메뉴 건너뛰기




Volumn 89, Issue 6, 2009, Pages 1011-1022

K-hyperline clustering learning for sparse component analysis

Author keywords

Blind source separation; Disjoint orthogonality condition; K means clustering; K SVD; Sparse component analysis (SCA); Sparse representation

Indexed keywords

APARTMENT HOUSES; CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; MULTILAYERS; SIGNAL ANALYSIS; SINGULAR VALUE DECOMPOSITION; WATER SUPPLY SYSTEMS;

EID: 60749095388     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2008.12.005     Document Type: Article
Times cited : (67)

References (37)
  • 1
    • 2442473143 scopus 로고    scopus 로고
    • Analysis of sparse representation and blind source separation
    • Li Y.Q., Cichocki A., and Amari S. Analysis of sparse representation and blind source separation. Neural Computation 16 (2004) 1193-1234
    • (2004) Neural Computation , vol.16 , pp. 1193-1234
    • Li, Y.Q.1    Cichocki, A.2    Amari, S.3
  • 3
    • 41549101730 scopus 로고    scopus 로고
    • A note on Lewicki-Sejnowski gradient for learning overcomplete representation
    • He Z., Xie S., Zhang L., and Cichocki A. A note on Lewicki-Sejnowski gradient for learning overcomplete representation. Neural Computation 20 3 (2008) 636-643
    • (2008) Neural Computation , vol.20 , Issue.3 , pp. 636-643
    • He, Z.1    Xie, S.2    Zhang, L.3    Cichocki, A.4
  • 4
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen B.A., and Field D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 6583 (1996) 607-609
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 5
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • Zibulevsky M., and Pearlmutter B.A. Blind source separation by sparse decomposition in a signal dictionary. Neural Computation 13 (2001) 863-882
    • (2001) Neural Computation , vol.13 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2
  • 7
    • 33644977802 scopus 로고    scopus 로고
    • Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach
    • Li Y.Q., Cichocki A., and Amari S. Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach. IEEE Transactions on Neural Networks 17 2 (2006) 419-431
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 419-431
    • Li, Y.Q.1    Cichocki, A.2    Amari, S.3
  • 8
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using focuss: a recursive weighted minimum norm algorithm
    • Gorodnitsky I.F., and Rao B.D. Sparse signal reconstruction from limited data using focuss: a recursive weighted minimum norm algorithm. IEEE Transactions on Signal Processing 45 3 (1997) 600-616
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.3 , pp. 600-616
    • Gorodnitsky, I.F.1    Rao, B.D.2
  • 9
    • 33750383209 scopus 로고    scopus 로고
    • The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation
    • Aharon M., Elad M., and Bruckstein A.M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54 11 (2006) 4311-4322
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.M.3
  • 10
    • 0035501128 scopus 로고    scopus 로고
    • Underdetermined blind source separation using sparse representations
    • Bofill P., and Zibulevsky M. Underdetermined blind source separation using sparse representations. Signal Processing 81 (2001) 2353-2362
    • (2001) Signal Processing , vol.81 , pp. 2353-2362
    • Bofill, P.1    Zibulevsky, M.2
  • 11
    • 0032624821 scopus 로고    scopus 로고
    • Blind source separation of more sources than mixtures using overcomplete representation
    • Lee T.W., Lewicki M.S., Girolami M., and Sejnowski T.J. Blind source separation of more sources than mixtures using overcomplete representation. IEEE Signal Processing Letter 6 4 (1999) 87-90
    • (1999) IEEE Signal Processing Letter , vol.6 , Issue.4 , pp. 87-90
    • Lee, T.W.1    Lewicki, M.S.2    Girolami, M.3    Sejnowski, T.J.4
  • 12
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • Lewicki M.S., and Sejnowski T.J. Learning overcomplete representations. Neural Computation 12 2 (2000) 337-365
    • (2000) Neural Computation , vol.12 , Issue.2 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 13
    • 0038132749 scopus 로고    scopus 로고
    • A variational method for learning sparse and overcomplete representations
    • Girolami M. A variational method for learning sparse and overcomplete representations. Neural Computation 13 11 (2001) 2517-2532
    • (2001) Neural Computation , vol.13 , Issue.11 , pp. 2517-2532
    • Girolami, M.1
  • 15
    • 3142694930 scopus 로고    scopus 로고
    • Blind separation of speech mixtures via time-frequency masking
    • Yilmaz O., and Rickard S. Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on Signal Processing 52 7 (2004) 1830-1847
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.7 , pp. 1830-1847
    • Yilmaz, O.1    Rickard, S.2
  • 16
    • 19944405106 scopus 로고    scopus 로고
    • A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources
    • Abrard F., and Deville Y. A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Processing 85 7 (2005) 1389-1403
    • (2005) Signal Processing , vol.85 , Issue.7 , pp. 1389-1403
    • Abrard, F.1    Deville, Y.2
  • 22
    • 0037313218 scopus 로고    scopus 로고
    • Dictionary learning algorithms for sparse representation
    • Kreutz-Delgado K., Murry J.F., Rao B.D., et al. Dictionary learning algorithms for sparse representation. Neural Computation 15 (2003) 349-396
    • (2003) Neural Computation , vol.15 , pp. 349-396
    • Kreutz-Delgado, K.1    Murry, J.F.2    Rao, B.D.3
  • 23
    • 0001138328 scopus 로고
    • A K-means clustering algorithm
    • Hartigan J.A., and Wong M.A. A K-means clustering algorithm. Applied Statistics 28 1 (1979) 100-108
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 24
    • 31344458539 scopus 로고    scopus 로고
    • Median-based clustering for underdetermined blind signal processing
    • Theis F., Puntonet C., and Lang E. Median-based clustering for underdetermined blind signal processing. IEEE Signal Processing Letters 13 2 (2006) 96-99
    • (2006) IEEE Signal Processing Letters , vol.13 , Issue.2 , pp. 96-99
    • Theis, F.1    Puntonet, C.2    Lang, E.3
  • 25
    • 0037313354 scopus 로고    scopus 로고
    • Linear geometric ICA: fundamentals and algorithms
    • Theis F., Jung A., Puntonet C., and Lang E. Linear geometric ICA: fundamentals and algorithms. Neural Computation 15 (2003) 419-439
    • (2003) Neural Computation , vol.15 , pp. 419-439
    • Theis, F.1    Jung, A.2    Puntonet, C.3    Lang, E.4
  • 27
    • 33749495514 scopus 로고    scopus 로고
    • Sparse representation and blind source separation of ill-posed mixtures
    • He Z.S., Xie S.L., and Fu Y.L. Sparse representation and blind source separation of ill-posed mixtures. Science in China Series F-Information Sciences 49 5 (2006) 639-652
    • (2006) Science in China Series F-Information Sciences , vol.49 , Issue.5 , pp. 639-652
    • He, Z.S.1    Xie, S.L.2    Fu, Y.L.3
  • 28
    • 33745697475 scopus 로고    scopus 로고
    • A robust method to count and locate audio sources in a stereophonic linear instantaneous mixture
    • Charleston SC, USA
    • S. Arberet, R. Gribonval, F. Bimbot, A robust method to count and locate audio sources in a stereophonic linear instantaneous mixture, in: Proceedings of ICA 2006, Charleston SC, USA, 2006, pp. 536-543.
    • (2006) Proceedings of ICA , pp. 536-543
    • Arberet, S.1    Gribonval, R.2    Bimbot, F.3
  • 29
    • 33745711568 scopus 로고    scopus 로고
    • K-EVD clustering and its applications to sparse component analysis
    • Charleston SC, USA
    • Z.S. He, A. Cichocki, K-EVD clustering and its applications to sparse component analysis, in: Proceedings of ICA 2006, Charleston SC, USA, 2006, pp. 90-97.
    • (2006) Proceedings of ICA , pp. 90-97
    • He, Z.S.1    Cichocki, A.2
  • 30
    • 33745452950 scopus 로고    scopus 로고
    • Sparse ICA via cluster-wise PCA
    • Babaie-Zadeh M., Jutten C., and Mansour A. Sparse ICA via cluster-wise PCA. Neurocomputing 69 13-15 (2006) 1458-1466
    • (2006) Neurocomputing , vol.69 , Issue.13-15 , pp. 1458-1466
    • Babaie-Zadeh, M.1    Jutten, C.2    Mansour, A.3
  • 33
    • 33746905129 scopus 로고    scopus 로고
    • Multilayer nonnegative matrix factorization
    • Cichocki A., and Zdunek R. Multilayer nonnegative matrix factorization. Electronics Letters 42 16 (2006) 947-948
    • (2006) Electronics Letters , vol.42 , Issue.16 , pp. 947-948
    • Cichocki, A.1    Zdunek, R.2
  • 35
    • 60749093190 scopus 로고    scopus 로고
    • A. Cichocki, D. Erdogmus, MLSP 2005 competition: large scale, ill-conditioned blind source separation with limited number of samples, 2005, website: 〈http://mlsp2005.conwiz.dk/fileadmin/Cichocki.pdf〉.
    • A. Cichocki, D. Erdogmus, MLSP 2005 competition: large scale, ill-conditioned blind source separation with limited number of samples, 2005, website: 〈http://mlsp2005.conwiz.dk/fileadmin/Cichocki.pdf〉.
  • 36
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp J.A. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory 50 10 (2004) 2231-2242
    • (2004) IEEE Transactions on Information Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.