메뉴 건너뛰기




Volumn 14, Issue 4, 2012, Pages 366-379

A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae

Author keywords

Constraint based modeling; NADPH oxidation; Redox cycles

Indexed keywords

2 ,3-BUTANEDIOL; ACETATE PATHWAYS; ACETOIN; BIOTECHNOLOGICAL PROCESS; CONSTRAINT-BASED; CONSTRAINT-BASED MODELING; CYTOSOLIC; CYTOSOLS; DYNAMICAL ANALYSIS; HIGH DEMAND; IN-DEPTH KNOWLEDGE; IN-VIVO; MASS DISTRIBUTION; METABOLIC FLUX; METABOLIC NETWORK; MODEL ANALYSIS; NADPH OXIDATION; OVER-EXPRESSION; PHYSIOLOGICAL ADAPTATIONS; REDOX COFACTORS; REDOX CYCLES; SYSTEMS LEVELS; YEAST FERMENTATION;

EID: 84862182291     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2012.03.008     Document Type: Article
Times cited : (64)

References (75)
  • 1
    • 0030454540 scopus 로고    scopus 로고
    • The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: Evidence of energetic adaptations
    • Albers C.S., Kattner G., Hagen W. The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: Evidence of energetic adaptations. Mar. Chem. 1996, 55:347-358.
    • (1996) Mar. Chem. , vol.55 , pp. 347-358
    • Albers, C.S.1    Kattner, G.2    Hagen, W.3
  • 3
    • 0032976492 scopus 로고    scopus 로고
    • Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation
    • Anderlund M., Nissen T.L., Nielsen J., Villadsen J., Rydstrom J., Hahn-Hagerdal B., Kielland-Brandt M.C. Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl. Environ. Microbiol. 1999, 65:2333-2340.
    • (1999) Appl. Environ. Microbiol. , vol.65 , pp. 2333-2340
    • Anderlund, M.1    Nissen, T.L.2    Nielsen, J.3    Villadsen, J.4    Rydstrom, J.5    Hahn-Hagerdal, B.6    Kielland-Brandt, M.C.7
  • 4
    • 0033893839 scopus 로고    scopus 로고
    • The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae
    • Bakker B.M., Bro C., Kotter P., Luttik M.A.H., Van Dijken J.P., Pronk J.T. The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 2000, 182:4730-4737.
    • (2000) J. Bacteriol. , vol.182 , pp. 4730-4737
    • Bakker, B.M.1    Bro, C.2    Kotter, P.3    Luttik, M.A.H.4    Van Dijken, J.P.5    Pronk, J.T.6
  • 6
    • 25444467580 scopus 로고    scopus 로고
    • 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast
    • 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 2005, 6:R49.
    • (2005) Genome Biol , vol.6
    • Blank, L.M.1    Kuepfer, L.2    Sauer, U.3
  • 7
    • 33845261493 scopus 로고
    • A rapid method of total lipid extraction and purification
    • Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37:911-917.
    • (1959) Can. J. Biochem. Physiol. , vol.37 , pp. 911-917
    • Bligh, E.G.1    Dyer, W.J.2
  • 8
    • 0026596917 scopus 로고
    • Physiology of osmotolerance in fungi
    • Blomberg A., Adler L. Physiology of osmotolerance in fungi. Adv. Microb. Physiol. 1992, 33:145-212.
    • (1992) Adv. Microb. Physiol. , vol.33 , pp. 145-212
    • Blomberg, A.1    Adler, L.2
  • 9
    • 0027524880 scopus 로고
    • The role of the NAD dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant
    • Boles E., Lehnert W., Zimmermann F.K. The role of the NAD dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur. J. Biochem 1993, 217:469-477.
    • (1993) Eur. J. Biochem , vol.217 , pp. 469-477
    • Boles, E.1    Lehnert, W.2    Zimmermann, F.K.3
  • 10
    • 0033037610 scopus 로고    scopus 로고
    • The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons
    • Boy-Marcotte E., Lagniel G., Perrot M., Bussereau F., Boudsocq A., Jacquet M., Labarre J. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol. Microbiol. 1999, 33:274-283.
    • (1999) Mol. Microbiol. , vol.33 , pp. 274-283
    • Boy-Marcotte, E.1    Lagniel, G.2    Perrot, M.3    Bussereau, F.4    Boudsocq, A.5    Jacquet, M.6    Labarre, J.7
  • 12
    • 0020614458 scopus 로고
    • A theoretical analysis of NADPH production and consumption in yeasts
    • Bruinenberg P.M., Van Dijken J.P., Scheffers W.A. A theoretical analysis of NADPH production and consumption in yeasts. J. Gen. Microbiol. 1983, 129:953-964.
    • (1983) J. Gen. Microbiol. , vol.129 , pp. 953-964
    • Bruinenberg, P.M.1    Van Dijken, J.P.2    Scheffers, W.A.3
  • 13
    • 0023032668 scopus 로고
    • The NADP(H) redox couple in yeast metabolism
    • Bruinenberg P.M. The NADP(H) redox couple in yeast metabolism. AntonieLeeuwenhoek 1986, 5:411-429.
    • (1986) AntonieLeeuwenhoek , vol.5 , pp. 411-429
    • Bruinenberg, P.M.1
  • 14
    • 80052842089 scopus 로고    scopus 로고
    • Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits
    • Camarasa C., Sanchez I., Brial P., Bigey F., Dequin S. Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits. PLoS ONE 2011, 6:e25147.
    • (2011) PLoS ONE , vol.6
    • Camarasa, C.1    Sanchez, I.2    Brial, P.3    Bigey, F.4    Dequin, S.5
  • 15
    • 0029329218 scopus 로고
    • Fluxes of carbon, phosphorylation, and redox intermediates during growth of Saccharomyces cerevisiae on different carbon sources
    • Cortassa S., Aon J.C., Aon M.A. Fluxes of carbon, phosphorylation, and redox intermediates during growth of Saccharomyces cerevisiae on different carbon sources. Biotechnol. Bioeng. 1995, 47:193-208.
    • (1995) Biotechnol. Bioeng. , vol.47 , pp. 193-208
    • Cortassa, S.1    Aon, J.C.2    Aon, M.A.3
  • 17
    • 70349319678 scopus 로고    scopus 로고
    • Reversal of coenzyme specificity of 2, 3-butanediol dehydrogenase from Saccharomyces cerevisiae and in vivo functional analysis
    • Ehsani M., Fernández M.R., Biosca J.A., Dequin S. Reversal of coenzyme specificity of 2, 3-butanediol dehydrogenase from Saccharomyces cerevisiae and in vivo functional analysis. Biotechnol. Bioeng. 2009, 104:381-389.
    • (2009) Biotechnol. Bioeng. , vol.104 , pp. 381-389
    • Ehsani, M.1    Fernández, M.R.2    Biosca, J.A.3    Dequin, S.4
  • 18
    • 66249090878 scopus 로고    scopus 로고
    • Engineering of 2, 3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae
    • Ehsani M., Fernandez M.R., Biosca J.A., Julien A., Dequin S. Engineering of 2, 3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75:3196-3205.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 3196-3205
    • Ehsani, M.1    Fernandez, M.R.2    Biosca, J.A.3    Julien, A.4    Dequin, S.5
  • 19
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Forster J., Famili I., Fu P.C., Palsson B.O., Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13:244-253.
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Forster, J.1    Famili, I.2    Fu, P.C.3    Palsson, B.O.4    Nielsen, J.5
  • 23
    • 0034680769 scopus 로고    scopus 로고
    • Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene
    • Gonzalez E., Fernandez M.R., Larroy C., Sola L., Pericas M.A., Pares X., Biosca J.A. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J. Biol. Chem. 2000, 275:35876-35885.
    • (2000) J. Biol. Chem. , vol.275 , pp. 35876-35885
    • Gonzalez, E.1    Fernandez, M.R.2    Larroy, C.3    Sola, L.4    Pericas, M.A.5    Pares, X.6    Biosca, J.A.7
  • 24
    • 0038529613 scopus 로고    scopus 로고
    • The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
    • Grabowska D., Chelstowska A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J. Biol. Chem. 2003, 278:13984-13988.
    • (2003) J. Biol. Chem. , vol.278 , pp. 13984-13988
    • Grabowska, D.1    Chelstowska, A.2
  • 28
    • 33746891860 scopus 로고    scopus 로고
    • 2O-forming NADH oxidase and impact on redox metabolism
    • 2O-forming NADH oxidase and impact on redox metabolism. Metab. Eng. 2006, 8:303-314.
    • (2006) Metab. Eng. , vol.8 , pp. 303-314
    • Heux, S.1    Cachon, R.2    Dequin, S.3
  • 29
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signaling and osmoadaptation in yeasts
    • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 2002, 2:300-372.
    • (2002) Microbiol. Mol. Biol. Rev. , vol.2 , pp. 300-372
    • Hohmann, S.1
  • 30
    • 68049137324 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
    • Hou J., Lages N.F., Oldiges M., Vemuri G.N. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metabol. Eng. 2009, 11:253-261.
    • (2009) Metabol. Eng. , vol.11 , pp. 253-261
    • Hou, J.1    Lages, N.F.2    Oldiges, M.3    Vemuri, G.N.4
  • 31
    • 0032421544 scopus 로고    scopus 로고
    • D-arabinose dehydrogenase ans its gene from Saccharomyces cerevisiae
    • Kim S., Huh W.K., Lee B.H., Kang S.O. d-arabinose dehydrogenase ans its gene from Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1998, 1429:29-39.
    • (1998) Biochim. Biophys. Acta. , vol.1429 , pp. 29-39
    • Kim, S.1    Huh, W.K.2    Lee, B.H.3    Kang, S.O.4
  • 32
    • 0028969384 scopus 로고
    • Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae
    • Kuhn A., van Zyl C., van Tonder A., Prior B.A. Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1995, 61:1580-1585.
    • (1995) Appl. Environ. Microbiol. , vol.61 , pp. 1580-1585
    • Kuhn, A.1    van Zyl, C.2    van Tonder, A.3    Prior, B.A.4
  • 33
    • 0015888270 scopus 로고
    • Reduced pyridine nucleotides balance in glucose growing Saccharomyces cerevisiae
    • Lagunas R., Gancedo J.M. Reduced pyridine nucleotides balance in glucose growing Saccharomyces cerevisiae. Eur. J. Biochem. 1973, 37:90-94.
    • (1973) Eur. J. Biochem. , vol.37 , pp. 90-94
    • Lagunas, R.1    Gancedo, J.M.2
  • 34
    • 0035813391 scopus 로고    scopus 로고
    • Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae
    • Lange H.C., Heijnen J.J. Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol. Bioeng. 2001, 75:334-344.
    • (2001) Biotechnol. Bioeng. , vol.75 , pp. 334-344
    • Lange, H.C.1    Heijnen, J.J.2
  • 35
    • 33747779674 scopus 로고    scopus 로고
    • Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production
    • Larochelle M., Drouin S., Robert F., Turcotte B. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol. Cell. Biol. 2006, 26:6690-6701.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 6690-6701
    • Larochelle, M.1    Drouin, S.2    Robert, F.3    Turcotte, B.4
  • 36
    • 0021760550 scopus 로고
    • Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae
    • Leão C., Van Uden N. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1984, 774:43-48.
    • (1984) Biochim. Biophys. Acta , vol.774 , pp. 43-48
    • Leão, C.1    Van Uden, N.2
  • 37
    • 0023712973 scopus 로고
    • Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG
    • Llobell A., Lopez-Ruiz A., Peinado J., Lopez-Barea J. Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG. Biochem. J 1988, 249:293-296.
    • (1988) Biochem. J , vol.249 , pp. 293-296
    • Llobell, A.1    Lopez-Ruiz, A.2    Peinado, J.3    Lopez-Barea, J.4
  • 38
    • 77955663173 scopus 로고    scopus 로고
    • Mechanisms of ethanol tolerance in Saccharomyces cerevisiae
    • Ma M., Liu Z.L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2010, 87:829-845.
    • (2010) Appl. Microbiol. Biotechnol. , vol.87 , pp. 829-845
    • Ma, M.1    Liu, Z.L.2
  • 39
    • 50649120655 scopus 로고    scopus 로고
    • Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast
    • Martínez-Muñoz G.A., Kane P. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J. Biol. Chem. 2008, 283:20309-20319.
    • (2008) J. Biol. Chem. , vol.283 , pp. 20309-20319
    • Martínez-Muñoz, G.A.1    Kane, P.2
  • 41
    • 27744558510 scopus 로고    scopus 로고
    • Sources of NADPH in yeast vary with carbon source
    • Minard K.I., McAlister-Henn L. Sources of NADPH in yeast vary with carbon source. J. Biol. Chem. 2005, 280:39890-39896.
    • (2005) J. Biol. Chem. , vol.280 , pp. 39890-39896
    • Minard, K.I.1    McAlister-Henn, L.2
  • 42
    • 0037449764 scopus 로고    scopus 로고
    • Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone
    • Molin M., Norbeck J., Blomberg A. Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone. J. Biol. Chem. 2003, 278:1415-1423.
    • (2003) J. Biol. Chem. , vol.278 , pp. 1415-1423
    • Molin, M.1    Norbeck, J.2    Blomberg, A.3
  • 43
    • 6044273857 scopus 로고    scopus 로고
    • Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments
    • Moreira dos Santos M., Raghevendran V., Kötter P., Olsson L., Nielsen J. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Met. Eng. 2004, 6:352-363.
    • (2004) Met. Eng. , vol.6 , pp. 352-363
    • Moreira dos Santos, M.1    Raghevendran, V.2    Kötter, P.3    Olsson, L.4    Nielsen, J.5
  • 44
    • 0031079894 scopus 로고    scopus 로고
    • Amino acid sequence and characterization of aldo-keto reductase from baker's yeast
    • Nakamura K., Kondo S., Kawai Y., Nakajima N., Ohno A. Amino acid sequence and characterization of aldo-keto reductase from baker's yeast. Biosci. Biotechnol. Biochem 1997, 61:375-377.
    • (1997) Biosci. Biotechnol. Biochem , vol.61 , pp. 375-377
    • Nakamura, K.1    Kondo, S.2    Kawai, Y.3    Nakajima, N.4    Ohno, A.5
  • 46
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev 2008, 72:379-412.
    • (2008) Microbiol. Mol. Biol. Rev , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 47
    • 0031015551 scopus 로고    scopus 로고
    • Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae
    • Nissen T.L., Schulze U., Nielsen J., Villadsen J. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 1997, 143:203-218.
    • (1997) Microbiology , vol.143 , pp. 203-218
    • Nissen, T.L.1    Schulze, U.2    Nielsen, J.3    Villadsen, J.4
  • 48
    • 0035862739 scopus 로고    scopus 로고
    • Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool
    • Nissen T.L., Anderlund M., Nielsen J., Villadsen J., Kielland-Brandt M.C. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 2001, 18:19-32.
    • (2001) Yeast , vol.18 , pp. 19-32
    • Nissen, T.L.1    Anderlund, M.2    Nielsen, J.3    Villadsen, J.4    Kielland-Brandt, M.C.5
  • 50
    • 0031041461 scopus 로고    scopus 로고
    • Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl
    • Norbeck J., Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. J. Biol. Chem. 1997, 272:5544-5554.
    • (1997) J. Biol. Chem. , vol.272 , pp. 5544-5554
    • Norbeck, J.1    Blomberg, A.2
  • 51
    • 84979194211 scopus 로고
    • Yeast growth and glycerol formation. II. Carbon and redox balances
    • Nordström K. Yeast growth and glycerol formation. II. Carbon and redox balances. J. Inst. Brew. 1968, 74:429-432.
    • (1968) J. Inst. Brew. , vol.74 , pp. 429-432
    • Nordström, K.1
  • 52
    • 0023720481 scopus 로고
    • A nuclear yeast gene (GCY) encodes a polypeptide with high homology to a vertebrate eye lens protein
    • Oechsner U., Magdolen V., Bandlow W. A nuclear yeast gene (GCY) encodes a polypeptide with high homology to a vertebrate eye lens protein. FEBS Lett. 1988, 238:123-128.
    • (1988) FEBS Lett. , vol.238 , pp. 123-128
    • Oechsner, U.1    Magdolen, V.2    Bandlow, W.3
  • 53
    • 80052067544 scopus 로고    scopus 로고
    • Intracellular pH is a tightly controlled signal in yeast
    • Orij R., Brul S., Smits G.J. Intracellular pH is a tightly controlled signal in yeast. Biochim. Biophys. Acta 2011, 1810:933-944.
    • (2011) Biochim. Biophys. Acta , vol.1810 , pp. 933-944
    • Orij, R.1    Brul, S.2    Smits, G.J.3
  • 54
    • 0001778610 scopus 로고
    • Reaction products of yeast fermentations
    • Oura E. Reaction products of yeast fermentations. Process Biochem. 1977, 12:19-21.
    • (1977) Process Biochem. , vol.12 , pp. 19-21
    • Oura, E.1
  • 55
    • 0036052119 scopus 로고    scopus 로고
    • An overview on glutathione in Saccharomyces versus non-conventional yeasts
    • Penninckx M.J. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res. 2002, 2:295-305.
    • (2002) FEMS Yeast Res. , vol.2 , pp. 295-305
    • Penninckx, M.J.1
  • 56
    • 40849116174 scopus 로고    scopus 로고
    • Synthesis and turnover of non-polar lipids in yeast
    • Rajakumari S., Grillitsch K., Daum G. Synthesis and turnover of non-polar lipids in yeast. Prog. Lipid Res. 2008, 47:157-171.
    • (2008) Prog. Lipid Res. , vol.47 , pp. 157-171
    • Rajakumari, S.1    Grillitsch, K.2    Daum, G.3
  • 57
    • 0344466725 scopus 로고    scopus 로고
    • Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway
    • Remize F., Cambon B., Barnavon L., Dequin S. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway. Yeast 2003, 20:1243-1253.
    • (2003) Yeast , vol.20 , pp. 1243-1253
    • Remize, F.1    Cambon, B.2    Barnavon, L.3    Dequin, S.4
  • 58
    • 0032939504 scopus 로고    scopus 로고
    • Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase
    • Remize F., Roustan J.L., Sablayrolles J.M., Barre P., Dequin S. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl. Environ. Microbiol. 1999, 65:143.
    • (1999) Appl. Environ. Microbiol. , vol.65 , pp. 143
    • Remize, F.1    Roustan, J.L.2    Sablayrolles, J.M.3    Barre, P.4    Dequin, S.5
  • 59
    • 0036353078 scopus 로고    scopus 로고
    • Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics
    • Roustan J.L., Sablayrolles J.M. Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics. J. Biosci. Bioeng. 2002, 93:367-375.
    • (2002) J. Biosci. Bioeng. , vol.93 , pp. 367-375
    • Roustan, J.L.1    Sablayrolles, J.M.2
  • 60
    • 4344560522 scopus 로고    scopus 로고
    • Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: The NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation
    • Saint-Prix F., Bönquist L., Dequin S. Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: The NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 2004, 150:2209-2220.
    • (2004) Microbiology , vol.150 , pp. 2209-2220
    • Saint-Prix, F.1    Bönquist, L.2    Dequin, S.3
  • 61
    • 0037473205 scopus 로고    scopus 로고
    • Modeling of yeast metabolism and process dynamics in batch fermentation
    • Sainz J., Pizarro F., Perez-Correa J.R., Agosin E. Modeling of yeast metabolism and process dynamics in batch fermentation. Biotechnol. Bioeng. 2003, 81:818-828.
    • (2003) Biotechnol. Bioeng. , vol.81 , pp. 818-828
    • Sainz, J.1    Pizarro, F.2    Perez-Correa, J.R.3    Agosin, E.4
  • 63
    • 0028339522 scopus 로고
    • Proton-translocating transhydrogenase and NAD-and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria
    • Sazanov L.A., Jackson J.B. Proton-translocating transhydrogenase and NAD-and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett 1994, 344:109-116.
    • (1994) FEBS Lett , vol.344 , pp. 109-116
    • Sazanov, L.A.1    Jackson, J.B.2
  • 64
    • 0001952397 scopus 로고    scopus 로고
    • Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: A review
    • Scanes K.T., Hohmann S., Prior B.A. Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: A review. S. Afr. J. Enol. Vitic 1998, 19:17-24.
    • (1998) S. Afr. J. Enol. Vitic , vol.19 , pp. 17-24
    • Scanes, K.T.1    Hohmann, S.2    Prior, B.A.3
  • 65
    • 0024799254 scopus 로고
    • High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier
    • Schiestl R.H., Gietz R.D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet 1989, 16:339-346.
    • (1989) Curr. Genet , vol.16 , pp. 339-346
    • Schiestl, R.H.1    Gietz, R.D.2
  • 66
    • 0029828902 scopus 로고    scopus 로고
    • The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection
    • Slekar K.H., Kosman D.J., Culotta V.C. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 1996, 271:28831-28836.
    • (1996) J. Biol. Chem. , vol.271 , pp. 28831-28836
    • Slekar, K.H.1    Kosman, D.J.2    Culotta, V.C.3
  • 67
    • 4544378309 scopus 로고    scopus 로고
    • Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production
    • Valadi Å., Granath K., Gustafsson L., Adler L. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J. Biol. Chem. 2004, 279:39677-39685.
    • (2004) J. Biol. Chem. , vol.279 , pp. 39677-39685
    • Valadi, Å.1    Granath, K.2    Gustafsson, L.3    Adler, L.4
  • 68
    • 0027572102 scopus 로고
    • Metabolic flux distributions in corynebacteríum gluticum during growth and lysine overproduction
    • Vallino J., Stephanopoulos G. Metabolic flux distributions in corynebacteríum gluticum during growth and lysine overproduction. Biotechnol. Bioeng. 1993, 41:633-646.
    • (1993) Biotechnol. Bioeng. , vol.41 , pp. 633-646
    • Vallino, J.1    Stephanopoulos, G.2
  • 69
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugars by yeasts
    • van Dijken J.P., Scheffers W.A. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Lett. 1986, 32:199-224.
    • (1986) FEMS Microbiol. Lett. , vol.32 , pp. 199-224
    • van Dijken, J.P.1    Scheffers, W.A.2
  • 70
    • 0033107539 scopus 로고    scopus 로고
    • In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae
    • Vaseghi S., Baumeister A., Rizzi M., Reuss M. In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab. Eng. 1999, 1:128-140.
    • (1999) Metab. Eng. , vol.1 , pp. 128-140
    • Vaseghi, S.1    Baumeister, A.2    Rizzi, M.3    Reuss, M.4
  • 71
    • 0025318231 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn C., Postma E., Scheffers W.A., Dijken J.P. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 1990, 136:395-403.
    • (1990) J. Gen. Microbiol. , vol.136 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Dijken, J.P.4
  • 74
    • 0014734642 scopus 로고
    • Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis
    • von Jagow G., Klingenberg M. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur. J. Biochem. 1970, 12:583-592.
    • (1970) Eur. J. Biochem. , vol.12 , pp. 583-592
    • von Jagow, G.1    Klingenberg, M.2
  • 75
    • 0344687415 scopus 로고    scopus 로고
    • Regeneration of cofactors for use in biocatalysis
    • Zhao H., van der Donk W.A. Regeneration of cofactors for use in biocatalysis. Curr. Opin. Biotechnol. 2003, 14:583-589.
    • (2003) Curr. Opin. Biotechnol. , vol.14 , pp. 583-589
    • Zhao, H.1    van der Donk, W.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.