메뉴 건너뛰기




Volumn 49, Issue 6 PART 1, 2011, Pages 2165-2179

Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints

Author keywords

Abundance nonnegative constraint (ANC); abundance sum to one constraint (ASC); adaptive abundance modeling (AAM); hyperspectral unmixing; independent component analysis (ICA)

Indexed keywords

ABUNDANCE NONNEGATIVE CONSTRAINT (ANC); ABUNDANCE SUM-TO-ONE CONSTRAINT (ASC); ADAPTIVE ABUNDANCE MODELING (AAM); CONSTRAINED ICA; EFFECTIVE SOLUTION; ENDMEMBERS; GROUND OBJECTS; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGERY; HYPERSPECTRAL UNMIXING; ICA ALGORITHMS; INDEPENDENCE ASSUMPTION; INDEPENDENT COMPONENTS; OBJECTIVE FUNCTIONS; PRIOR KNOWLEDGE; STATISTICAL CHARACTERISTICS; STATISTICAL DISTRIBUTION; UNMIXING;

EID: 79957650412     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2010.2101609     Document Type: Article
Times cited : (53)

References (56)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002. (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 2
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • DOI 10.1109/79.974724
    • D. Manolakis and G. A. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29- 43, Jan. 2002. (Pubitemid 34237206)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.G.1    Shaw, G.2
  • 4
    • 0035837463 scopus 로고    scopus 로고
    • Estimation of urban vegetation abundace by spectral mixture analysis
    • DOI 10.1080/01431160151144369
    • C. Small, "Estimation of urban vegetation abundance by spectral mixture analysis," Int. J. Remote Sens., vol. 22, no. 7, pp. 1305-1334, 2001. (Pubitemid 32418346)
    • (2001) International Journal of Remote Sensing , vol.22 , Issue.7 , pp. 1305-1334
    • Small, C.1
  • 7
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. AVIRIS Workshop, JPL Pub. 93-26, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. AVIRIS Workshop, JPL Pub. 93-26 , vol.1 , pp. 11-14
    • Boardman, J.1
  • 8
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, "N-findr: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Conf. Imaging Spectrometry V,1999, vol. 3753, pp. 266-275.
    • (1999) Proc. SPIE Conf. Imaging Spectrometry v , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 9
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • DOI 10.1109/TGRS.2002.802494
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Sep. 2002. (Pubitemid 35458399)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 10
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2002. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 11
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct.
    • C.-I Chang, C.-C.Wu,W. Liu, and Y.-C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Liu, C.-C.WuW.2    Ouyang, Y.-C.3
  • 12
    • 65049088007 scopus 로고    scopus 로고
    • Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery
    • Apr.
    • X. Tao, B. Wang, and L. Zhang, "Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 219-223, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 219-223
    • Tao, X.1    Wang, B.2    Zhang, L.3
  • 13
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Apr.
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 14
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C.-I Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Oct.
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 19
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan.
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 20
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb.
    • X. Liu, W. Xia, B. Wang, and L. Zhang, "An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4
  • 21
    • 57649229726 scopus 로고    scopus 로고
    • Analyzing hyperspectral data with independent component analysis
    • J. Bayliss, J. A. Gualtieri, and R. F. Cromp, "Analyzing hyperspectral data with independent component analysis," Proc. SPIE, vol. 3240, pp. 133- 143, 1997.
    • (1997) Proc. SPIE , vol.3240 , pp. 133-143
    • Bayliss, J.1    Gualtieri, J.A.2    Cromp, R.F.3
  • 23
    • 0033752388 scopus 로고    scopus 로고
    • Unsupervised signature extraction and separation in hyperspectral images: A noise-adjusted fast independent component analysis approach
    • Apr.
    • T. M. Tu, "Unsupervised signature extraction and separation in hyperspectral images: A noise-adjusted fast independent component analysis approach," Opt. Eng., vol. 39, no. 4, pp. 897-906, Apr. 2000.
    • (2000) Opt. Eng. , vol.39 , Issue.4 , pp. 897-906
    • Tu, T.M.1
  • 24
    • 0034543937 scopus 로고    scopus 로고
    • Unsupervised hyperspectral image analysis using independent component analysis
    • S.-S. Chiang, C.-I Chang, and I. W. Ginsberg, "Unsupervised hyperspectral image analysis using independent component analysis," in Proc. IGARSS, 2000, vol. 7, pp. 3136-3138.
    • (2000) Proc. IGARSS , vol.7 , pp. 3136-3138
    • Chiang, S.-S.1    Chang, C.-I.2    Ginsberg, I.W.3
  • 26
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • DOI 10.1109/TGRS.2004.839806
    • J. Nascimento and J. Bioucas-Dias, "Does independent component analysis play a role in unmixing hyperspectral data?," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 175-187, Apr. 2005. (Pubitemid 40162736)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 27
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • DOI 10.1109/TGRS.2006.874135, 1677768
    • J. Wang and C.-I Chang, "Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2601-2616, Sep. 2006. (Pubitemid 44321553)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 28
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point for independent component analysis
    • A. Hyvarinen and E. Oja, "A fast fixed-point for independent component analysis," Neural Comput., vol. 9, no. 7, pp. 1483-1492, 1997. (Pubitemid 127462801)
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvarinen, A.1    Oja, E.2
  • 30
    • 82355182723 scopus 로고    scopus 로고
    • Hyperspectral unmixing algorithm via dependent component analysis
    • Jul.
    • J. Nascimento and J. Bioucas-Dias, "Hyperspectral unmixing algorithm via dependent component analysis," in Proc. IEEE IGARSS, Jul. 2007, pp. 4033-4036.
    • (2007) Proc. IEEE IGARSS , pp. 4033-4036
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 31
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Apr.
    • P. Comon, "Independent component analysis, a new concept?" Signal Process., vol. 36, no. 3, pp. 287-314, Apr. 1994.
    • (1994) Signal Process. , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 34
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information
    • H. H. Yang and S. Amari, "Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information," Neural Comput., vol. 9, no. 7, pp. 1457-1482, Oct. 1997. (Pubitemid 127462800)
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1457-1482
    • Yang, H.H.1    Amari, S.-I.2
  • 35
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Nov.
    • A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Comput., vol. 7, no. 6, pp. 1129-1159, Nov. 1995.
    • (1995) Neural Comput. , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 36
    • 0032533057 scopus 로고    scopus 로고
    • Information Maximization and Independent Component Analysis: Is There a Difference?
    • D. Obradovic and G. Deco, "Information maximization and independent component analysis: Is there a difference?," Neural Comput., vol. 10, no. 9, pp. 2085-2101, Nov. 15, 1998. (Pubitemid 128464296)
    • (1998) Neural Computation , vol.10 , Issue.8 , pp. 2085-2101
    • Obradovic, D.1    Deco, G.2
  • 37
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S. Amari, "Natural gradient works efficiently in learning," Neural Comput., vol. 10, no. 2, pp. 251-276, Feb. 15, 1998. (Pubitemid 128463152)
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.-I.1
  • 38
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for blind source separation
    • J. Cardoso, "Infomax and maximum likelihood of source separation," IEEE Signal Process. Lett., vol. 4, no. 4, pp. 112-114, Apr. 1997. (Pubitemid 127554963)
    • (1997) IEEE Signal Processing Letters , vol.4 , Issue.4 , pp. 112-114
    • Cardoso, J.-F.1
  • 39
    • 0002100868 scopus 로고
    • Contributions to the theory of mathematical evolution
    • K. Pearson, "Contributions to the theory of mathematical evolution," Philos. Trans. R. Soc. Lond., vol. 185, pp. 71-110, 1894.
    • (1894) Philos. Trans. R. Soc. Lond. , vol.185 , pp. 71-110
    • Pearson, K.1
  • 40
    • 0000324990 scopus 로고    scopus 로고
    • An alternative perspective on adaptive independent component analysis algorithms
    • M. Girolami, "An alternative perspective on adaptive independent component analysis algorithms," Neural Comput., vol. 10, no. 8, pp. 2103-2114, Nov. 1998. (Pubitemid 128464297)
    • (1998) Neural Computation , vol.10 , Issue.8 , pp. 2103-2114
    • Girolami, M.1
  • 41
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
    • Feb.
    • T. Lee, M. Girolami, and T. J. Sejnowski, "Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources," Neural Comput., vol. 11, no. 2, pp. 417-441, Feb. 1999.
    • (1999) Neural Comput. , vol.11 , Issue.2 , pp. 417-441
    • Lee, T.1    Girolami, M.2    Sejnowski, T.J.3
  • 43
    • 0001070130 scopus 로고
    • Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis
    • Oct.
    • M. O. Smith, P. E. Johnson, and J. B. Adams, "Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis," J. Geophys. Res., vol. 90, no. 2, pp. C797-C804, Oct. 1985.
    • (1985) J. Geophys. Res. , vol.90 , Issue.2
    • Smith, M.O.1    Johnson, P.E.2    Adams, J.B.3
  • 45
    • 1642290713 scopus 로고    scopus 로고
    • Automatic spectral target recognition in hyperspectral imagery
    • Oct.
    • H. Ren and C.-I Chang, "Automatic spectral target recognition in hyperspectral imagery," IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1232-1249, Oct. 2003.
    • (2003) IEEE Trans. Aerosp. Electron. Syst. , vol.39 , Issue.4 , pp. 1232-1249
    • Ren, H.1    Chang, C.-I.2
  • 46
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 49
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Mar. 2001. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 50
    • 0033719885 scopus 로고    scopus 로고
    • Constrained subpixel target detection for remotely sensed imagery
    • May
    • C.-I Chang and D. Heinz, "Constrained subpixel target detection for remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1144-1159, May 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.3 , pp. 1144-1159
    • Chang, C.-I.1    Heinz, D.2
  • 51
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar.
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 52
    • 78650930212 scopus 로고    scopus 로고
    • An efficient method for supervised hyperspectral band selection
    • Jan.
    • H. Yang, Q. Du, H. Su, and Y. Sheng, "An efficient method for supervised hyperspectral band selection," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 138-142, Jan. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 138-142
    • Yang, H.1    Du, Q.2    Su, H.3    Sheng, Y.4
  • 54
    • 44049102958 scopus 로고    scopus 로고
    • Hyperspectral imagery visualization using double layers
    • Oct.
    • S. Cai, Q. Du, and R. Moorhead, "Hyperspectral imagery visualization using double layers," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3028-3036, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3028-3036
    • Cai, S.1    Du, Q.2    Moorhead, R.3
  • 55
    • 60749110419 scopus 로고    scopus 로고
    • End-member extraction for hyperspectral image analysis
    • Oct.
    • Q. Du, N. Raksuntorn, N. Younan, and R. King, "End-member extraction for hyperspectral image analysis," Appl. Opt., vol. 47, no. 28, pp. 77-84, Oct. 2008.
    • (2008) Appl. Opt. , vol.47 , Issue.28 , pp. 77-84
    • Du, Q.1    Raksuntorn, N.2    Younan, N.3    King, R.4
  • 56
    • 77956060090 scopus 로고    scopus 로고
    • Feature-driven multilayer visualization for remotely sensed hyperspectral imagery
    • Sep.
    • S. Cai, Q. Du, and R. Moorhead, "Feature-driven multilayer visualization for remotely sensed hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 9, pp. 3471-3481, Sep. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.9 , pp. 3471-3481
    • Cai, S.1    Du, Q.2    Moorhead, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.