메뉴 건너뛰기




Volumn 20, Issue 4, 2011, Pages 1112-1125

Blind spectral unmixing based on sparse nonnegative matrix factorization

Author keywords

Blind spectral unmixing; nonnegative matrix factorization (NMF); sparseness measure

Indexed keywords

DIMENSION REDUCTION; ENDMEMBERS; GRADIENT BASED; HIGHER ORDER; LEARNING RATES; NONNEGATIVE MATRIX FACTORIZATION; NONNEGATIVE MATRIX FACTORIZATION (NMF); PHYSICAL SIGNIFICANCE; REAL-WORLD IMAGE; SIGNAL VECTORS; SPARSE DISTRIBUTION; SPARSE NON-NEGATIVE MATRIX FACTORIZATIONS; SPARSENESS MEASURE; SPECTRAL DATA; SPECTRAL UNMIXING; SYNTHETIC MIXTURES;

EID: 79952957026     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2010.2081678     Document Type: Article
Times cited : (166)

References (66)
  • 1
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 2
    • 14644403023 scopus 로고    scopus 로고
    • Multispectral land sensing: Where from, where to?
    • DOI 10.1109/TGRS.2004.837327
    • D. Landgrebe, "Multispectral land sensing: Where from, where to?," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 414-421, Mar. 2005. (Pubitemid 40320264)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 414-421
    • Landgrebe, D.A.1
  • 3
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Lab. J., vol. 14, pp. 55-73, 2003.
    • (2003) Lincoln Lab.J. , vol.14 , pp. 55-73
    • Keshava, N.1
  • 7
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • DOI 10.1109/TGRS.2006.874135, 1677768
    • J. Wang and C.-I. Chang, "Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2601-2616, Sep. 2006. (Pubitemid 44321553)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 8
    • 34548572915 scopus 로고    scopus 로고
    • Blind spectral unmixing by local maximization of non-Gaussianity
    • DOI 10.1016/j.sigpro.2007.07.011, PII S0165168407002472
    • C. F. Caiafa, E. Salerno, A. N. Proto, and L. Fiumi, "Blind spectral unmixing by local maximization of non-gaussianity," Signal Process., vol. 88, pp. 50-68, 2008. (Pubitemid 47391039)
    • (2008) Signal Processing , vol.88 , Issue.1 , pp. 50-68
    • Caiafa, C.F.1    Salerno, E.2    Proto, A.N.3    Fiumi, L.4
  • 9
    • 0033225639 scopus 로고    scopus 로고
    • Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions
    • Nov.
    • G. Healcy and D. Slater, "Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2706-2717, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2706-2717
    • Healcy, G.1    Slater, D.2
  • 10
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Aug.
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 11
    • 0035309562 scopus 로고    scopus 로고
    • Efficient detection in hyperspectral imagery
    • DOI 10.1109/83.913593, PII S1057714901024745
    • S. M. Schweizer and J. M. F. Moura, "Efficient detection in hyperspectral imagery," IEEE Trans. Image Process., vol. 10, no. 4, pp. 584-597, Apr. 2001. (Pubitemid 32371593)
    • (2001) IEEE Transactions on Image Processing , vol.10 , Issue.4 , pp. 584-597
    • Schweizer, S.M.1    Moura, J.M.F.2
  • 12
    • 61349196839 scopus 로고    scopus 로고
    • Support vector machine-based endmember extraction
    • Mar.
    • A. M. Filippi and R. Archibald, "Support vector machine-based endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 771-791, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 771-791
    • Filippi, A.M.1    Archibald, R.2
  • 13
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. S110-S122, 2009.
    • (2009) Remote Sens. Environ. , vol.113
    • Plaza, A.1
  • 14
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE Conf. Imaging Spectrometry, 1999, vol. 3753, pp. 266-275.
    • (1999) Proc. SPIE Conf. Imaging Spectrometry , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 16
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. Summaries 4th Annu. JPL Airborne Geoscience Workshop, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. Summaries 4th Annu. JPL Airborne Geoscience Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 17
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 18
    • 0033719885 scopus 로고    scopus 로고
    • Constrained subpixel target detection for remotely sensed imagery
    • May
    • C.-I. Chang and D. C. Heinz, "Constrained subpixel target detection for remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1144-1159, May 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.3 , pp. 1144-1159
    • Chang, C.-I.1    Heinz, D.C.2
  • 19
    • 1342343252 scopus 로고    scopus 로고
    • Thematic mapping from remotely sensed data with neural networks: MLP, RBF and PNN based approaches
    • G. M. Foody, "Thematic mapping from remotely sensed data with neural networks: MLP, RBF, and PNN based approaches," J. Geograph. Syst., vol. 3, pp. 217-232, 2001. (Pubitemid 33725655)
    • (2001) Journal of Geographical Systems , vol.3 , Issue.3 , pp. 217-232
    • Foody, G.M.1
  • 20
    • 0031277523 scopus 로고    scopus 로고
    • Comparision of fuzzy c-mean classification, linear mixture modeling and mlc probabilities as tools for unmixing coarse pixels
    • L. Bastin, "Comparision of fuzzy c-mean classification, linear mixture modeling and mlc probabilities as tools for unmixing coarse pixels," Int. J. Remote Sens., vol. 18, pp. 3629-3648, 1997.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 3629-3648
    • Bastin, L.1
  • 21
    • 0034432446 scopus 로고    scopus 로고
    • Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing
    • F. A. Kruse and J. W. Boardman, "Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing," in Proc. 2000 IEEE AeroSpace Conf. , Big Sky, MT, 2000, pp. 299-304. (Pubitemid 32838219)
    • (2000) IEEE Aerospace Conference Proceedings , vol.3 , pp. 299-304
    • Kruse, F.A.1    Boardman, J.W.2
  • 23
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C.-I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, pp. 529-545, 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 24
    • 34047244201 scopus 로고    scopus 로고
    • A maximum entropy approach to unsupervised mixed-pixel decomposition
    • DOI 10.1109/TIP.2006.891350
    • L. Miao, H. Qi, and H. Szu, "A maximum entropy approach to unsupervised mixed-pixel decomposition," IEEE Trans. Image Process., vol. 16, no. 4, pp. 1008-1021, Apr. 2007. (Pubitemid 46546106)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.4 , pp. 1008-1021
    • Miao, L.1    Qi, H.2    Szu, H.3
  • 25
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • DOI 10.1109/TGRS.2007.898443
    • S. Jia and Y. Qian, "Spectral and spatial complexity-based hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3867-3879, Dec. 2007. (Pubitemid 350157825)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 26
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 27
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • V. P. Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Lin. Alg. Appl., vol. 416, pp. 29-47, 2006. (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 29
    • 34249746877 scopus 로고    scopus 로고
    • Using non-negative matrix factorization in the "unmixing" of diffuse reflectance spectra
    • DOI 10.1016/j.margeo.2007.03.004, PII S0025322707000680
    • D. Heslop, T. Dobeneck, and M. Hocker, "Using non-negative matrix factorization in the "unmixing" of diffuse reflectance spectra," Marine Geology, vol. 241, pp. 63-78, 2007. (Pubitemid 46823988)
    • (2007) Marine Geology , vol.241 , Issue.1-4 , pp. 63-78
    • Heslop, D.1    Von Dobeneck, T.2    Hocker, M.3
  • 30
    • 33947112755 scopus 로고    scopus 로고
    • Reconstruction of reflectance spectra using robust nonnegative matrix factorization
    • DOI 10.1109/TSP.2006.879282
    • A. B. Hamza and D. J. Brady, "Reconstruction of reflectance spectra using robust nonnegative matrix factorization," IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3637-3642, Sep. 2006. (Pubitemid 46405401)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.9 , pp. 3637-3642
    • Hamza, A.B.1    Brady, D.J.2
  • 31
    • 58149520173 scopus 로고    scopus 로고
    • Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing
    • Jan.
    • S. A. Robila and L. G. Maciak, "Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing," IEEE Trans. Geosci. Remote. Sens. Lett., vol. 6, no. 1, pp. 57-61, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote. Sens. Lett. , vol.6 , Issue.1 , pp. 57-61
    • Robila, S.A.1    Maciak, L.G.2
  • 33
    • 42549137380 scopus 로고    scopus 로고
    • Minimum distance constrained nonnegative matrix factorization for the endmember extraction of hyperspectral images
    • Y. Yu, S. Guo, and W. Sun, "Minimum distance constrained nonnegative matrix factorization for the endmember extraction of hyperspectral images," in Proc. SPIE Conf. Remote Sensing and GIS Data Process. and Appl., 2007, vol. 6790, pp. 151-159.
    • (2007) Proc. SPIE Conf. Remote Sensing and GIS Data Process. and Appl. , vol.6790 , pp. 151-159
    • Yu, Y.1    Guo, S.2    Sun, W.3
  • 34
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan.
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 35
    • 33745765253 scopus 로고    scopus 로고
    • Learning sparse representations by non-negative matrix factorization and sequential cone programming
    • M. Heiler and C. Schnörr, "Learning sparse representations by nonnegative matrix factorization and sequential cone programming," J. Mach. Learning Res., vol. 7, pp. 1385-1407, 2006. (Pubitemid 44024595)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1385-1407
    • Heiler, M.1    Schnorr, C.2
  • 36
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learning Res., vol. 5, pp. 1457-1469, 2004.
    • (2004) J. Mach. Learning Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 38
    • 45249107058 scopus 로고    scopus 로고
    • Linear spectral mixture model in moderate spatial resolution image data
    • R. M. D. Freitas, V. Haertel, and Y. E. Shimabukuro, "Linear spectral mixture model in moderate spatial resolution image data," Boletim De Ciencias Geodesicas, vol. 14, pp. 55-71, 2008.
    • (2008) Boletim De Ciencias Geodesicas , vol.14 , pp. 55-71
    • Freitas, R.M.D.1    Haertel, V.2    Shimabukuro, Y.E.3
  • 39
    • 0029667294 scopus 로고    scopus 로고
    • Nonlinear spectral mixing in desert vegetation
    • T. W. Ray and B. C. Murray, "Nonlinear spectral mixing in desert vegetation," Remote Sens. Environ., vol. 55, pp. 59-64, 1996.
    • (1996) Remote Sens. Environ. , vol.55 , pp. 59-64
    • Ray, T.W.1    Murray, B.C.2
  • 41
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, pp. 542-552, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , pp. 542-552
    • Craig, M.D.1
  • 43
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for nonnegative matrix factorization
    • D. D. Lee and H. S. Seung, "Algorithms for nonnegative matrix factorization," Adv. Neural Inf. Process. Syst., vol. 13, pp. 556-562, 2001.
    • (2001) Adv. Neural Inf. Process. Syst. , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 44
    • 36749071484 scopus 로고    scopus 로고
    • SVD based initialization: A head start for nonnegative matrix factorization
    • DOI 10.1016/j.patcog.2007.09.010, PII S0031320307004359
    • C. Boutsidis and E. Gallopoulos, "SVD based initialization: A head start for nonnegative matrix factorization," Pattern Recognit., vol. 41, pp. 1350-1362, 2008. (Pubitemid 350212975)
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 45
    • 54249132657 scopus 로고    scopus 로고
    • Flexible component analysis for sparse, smooth, nonnegative coding or representation
    • A. Cichocki, A. H. Phan, R. Zdunek, and L. Q. Zhang, "Flexible component analysis for sparse, smooth, nonnegative coding or representation," Lecture Notes in Computer Science, vol. 4984, pp. 811-820, 2008.
    • (2008) Lecture Notes in Computer Science , vol.4984 , pp. 811-820
    • Cichocki, A.1    Phan, A.H.2    Zdunek, R.3    Zhang, L.Q.4
  • 46
    • 0035533162 scopus 로고    scopus 로고
    • Sparse components analysis and optimal atomic decompositions
    • D. L. Donoho, "Sparse components analysis and optimal atomic decompositions," Constructive Approx., vol. 17, pp. 353-382, 2001.
    • (2001) Constructive Approx. , vol.17 , pp. 353-382
    • Donoho, D.L.1
  • 47
    • 51749107029 scopus 로고    scopus 로고
    • Sparse nonnegative matrix factorization with genetic algorithms for microarray analysis
    • K. Stadlthanner et al., "Sparse nonnegative matrix factorization with genetic algorithms for microarray analysis," in Proc. Int. Joint Conf. Neural Netw., 2007, pp. 294-299.
    • (2007) Proc. Int. Joint Conf. Neural Netw. , pp. 294-299
    • Stadlthanner, K.1
  • 48
    • 2442473143 scopus 로고    scopus 로고
    • Analysis of sparse representation and blind source separation
    • DOI 10.1162/089976604773717586
    • Y. Q. Li, A. Cichocki, and S. Amari, "Analysis of sparse representation and blind source separation," Neural Comput., vol. 16, pp. 1193-1234, 2004. (Pubitemid 38640622)
    • (2004) Neural Computation , vol.16 , Issue.6 , pp. 1193-1234
    • Li, Y.1    Cichocki, A.2    Amari, S.-I.3
  • 50
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • DOI 10.1038/381607a0
    • B. A. Olshausen and D. J. Field, "Emergence of simplecell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, pp. 607-609, 1996. (Pubitemid 26177476)
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 53
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon, "Independent component analysis, a new concept?," Signal Process., vol. 36, pp. 287-314, 1994.
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 54
    • 0005713456 scopus 로고    scopus 로고
    • Characterizing the sparseness of neural codes
    • DOI 10.1088/0954-898X/12/3/302, PII S0954898X01235180
    • B. Willmore and D. J. Tolhurst, "Characterizing the sparseness of neural codes," Network: Comput. Neural Syst., vol. 12, pp. 255-270, 2001. (Pubitemid 33626946)
    • (2001) Network: Computation in Neural Systems , vol.12 , Issue.3 , pp. 255-270
    • Willmore, B.1    Tolhurst, D.J.2
  • 56
    • 85032751966 scopus 로고    scopus 로고
    • Nonnegative matrix and tensor factorization
    • A. Cichocki, R. Zdunek, and S. Amari, "Nonnegative matrix and tensor factorization," IEEE Signal Process. Mag., vol. 26, pp. 142-145, 2008.
    • (2008) IEEE Signal Process. Mag. , vol.26 , pp. 142-145
    • Cichocki, A.1    Zdunek, R.2    Amari, S.3
  • 58
    • 34548085689 scopus 로고    scopus 로고
    • Robust and secure image hashing via non-negative matrix factorizations
    • DOI 10.1109/TIFS.2007.902670
    • V. Monga and M. K. Mihcak, "Robust and secure image hashing via non-negative matrix factorization," IEEE Trans. Inf. Forensics Security, vol. 2, pp. 376-390, 2007. (Pubitemid 47290573)
    • (2007) IEEE Transactions on Information Forensics and Security , vol.2 , Issue.3 , pp. 376-390
    • Monga, V.1    Mihcak, M.K.2
  • 60
    • 79952950261 scopus 로고    scopus 로고
    • [Online]. Available
    • [Online]. Available: http://aviris.jpl.nasa.gov/
  • 61
    • 79952931317 scopus 로고    scopus 로고
    • [Online]. Available
    • [Online]. Available: http://www.hgimaging.com/PDF/Kruse- JPL20020-AVIRIS-Hyperion.pdf
  • 62
    • 79952968185 scopus 로고    scopus 로고
    • [Online]. Available
    • [Online]. Available: http://cobweb.ecn.purdue.edu/̃biehl/MultiSpec/
  • 63
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, pp. 608-619, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 64
    • 0012187330 scopus 로고
    • Cuprite Mining District, Esmerelda County, Nevada United States Geological Survey Open-File Report 80-367
    • R. P. Ashley and M. J. Abrams, "Alteration Mapping Using Multispectral Images, Cuprite Mining District, Esmerelda County, Nevada," United States Geological Survey Open-File Report 80-367, 1980.
    • (1980) Alteration Mapping Using Multispectral Images
    • Ashley, R.P.1    Abrams, M.J.2
  • 65
    • 79952924103 scopus 로고    scopus 로고
    • [Online]. Available:
    • [Online]. Available: http://www.tec.army.mil/Hypercube/.
  • 66
    • 79952949059 scopus 로고    scopus 로고
    • A convenient judgement method about extreme value of one class multivariate functions and its application
    • Z. Y. Li, Z. C. Lu, and H. Chen, "A convenient judgement method about extreme value of one class multivariate functions and its application," Mathem. Practice Theory, vol. 33, pp. 96-101, 2003.
    • (2003) Mathem. Practice Theory , vol.33 , pp. 96-101
    • Li, Z.Y.1    Lu, Z.C.2    Chen, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.