메뉴 건너뛰기




Volumn 14, Issue 4, 2014, Pages 642-653

The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae

Author keywords

Acetic acid tolerance; Cell to cell heterogeneity; Intraspecies diversity; Lignocellulose; Saccharomyces cerevisiae; Yeast

Indexed keywords

ACETIC ACID; ALCOHOL;

EID: 84902075335     PISSN: 15671356     EISSN: 15671364     Source Type: Journal    
DOI: 10.1111/1567-1364.12151     Document Type: Article
Times cited : (39)

References (59)
  • 1
    • 15244355831 scopus 로고    scopus 로고
    • Buffering capacity of whole corn mash alters concentrations of organic acids required to inhibit growth of Saccharomyces cerevisiae and ethanol production
    • Abbott DA & Ingledew WM (2004) Buffering capacity of whole corn mash alters concentrations of organic acids required to inhibit growth of Saccharomyces cerevisiae and ethanol production. Biotechnol Lett 26: 1313-1316.
    • (2004) Biotechnol Lett , vol.26 , pp. 1313-1316
    • Abbott, D.A.1    Ingledew, W.M.2
  • 2
    • 70350521215 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges
    • Abbott DA, Zelle RM, Pronk JT & van Maris AJ (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9: 1123-1136.
    • (2009) FEMS Yeast Res , vol.9 , pp. 1123-1136
    • Abbott, D.A.1    Zelle, R.M.2    Pronk, J.T.3    van Maris, A.J.4
  • 3
    • 60549114895 scopus 로고    scopus 로고
    • Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway
    • Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leao C, Rodrigues F & Ludovico P (2009) Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 9: 720-732.
    • (2009) Proteomics , vol.9 , pp. 720-732
    • Almeida, B.1    Ohlmeier, S.2    Almeida, A.J.3    Madeo, F.4    Leao, C.5    Rodrigues, F.6    Ludovico, P.7
  • 4
    • 73249135142 scopus 로고    scopus 로고
    • Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production
    • Argueso JL, Carazzolle MF, Mieczkowski PA et al. (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19: 2258-2270.
    • (2009) Genome Res , vol.19 , pp. 2258-2270
    • Argueso, J.L.1    Carazzolle, M.F.2    Mieczkowski, P.A.3
  • 5
    • 33747174575 scopus 로고    scopus 로고
    • Microbial cell individuality and the underlying sources of heterogeneity
    • Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4: 577-587.
    • (2006) Nat Rev Microbiol , vol.4 , pp. 577-587
    • Avery, S.V.1
  • 6
    • 64549126134 scopus 로고    scopus 로고
    • Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
    • Bellissimi E, van Dijken JP, Pronk JT & van Maris AJ (2009) Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 9: 358-364.
    • (2009) FEMS Yeast Res , vol.9 , pp. 358-364
    • Bellissimi, E.1    van Dijken, J.P.2    Pronk, J.T.3    van Maris, A.J.4
  • 7
    • 33846076717 scopus 로고    scopus 로고
    • Phenotypic heterogeneity can enhance rare-cell survival in 'stress-sensitive' yeast populations
    • Bishop AL, Rab FA, Sumner ER & Avery SV (2007) Phenotypic heterogeneity can enhance rare-cell survival in 'stress-sensitive' yeast populations. Mol Microbiol 63: 507-520.
    • (2007) Mol Microbiol , vol.63 , pp. 507-520
    • Bishop, A.L.1    Rab, F.A.2    Sumner, E.R.3    Avery, S.V.4
  • 8
    • 52649126887 scopus 로고    scopus 로고
    • Acidulants and low pH
    • Russel N & Gould G, eds) Kluwer Academic/Plenum Publishers, New York.
    • Booth IR & Statford N (2003) Acidulants and low pH. Food Preservatives (Russel N & Gould G, eds), pp. 25-48. Kluwer Academic/Plenum Publishers, New York.
    • (2003) Food Preservatives , pp. 25-48
    • Booth, I.R.1    Statford, N.2
  • 9
    • 4544380928 scopus 로고    scopus 로고
    • The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate
    • Brandberg T, Franzen CJ & Gustafsson L (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98: 122-125.
    • (2004) J Biosci Bioeng , vol.98 , pp. 122-125
    • Brandberg, T.1    Franzen, C.J.2    Gustafsson, L.3
  • 10
    • 34548257425 scopus 로고    scopus 로고
    • Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention
    • Brandberg T, Karimi K, Taherzadeh MJ, Franzen CJ & Gustafsson L (2007) Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention. Biotechnol Bioeng 98: 80-90.
    • (2007) Biotechnol Bioeng , vol.98 , pp. 80-90
    • Brandberg, T.1    Karimi, K.2    Taherzadeh, M.J.3    Franzen, C.J.4    Gustafsson, L.5
  • 11
    • 0031551022 scopus 로고    scopus 로고
    • Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae
    • Carmelo V, Santos H & Sa-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325: 63-70.
    • (1997) Biochim Biophys Acta , vol.1325 , pp. 63-70
    • Carmelo, V.1    Santos, H.2    Sa-Correia, I.3
  • 13
    • 0030001104 scopus 로고    scopus 로고
    • Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae
    • Casal M, Cardoso H & Leao C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142(Pt 6): 1385-1390.
    • (1996) Microbiology , vol.142 , Issue.PART 6 , pp. 1385-1390
    • Casal, M.1    Cardoso, H.2    Leao, C.3
  • 14
    • 0031912520 scopus 로고    scopus 로고
    • Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae
    • Casal M, Cardoso H & Leao C (1998) Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae. Appl Environ Microbiol 64: 665-668.
    • (1998) Appl Environ Microbiol , vol.64 , pp. 665-668
    • Casal, M.1    Cardoso, H.2    Leao, C.3
  • 15
    • 84863847262 scopus 로고    scopus 로고
    • Detoxification of lignocellulosic hydrolysates for improved bioethanol production
    • (Dos Santos Bernardes MA, ed.) InTech, Rijeka, Croatia.
    • Chandel AK, da Silva SS & Singh OV (2011) Detoxification of lignocellulosic hydrolysates for improved bioethanol production. Biofuel Production - Recent Developments and Prospects (Dos Santos Bernardes MA, ed.), pp. 225-246. InTech, Rijeka, Croatia.
    • (2011) Biofuel Production - Recent Developments and Prospects , pp. 225-246
    • Chandel, A.K.1    da Silva, S.S.2    Singh, O.V.3
  • 16
    • 77953120031 scopus 로고    scopus 로고
    • Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: comparative genotypic and phenotypic analysis
    • Csoma H, Zakany N, Capece A, Romano P & Sipiczki M (2010) Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: comparative genotypic and phenotypic analysis. Int J Food Microbiol 140: 239-248.
    • (2010) Int J Food Microbiol , vol.140 , pp. 239-248
    • Csoma, H.1    Zakany, N.2    Capece, A.3    Romano, P.4    Sipiczki, M.5
  • 17
    • 84879119602 scopus 로고    scopus 로고
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • Demeke MM, Dietz H, Li Y et al. (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6: 89.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 89
    • Demeke, M.M.1    Dietz, H.2    Li, Y.3
  • 18
    • 33645096818 scopus 로고    scopus 로고
    • Evidence for domesticated and wild populations of Saccharomyces cerevisiae
    • Fay JC & Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1: 66-71.
    • (2005) PLoS Genet , vol.1 , pp. 66-71
    • Fay, J.C.1    Benavides, J.A.2
  • 19
    • 25844432253 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
    • Fernandes AR, Mira NP, Vargas RC, Canelhas I & Sa-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337: 95-103.
    • (2005) Biochem Biophys Res Commun , vol.337 , pp. 95-103
    • Fernandes, A.R.1    Mira, N.P.2    Vargas, R.C.3    Canelhas, I.4    Sa-Correia, I.5
  • 20
    • 1542359000 scopus 로고    scopus 로고
    • Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains
    • Garay-Arroyo A, Covarrubias AA, Clark I, Nino I, Gosset G & Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63: 734-741.
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 734-741
    • Garay-Arroyo, A.1    Covarrubias, A.A.2    Clark, I.3    Nino, I.4    Gosset, G.5    Martinez, A.6
  • 22
    • 84858112911 scopus 로고    scopus 로고
    • Molecular mechanisms of programmed cell death induced by acetic acid in Saccharomyces cerevisiae
    • Vol. 22 (Liu ZL, ed.) Springer, Berlin, Heidelberg.
    • Giannattasio S, Guaragnella N & Marra E (2012) Molecular mechanisms of programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Microbial Stress Tolerance for Biofuels, Microbiology Monographs, Vol. 22 (Liu ZL, ed.), pp. 57-75. Springer, Berlin, Heidelberg.
    • (2012) Microbial Stress Tolerance for Biofuels, Microbiology Monographs , pp. 57-75
    • Giannattasio, S.1    Guaragnella, N.2    Marra, E.3
  • 23
    • 84875904201 scopus 로고    scopus 로고
    • Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid
    • Giannattasio S, Guaragnella N, Zdralevic M & Marra E (2013) Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 4: 33.
    • (2013) Front Microbiol , vol.4 , pp. 33
    • Giannattasio, S.1    Guaragnella, N.2    Zdralevic, M.3    Marra, E.4
  • 24
    • 33646438534 scopus 로고    scopus 로고
    • Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash
    • Graves T, Narendranath NV, Dawson K & Power R (2006) Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33: 469-474.
    • (2006) J Ind Microbiol Biotechnol , vol.33 , pp. 469-474
    • Graves, T.1    Narendranath, N.V.2    Dawson, K.3    Power, R.4
  • 25
    • 84868139340 scopus 로고    scopus 로고
    • Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis
    • Haitani Y, Tanaka K, Yamamoto M, Nakamura T, Ando A, Ogawa J & Shima J (2012) Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. J Biosci Bioeng 114: 648-651.
    • (2012) J Biosci Bioeng , vol.114 , pp. 648-651
    • Haitani, Y.1    Tanaka, K.2    Yamamoto, M.3    Nakamura, T.4    Ando, A.5    Ogawa, J.6    Shima, J.7
  • 26
    • 0032766243 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism
    • Holyoak CD, Bracey D, Piper PW, Kuchler K & Coote PJ (1999) The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181: 4644-4652.
    • (1999) J Bacteriol , vol.181 , pp. 4644-4652
    • Holyoak, C.D.1    Bracey, D.2    Piper, P.W.3    Kuchler, K.4    Coote, P.J.5
  • 27
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong KK & Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69: 2671-2690.
    • (2012) Cell Mol Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 28
    • 84862291582 scopus 로고    scopus 로고
    • Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion
    • Hou X & Yao S (2012) Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Appl Microbiol Biotechnol 93: 2591-2601.
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 2591-2601
    • Hou, X.1    Yao, S.2
  • 29
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • Kawahata M, Masaki K, Fujii T & Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6: 924-936.
    • (2006) FEMS Yeast Res , vol.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3    Iefuji, H.4
  • 30
    • 55449107183 scopus 로고    scopus 로고
    • Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates
    • Kvitek DJ, Will JL & Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4: e1000223.
    • (2008) PLoS Genet , vol.4
    • Kvitek, D.J.1    Will, J.L.2    Gasch, A.P.3
  • 31
    • 0032948889 scopus 로고    scopus 로고
    • Weak-acid preservatives: modelling microbial inhibition and response
    • Lambert RJ & Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86: 157-164.
    • (1999) J Appl Microbiol , vol.86 , pp. 157-164
    • Lambert, R.J.1    Stratford, M.2
  • 32
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • Li BZ & Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86: 1915-1924.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1915-1924
    • Li, B.Z.1    Yuan, Y.J.2
  • 33
    • 84883336761 scopus 로고    scopus 로고
    • Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress
    • Lindberg L, Santos AX, Riezman H, Olsson L & Bettiga M (2013) Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS One 8: e73936.
    • (2013) PLoS One , vol.8
    • Lindberg, L.1    Santos, A.X.2    Riezman, H.3    Olsson, L.4    Bettiga, M.5
  • 34
    • 0026653581 scopus 로고
    • Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant
    • Linden T, Peetre J & Hahn-Hagerdal B (1992) Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl Environ Microbiol 58: 1661-1669.
    • (1992) Appl Environ Microbiol , vol.58 , pp. 1661-1669
    • Linden, T.1    Peetre, J.2    Hahn-Hagerdal, B.3
  • 35
    • 62649089109 scopus 로고    scopus 로고
    • Population genomics of domestic and wild yeasts
    • Liti G, Carter DM, Moses AM et al. (2009) Population genomics of domestic and wild yeasts. Nature 458: 337-341.
    • (2009) Nature , vol.458 , pp. 337-341
    • Liti, G.1    Carter, D.M.2    Moses, A.M.3
  • 36
    • 77958169154 scopus 로고    scopus 로고
    • Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
    • Mira NP, Becker JD & Sa-Correia I (2010a) Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 14: 587-601.
    • (2010) OMICS , vol.14 , pp. 587-601
    • Mira, N.P.1    Becker, J.D.2    Sa-Correia, I.3
  • 37
    • 77958162502 scopus 로고    scopus 로고
    • Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view
    • Mira NP, Teixeira MC & Sa-Correia I (2010b) Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14: 525-540.
    • (2010) OMICS , vol.14 , pp. 525-540
    • Mira, N.P.1    Teixeira, M.C.2    Sa-Correia, I.3
  • 38
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • Mira NP, Palma M, Guerreiro JF & Sa-Correia I (2010c) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9: 79.
    • (2010) Microb Cell Fact , vol.9 , pp. 79
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sa-Correia, I.4
  • 39
    • 34548775911 scopus 로고    scopus 로고
    • Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
    • Mollapour M & Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27: 6446-6456.
    • (2007) Mol Cell Biol , vol.27 , pp. 6446-6456
    • Mollapour, M.1    Piper, P.W.2
  • 40
    • 0035046617 scopus 로고    scopus 로고
    • Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium
    • Narendranath NV, Thomas KC & Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26: 171-177.
    • (2001) J Ind Microbiol Biotechnol , vol.26 , pp. 171-177
    • Narendranath, N.V.1    Thomas, K.C.2    Ingledew, W.M.3
  • 41
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72: 379-412.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 42
    • 0343183325 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification
    • Palmqvist E & Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74: 17-24.
    • (2000) Bioresour Technol , vol.74 , pp. 17-24
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 43
    • 0033526123 scopus 로고    scopus 로고
    • Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts
    • Palmqvist E, Grage H, Meinander NQ & Hahn-Hagerdal B (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63: 46-55.
    • (1999) Biotechnol Bioeng , vol.63 , pp. 46-55
    • Palmqvist, E.1    Grage, H.2    Meinander, N.Q.3    Hahn-Hagerdal, B.4
  • 44
    • 0025608322 scopus 로고
    • Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid
    • Pampulha ME & Loureiro-Dias MC (1990) Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol 34: 375-380.
    • (1990) Appl Microbiol Biotechnol , vol.34 , pp. 375-380
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 45
    • 0033982072 scopus 로고    scopus 로고
    • Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae
    • Pampulha ME & Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184: 69-72.
    • (2000) FEMS Microbiol Lett , vol.184 , pp. 69-72
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 46
    • 0034769551 scopus 로고    scopus 로고
    • Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives
    • Piper P, Calderon CO, Hatzixanthis K & Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147: 2635-2642.
    • (2001) Microbiology , vol.147 , pp. 2635-2642
    • Piper, P.1    Calderon, C.O.2    Hatzixanthis, K.3    Mollapour, M.4
  • 47
    • 2942718723 scopus 로고    scopus 로고
    • Control of stochasticity in eukaryotic gene expression
    • Raser JM & O'Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304: 1811-1814.
    • (2004) Science , vol.304 , pp. 1811-1814
    • Raser, J.M.1    O'Shea, E.K.2
  • 49
    • 62649126517 scopus 로고    scopus 로고
    • Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae
    • Schacherer J, Shapiro JA, Ruderfer DM & Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458: 342-345.
    • (2009) Nature , vol.458 , pp. 342-345
    • Schacherer, J.1    Shapiro, J.A.2    Ruderfer, D.M.3    Kruglyak, L.4
  • 51
    • 0034535701 scopus 로고    scopus 로고
    • Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae
    • Tenreiro S, Rosa PC, Viegas CA & Sa-Correia I (2000) Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16: 1469-1481.
    • (2000) Yeast , vol.16 , pp. 1469-1481
    • Tenreiro, S.1    Rosa, P.C.2    Viegas, C.A.3    Sa-Correia, I.4
  • 52
    • 0036086750 scopus 로고    scopus 로고
    • AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae
    • Tenreiro S, Nunes PA, Viegas CA, Neves MS, Teixeira MC, Cabral MG & Sa-Correia I (2002) AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun 292: 741-748.
    • (2002) Biochem Biophys Res Commun , vol.292 , pp. 741-748
    • Tenreiro, S.1    Nunes, P.A.2    Viegas, C.A.3    Neves, M.S.4    Teixeira, M.C.5    Cabral, M.G.6    Sa-Correia, I.7
  • 53
    • 0036209598 scopus 로고    scopus 로고
    • Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids
    • Thomas KC, Hynes SH & Ingledew WM (2002) Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl Environ Microbiol 68: 1616-1623.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 1616-1623
    • Thomas, K.C.1    Hynes, S.H.2    Ingledew, W.M.3
  • 54
    • 84870830687 scopus 로고    scopus 로고
    • Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae
    • Ullah A, Orij R, Brul S & Smits GJ (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78: 8377-8387.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8377-8387
    • Ullah, A.1    Orij, R.2    Brul, S.3    Smits, G.J.4
  • 55
    • 0034214335 scopus 로고    scopus 로고
    • An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
    • van Dijken JP, Bauer J, Brambilla L et al. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26: 706-714.
    • (2000) Enzyme Microb Technol , vol.26 , pp. 706-714
    • van Dijken, J.P.1    Bauer, J.2    Brambilla, L.3
  • 56
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA & Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501-517.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 57
    • 0031938503 scopus 로고    scopus 로고
    • The H(+)-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability
    • Viegas CA, Almeida PF, Cavaco M & Sa-Correia I (1998) The H(+)-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl Environ Microbiol 64: 779-783.
    • (1998) Appl Environ Microbiol , vol.64 , pp. 779-783
    • Viegas, C.A.1    Almeida, P.F.2    Cavaco, M.3    Sa-Correia, I.4
  • 58
    • 84868206362 scopus 로고    scopus 로고
    • Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity
    • Wang QM, Liu WQ, Liti G, Wang SA & Bai FY (2012) Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol 21: 5404-5417.
    • (2012) Mol Ecol , vol.21 , pp. 5404-5417
    • Wang, Q.M.1    Liu, W.Q.2    Liti, G.3    Wang, S.A.4    Bai, F.Y.5
  • 59
    • 84871566456 scopus 로고    scopus 로고
    • Inhibitory compounds in lignocellulosic biomass hydrolysates during hydrolysate fermentation processes
    • Zha Y, Muilwijk B, Coulier L & Punt PJ (2012) Inhibitory compounds in lignocellulosic biomass hydrolysates during hydrolysate fermentation processes. J Bioprocess Biotech 2: 112.
    • (2012) J Bioprocess Biotech , vol.2 , pp. 112
    • Zha, Y.1    Muilwijk, B.2    Coulier, L.3    Punt, P.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.