDICE system: Implementation and performance
-
M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, Eds.
-
R. W. Basedow, D. C. Carmer, and M. E. Anderson, "HYDICE system: Implementation and performance," in Proc. SPIE, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, Eds., 1995, vol. 2480, pp. 258-267.
-
(1995)
Proc. SPIE
, vol.2480
, pp. 258-267
-
-
Basedow, R.W.1
Carmer, D.C.2
Anderson, M.E.3
-
4
-
-
85076743622
-
Analysis, understanding and visualization of hyperspectral data as convex sets in n-space
-
M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, Eds.
-
J. W. Boardman, "Analysis, understanding and visualization of hyperspectral data as convex sets in n-space," in Proc. SPIE, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, Eds., 1995, vol. 2480, pp. 14-22.
-
(1995)
Proc. SPIE
, vol.2480
, pp. 14-22
-
-
Boardman, J.W.1
-
5
-
-
77953776277
-
Endmember finding and spectral unmixing using least-angle regression
-
S. S. Shen and P. E. Lewis, Eds.
-
A. R. Boisvert, P. V. Villeneuve, and A. D. Stocker, "Endmember finding and spectral unmixing using least-angle regression," in Proc. SPIE, S. S. Shen and P. E. Lewis, Eds., 2010, vol. 7695, p. 7 6951N.
-
(2010)
Proc. SPIE
, vol.7695
-
-
Boisvert, A.R.1
Villeneuve, P.V.2
Stocker, A.D.3
-
6
-
-
42149186670
-
An optical real-time adaptive spectral identification system (ORASIS)
-
C.-I. Change, Ed. Hoboken, NJ: Wiley
-
J. H. Bowles and D. B. Gillis, "An optical real-time adaptive spectral identification system (ORASIS)," in Hyperspectral Data Exploitation: Theory and Applications, C.-I. Change, Ed. Hoboken, NJ: Wiley, 2007.
-
(2007)
Hyperspectral Data Exploitation: Theory and Applications
-
-
Bowles, J.H.1
Gillis, D.B.2
-
7
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
DOI 10.1109/TIT.2005.862083
-
E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. (Pubitemid 43174093)
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.2
, pp. 489-509
-
-
Candes, E.J.1
Romberg, J.2
Tao, T.3
-
8
-
-
70350488509
-
A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
-
Nov.
-
T.-H. Chan, C.-Y. Chi, Y. Huang, and W.-K. Ma, "A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.11
, pp. 4418-4432
-
-
Chan, T.-H.1
Chi, C.-Y.2
Huang, Y.3
Ma, W.-K.4
-
10
-
-
0002211590
-
The HyMap airborne hyperspectral sensor: The system, calibration and performance
-
Zurich, Switzerland Oct.
-
T. Cocks, R. Jenssen, A. Stewart, I. Wilson, and T. Shields, "The HyMap airborne hyperspectral sensor: The system, calibration and performance," in Proc. 1st EARSEL Workshop Imag. Spectrosc., Zurich, Switzerland, Oct. 1998, pp. 37-42.
-
(1998)
Proc. 1st EARSEL Workshop Imag. Spectrosc.
, pp. 37-42
-
-
Cocks, T.1
Jenssen, R.2
Stewart, A.3
Wilson, I.4
Shields, T.5
-
11
-
-
70350493345
-
Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
-
Nov.
-
N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, Nov. 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.11
, pp. 4355-4368
-
-
Dobigeon, N.1
Moussaoui, S.2
Coulon, M.3
Tourneret, J.-Y.4
Hero, A.O.5
-
12
-
-
22144488449
-
Sparse nonnegative solution of underdetermined linear equations by linear programming
-
DOI 10.1073/pnas.0502269102
-
D. L. Donoho and J. Tanner, "Sparse non-negative solutions of underdetermined linear equations by linear programming," in Proc. Nat. Acad. Sci., Jul. 2005, vol. 102, no. 27, pp. 9446-9451. (Pubitemid 40981701)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.27
, pp. 9446-9451
-
-
Donoho, D.L.1
Tanner, J.2
-
13
-
-
58149483476
-
Spectral unmixing with negative and superunity abundances for subpixel anomaly detection
-
Jan.
-
O. Duran and M. Petrou, "Spectral unmixing with negative and superunity abundances for subpixel anomaly detection," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 152-156, Jan. 2009.
-
(2009)
IEEE Geosci. Remote Sens. Lett.
, vol.6
, Issue.1
, pp. 152-156
-
-
Duran, O.1
Petrou, M.2
-
14
-
-
0032627073
-
Method of optimal directions for frame design
-
K. Engan, S. O. Aase, and J. H. Husy, "Method of optimal directions for frame design," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 1999, vol. 5, pp. 2443-2446.
-
(1999)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
, vol.5
, pp. 2443-2446
-
-
Engan, K.1
Aase, S.O.2
Husy, J.H.3
-
15
-
-
44649130165
-
On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation
-
Jun.
-
S. Moussaoui, H. Hauksdóttir, F. Schmidt, C. Jutten, J. Chanussot, D. Brie, S. Douté, and J. A. Benediktsson, "On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation," Neurocomputing, vol. 71, no. 10-12, pp. 2194-2208, Jun. 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.10-12
, pp. 2194-2208
-
-
Moussaoui, S.1
Hauksdóttir, H.2
Schmidt, F.3
Jutten, C.4
Chanussot, J.5
Brie, D.6
Douté, S.7
Benediktsson, J.A.8
-
16
-
-
2942640138
-
On sparse representations in arbitrary redundant bases
-
Jun.
-
J.-J. Fuchs, "On sparse representations in arbitrary redundant bases," IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1341-1344, Jun. 2004.
-
(2004)
IEEE Trans. Inf. Theory
, vol.50
, Issue.6
, pp. 1341-1344
-
-
Fuchs, J.-J.1
-
17
-
-
69949128613
-
1 unmixing and its application to hyperspectral image enhancement
-
S. S. Shen and P. E. Lewis, Eds.
-
1unmixing and its application to hyperspectral image enhancement," in Proc. SPIE, S. S. Shen and P. E. Lewis, Eds., 2009, vol. 7334, pp. 73 341M-1-73 341M-9.
-
(2009)
Proc. SPIE
, vol.7334
-
-
Guo, Z.1
Wittman, T.2
Osher, S.3
-
18
-
-
58149131252
-
Constrained nonnegative matrix factorization for hyperspectral unmixing
-
Jan.
-
S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pt. 1, pp. 161-173, Jan. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.1 PART. 1
, pp. 161-173
-
-
Jia, S.1
Qian, Y.2
-
19
-
-
85032751930
-
Spectral unmixing
-
DOI 10.1109/79.974727
-
N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
-
(2002)
IEEE Signal Processing Magazine
, vol.19
, Issue.1
, pp. 44-57
-
-
Keshava, N.1
Mustard, J.F.2
-
20
-
-
84855527983
-
-
Jet Propulsion Laboratory AVIRIS. Pasadena CA [Online]
-
Jet Propulsion Laboratory AVIRIS. Pasadena, CA [Online]. Available: http://aviris.jpl.nasa.gov
-
-
-
-
21
-
-
84858761801
-
Supervised dictionary learning
-
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "Supervised dictionary learning," in Proc. Adv. NIPS, 2008, pp. 1033-1040.
-
(2008)
Proc. Adv. NIPS
, pp. 1033-1040
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
Zisserman, A.5
-
22
-
-
0027842081
-
Matching pursuits with time-frequency dictionaries
-
Dec.
-
S. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, Dec. 1993.
-
(1993)
IEEE Trans. Signal Process.
, vol.41
, Issue.12
, pp. 3397-3415
-
-
Mallat, S.1
Zhang, Z.2
-
24
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
DOI 10.1109/TGRS.2005.844293
-
J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
25
-
-
77953789782
-
1 minimization and linear complementary programming
-
S. S. Shen and P. E. Lewis, Eds.
-
1 minimization and linear complementary programming," in Proc. SPIE, S. S. Shen and P. E. Lewis, Eds., 2010, vol. 7695, p. 76 951M.
-
(2010)
Proc. SPIE
, vol.7695
-
-
Nguyen, D.1
Tran, T.2
Kwan, C.3
Ayhan, B.4
-
27
-
-
0031148467
-
Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A
-
R. G. Resmini, M. E. Kappus, W. S. Aldrich, J. C. Harsanyi, and M. Anderson, "Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A," Int. J. Remote Sens., vol. 18, no. 7, pp. 1553-1570, 1997.
-
(1997)
Int. J. Remote Sens.
, vol.18
, Issue.7
, pp. 1553-1570
-
-
Resmini, R.G.1
Kappus, M.E.2
Aldrich, W.S.3
Harsanyi, J.C.4
Anderson, M.5
-
28
-
-
58149520173
-
Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing
-
Jan.
-
S. A. Robila and L. G. Maciak, "Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 57-61, Jan. 2009.
-
(2009)
IEEE Geosci. Remote Sens. Lett.
, vol.6
, Issue.1
, pp. 57-61
-
-
Robila, S.A.1
MacIak, L.G.2
-
29
-
-
78049262926
-
Implementation strategies for hyperspectral unmixing using Bayesian source separation
-
Nov.
-
F. Schmidt, A. Schmidt, E. Trèguier,M. Guiheneuf, S. Moussaoui, and N. Dobigeon, "Implementation strategies for hyperspectral unmixing using Bayesian source separation," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4003-4013, Nov. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.11
, pp. 4003-4013
-
-
Schmidt, F.1
Schmidt, A.2
Trèguier, E.3
Guiheneuf, M.4
Moussaoui, S.5
Dobigeon, N.6
-
30
-
-
78049320782
-
Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets
-
Nov.
-
J. L. Silván-Cárdenas and L. Wang, "Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3992-4002, Nov. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.11
, pp. 3992-4002
-
-
Silván-Cárdenas, J.L.1
Wang, L.2
-
31
-
-
5444237123
-
Greed is good: Algorithmic results for sparse approximation
-
Oct.
-
J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231-2242, Oct. 2004.
-
(2004)
IEEE Trans. Inf. Theory
, vol.50
, Issue.10
, pp. 2231-2242
-
-
Tropp, J.A.1
-
32
-
-
33645712308
-
Just relax: Convex programming methods for identifying sparse signals in noise
-
DOI 10.1109/TIT.2005.864420
-
J. A. Tropp, "Just relax: Convex programming methods for identifying sparse signals in noise," IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1030-1051, Mar. 2006. (Pubitemid 46444890)
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.3
, pp. 1030-1051
-
-
Tropp, J.A.1
-
33
-
-
78049303926
-
Merging the Minnaert-k parameter with spectral unmixing to map forest heterogeneity with CHRIS/PROBAdata
-
Nov.
-
J. Verrelst, J. G. P. W. Clevers, and M. E. Schaepman, "Merging the Minnaert-k parameter with spectral unmixing to map forest heterogeneity with CHRIS/PROBAdata," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4014-4022, Nov. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.11
, pp. 4014-4022
-
-
Verrelst, J.1
Clevers, J.G.P.W.2
Schaepman, M.E.3
-
34
-
-
0033310314
-
N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
-
M. R. Descour and S. S. Shen, Eds.
-
M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE, M. R. Descour and S. S. Shen, Eds., 1999, vol. 3753, pp. 266-275.
-
(1999)
Proc. SPIE
, vol.3753
, pp. 266-275
-
-
Winter, M.E.1
|