메뉴 건너뛰기




Volumn 7, Issue , 2007, Pages 91-116

Sparse component analysis: A new tool for data mining

Author keywords

Blind Signal Separation; Clustering; Sparse Component Analysis

Indexed keywords


EID: 84976516173     PISSN: 19316828     EISSN: 19316836     Source Type: Book Series    
DOI: 10.1007/978-0-387-69319-4_6     Document Type: Chapter
Times cited : (34)

References (29)
  • 1
    • 0035501128 scopus 로고    scopus 로고
    • Underdetermined Blind Source Separation using Sparse Representation
    • P. Bofill and M. Zibulevsky. Underdetermined Blind Source Separation using Sparse Representation. Signal Processing, 81 (11): 2353-2362, 2001.
    • (2001) Signal Processing , vol.81 , Issue.11 , pp. 2353-2362
    • Bofill, P.1    Zibulevsky, M.2
  • 3
    • 0004990788 scopus 로고    scopus 로고
    • Mathematical progrmming for data mining: Formulations and challenges
    • P. S. Bradley, U. M. Fayyad and O. L. Mangasarian. Mathematical progrmming for data mining: formulations and challenges. INFORMS Journal on Computing, 11 (3): 217-238, 1999.
    • (1999) INFORMS Journal on Computing , vol.11 , Issue.3 , pp. 217-238
    • Bradley, P.S.1    Fayyad, U.M.2    Mangasarian, O.L.3
  • 8
    • 0034144007 scopus 로고    scopus 로고
    • Removal of ocular artifact from the EEC: A review
    • R. J. Croft and R. J. Barry. Removal of ocular artifact from the EEC: a review. Clinical Neurophysiology, 30 (1): 5-19, 2000.
    • (2000) Clinical Neurophysiology , vol.30 , Issue.1 , pp. 5-19
    • Croft, R.J.1    Barry, R.J.2
  • 13
    • 77954861650 scopus 로고    scopus 로고
    • Optimization Techniques for Independent Component Analysis with Applications to EEC Data
    • P. M. Pardalos et al., editors, Algorithms, Diagnostics, and Therapeutic Applications, Kluwer Academic Publishers
    • P. Georgiev, A. Cichocki, and H. Bakardjian. Optimization Techniques for Independent Component Analysis with Applications to EEC Data. In P. M. Pardalos et al., editors. Quantitative Neuroscience: Models, Algorithms, Diagnostics, and Therapeutic Applications, pages 53-68. Kluwer Academic Publishers, 2004.
    • (2004) Quantitative Neuroscience: Models , pp. 53-68
    • Georgiev, P.1    Cichocki, A.2    Bakardjian, H.3
  • 16
    • 0032624821 scopus 로고    scopus 로고
    • Blind sourse separation of more sources than mixtures using overcomplete representaitons
    • T.-W. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski. Blind sourse separation of more sources than mixtures using overcomplete representaitons. IEEE Signal Processing Letters, 6 (4): 87-90, 1999.
    • (1999) IEEE Signal Processing Letters , vol.6 , Issue.4 , pp. 87-90
    • Lee, T.-W.1    Lewicki, M.S.2    Girolami, M.3    Sejnowski, T.J.4
  • 17
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative Matrix Factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative Matrix Factorization. Nature, 40: 788-791, 1999.
    • (1999) Nature , vol.40 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 22
    • 0242404415 scopus 로고    scopus 로고
    • Independent component analysis of functional MRI: What is signal and what is noise?
    • M. McKeown, L. Hansen, and T. Sejnowski. Independent component analysis of functional MRI: what is signal and what is noise? Current Opinion in Neurobiology, 13: 620-629, 2003.
    • (2003) Current Opinion in Neurobiology , vol.13 , pp. 620-629
    • McKeown, M.1    Hansen, L.2    Sejnowski, T.3
  • 23
    • 0023273689 scopus 로고
    • The Nl wave of the human electric and magnetic response to sound: A review and an analysis of the component structure
    • R. Naatanen and T. Picton. The Nl wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24 (4): 375-425, 1987.
    • (1987) Psychophysiology , vol.24 , Issue.4 , pp. 375-425
    • Naatanen, R.1    Picton, T.2
  • 25
    • 0742306442 scopus 로고    scopus 로고
    • A geometric algorithm for overcomplete linear ICA
    • F. J. Theis, E. W. Lang, and C. G. Puntonet. A geometric algorithm for overcomplete linear ICA. Neurocomputing, 56: 381-398, 2004.
    • (2004) Neurocomputing , vol.56 , pp. 381-398
    • Theis, F.J.1    Lang, E.W.2    Puntonet, C.G.3
  • 26
    • 1242339472 scopus 로고    scopus 로고
    • Algebraic Overcomplete Independent Component Analysis
    • ICA2003, Nara, Japan
    • K. Waheed and F. Salem. Algebraic Overcomplete Independent Component Analysis. In Proceeding of the International Conference ICA2003, Nara, Japan, pp. 1077-1082, 2003.
    • (2003) Proceeding of the International Conference , pp. 1077-1082
    • Waheed, K.1    Salem, F.2
  • 28
  • 29
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • M. Zibulevsky and B. A. Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary. Neural Computation, 13 (4): 863-882, 2001.
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.