메뉴 건너뛰기




Volumn 428, Issue 12, 2016, Pages 2623-2635

Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing

Author keywords

Abbreviations poll II RNA polymerase II; AGO Argonaut; CTD C terminal domain; FACT facilitates chromatin transcription; NET seq native elongating transcript sequencing; PTEF b positive transcription elongation factor b; RBPs RNA binding proteins; TEC transcription elongation complex

Indexed keywords

ELONGATION FACTOR; HISTONE; MESSENGER RNA; RNA POLYMERASE II; CHROMATIN; RNA PRECURSOR;

EID: 84964597654     PISSN: 00222836     EISSN: 10898638     Source Type: Journal    
DOI: 10.1016/j.jmb.2016.04.017     Document Type: Review
Times cited : (202)

References (164)
  • 1
    • 84894318075 scopus 로고    scopus 로고
    • Coupling mRNA processing with transcription in time and space
    • D.L. Bentley Coupling mRNA processing with transcription in time and space Nat. Rev. Genet. 15 2014 163 175
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 163-175
    • Bentley, D.L.1
  • 3
    • 0024021747 scopus 로고
    • Splice site selection, rate of splicing, and alternative splicing on nascent transcripts
    • A.L. Beyer, and Y.N. Osheim Splice site selection, rate of splicing, and alternative splicing on nascent transcripts Genes Dev. 2 1988 754 765
    • (1988) Genes Dev. , vol.2 , pp. 754-765
    • Beyer, A.L.1    Osheim, Y.N.2
  • 4
    • 0035912782 scopus 로고    scopus 로고
    • Assembly and transport of a premessenger RNP particle
    • B. Daneholt Assembly and transport of a premessenger RNP particle Proc. Natl. Acad. Sci. U. S. A. 98 2001 7012 7017
    • (2001) Proc. Natl. Acad. Sci. U. S. A. , vol.98 , pp. 7012-7017
    • Daneholt, B.1
  • 5
    • 15644372864 scopus 로고    scopus 로고
    • 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II
    • S. McCracken, N. Fong, E. Rosonina, K. Yankulov, G. Brothers, D. Siderovski, and et al. 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II Genes Dev. 11 1997 3306 3318
    • (1997) Genes Dev. , vol.11 , pp. 3306-3318
    • McCracken, S.1    Fong, N.2    Rosonina, E.3    Yankulov, K.4    Brothers, G.5    Siderovski, D.6
  • 6
    • 0031037856 scopus 로고    scopus 로고
    • The C-terminal domain of RNA polymerase II couples mRNA processing to transcription
    • S. McCracken, N. Fong, K. Yankulov, S. Ballantyne, G. Pan, J. Greenblatt, and et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription Nature. 385 1997 357 361
    • (1997) Nature. , vol.385 , pp. 357-361
    • McCracken, S.1    Fong, N.2    Yankulov, K.3    Ballantyne, S.4    Pan, G.5    Greenblatt, J.6
  • 7
    • 0033563098 scopus 로고    scopus 로고
    • Phosphorylated RNA polymerase II stimulates pre-mRNA splicing
    • Y. Hirose, R. Tacke, and J.L. Manley Phosphorylated RNA polymerase II stimulates pre-mRNA splicing Genes Dev. 13 1999 1234 1239
    • (1999) Genes Dev. , vol.13 , pp. 1234-1239
    • Hirose, Y.1    Tacke, R.2    Manley, J.L.3
  • 8
    • 0033153543 scopus 로고    scopus 로고
    • RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo
    • T. Misteli, and D.L. Spector RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo Mol. Cell. 3 1999 697 705
    • (1999) Mol. Cell. , vol.3 , pp. 697-705
    • Misteli, T.1    Spector, D.L.2
  • 9
    • 84923780299 scopus 로고    scopus 로고
    • Getting up to speed with transcription elongation by RNA polymerase II
    • I. Jonkers, and J.T. Lis Getting up to speed with transcription elongation by RNA polymerase II Nat. Rev. Mol. Cell Biol. 16 2015 167 177
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 167-177
    • Jonkers, I.1    Lis, J.T.2
  • 10
    • 78650566210 scopus 로고    scopus 로고
    • Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation
    • S. Nechaev, and K. Adelman Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation Biochim. Biophys. Acta. 1809 2011 34 45
    • (2011) Biochim. Biophys. Acta. , vol.1809 , pp. 34-45
    • Nechaev, S.1    Adelman, K.2
  • 11
    • 84876842759 scopus 로고    scopus 로고
    • Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells
    • C.G. Danko, N. Hah, X. Luo, A.L. Martins, L. Core, J.T. Lis, and et al. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells Mol. Cell. 50 2013 212 222
    • (2013) Mol. Cell. , vol.50 , pp. 212-222
    • Danko, C.G.1    Hah, N.2    Luo, X.3    Martins, A.L.4    Core, L.5    Lis, J.T.6
  • 12
    • 84861857476 scopus 로고    scopus 로고
    • RNA polymerase II elongation control
    • Q. Zhou, T. Li, and D.H. Price RNA polymerase II elongation control Annu. Rev. Biochem. 81 2012 119 143
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 119-143
    • Zhou, Q.1    Li, T.2    Price, D.H.3
  • 14
    • 84865419994 scopus 로고    scopus 로고
    • The super elongation complex (SEC) family in transcriptional control
    • Z. Luo, C. Lin, and A. Shilatifard The super elongation complex (SEC) family in transcriptional control Nat. Rev. Mol. Cell Biol. 13 2012 543 547
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 543-547
    • Luo, Z.1    Lin, C.2    Shilatifard, A.3
  • 16
    • 84888203152 scopus 로고    scopus 로고
    • Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals
    • T. Henriques, D.A. Gilchrist, S. Nechaev, M. Bern, G.W. Muse, A. Burkholder, and et al. Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals Mol. Cell. 52 2013 517 528
    • (2013) Mol. Cell. , vol.52 , pp. 517-528
    • Henriques, T.1    Gilchrist, D.A.2    Nechaev, S.3    Bern, M.4    Muse, G.W.5    Burkholder, A.6
  • 17
    • 84899796207 scopus 로고    scopus 로고
    • Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons
    • I. Jonkers, H. Kwak, and J.T. Lis Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons Elife. 3 2014 e02407
    • (2014) Elife. , vol.3
    • Jonkers, I.1    Kwak, H.2    Lis, J.T.3
  • 18
    • 0033986936 scopus 로고    scopus 로고
    • Transcription attenuation: Once viewed as a novel regulatory strategy
    • C. Yanofsky Transcription attenuation: once viewed as a novel regulatory strategy J. Bacteriol. 182 2000 1 8
    • (2000) J. Bacteriol. , vol.182 , pp. 1-8
    • Yanofsky, C.1
  • 19
    • 84901676291 scopus 로고    scopus 로고
    • A pause sequence enriched at translation start sites drives transcription dynamics in vivo
    • M.H. Larson, R.A. Mooney, J.M. Peters, T. Windgassen, D. Nayak, C.A. Gross, and et al. A pause sequence enriched at translation start sites drives transcription dynamics in vivo Science. 344 2014 1042 1047
    • (2014) Science. , vol.344 , pp. 1042-1047
    • Larson, M.H.1    Mooney, R.A.2    Peters, J.M.3    Windgassen, T.4    Nayak, D.5    Gross, C.A.6
  • 21
    • 84928397692 scopus 로고    scopus 로고
    • Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution
    • A. Mayer, J. di Iulio, S. Maleri, U. Eser, J. Vierstra, A. Reynolds, and et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution Cell. 161 2015 541 554
    • (2015) Cell. , vol.161 , pp. 541-554
    • Mayer, A.1    Di Iulio, J.2    Maleri, S.3    Eser, U.4    Vierstra, J.5    Reynolds, A.6
  • 22
    • 84928386012 scopus 로고    scopus 로고
    • Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing
    • T. Nojima, T. Gomes, A.R. Grosso, H. Kimura, M.J. Dye, S. Dhir, and et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing Cell. 161 2015 526 540
    • (2015) Cell. , vol.161 , pp. 526-540
    • Nojima, T.1    Gomes, T.2    Grosso, A.R.3    Kimura, H.4    Dye, M.J.5    Dhir, S.6
  • 23
    • 78649289872 scopus 로고    scopus 로고
    • Global analysis of nascent RNA reveals transcriptional pausing in terminal exons
    • F. Carrillo Oesterreich, S. Preibisch, and K.M. Neugebauer Global analysis of nascent RNA reveals transcriptional pausing in terminal exons Mol. Cell. 40 2010 571 581
    • (2010) Mol. Cell. , vol.40 , pp. 571-581
    • Carrillo Oesterreich, F.1    Preibisch, S.2    Neugebauer, K.M.3
  • 25
    • 56549101959 scopus 로고    scopus 로고
    • Alternative isoform regulation in human tissue transcriptomes
    • E.T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, and et al. Alternative isoform regulation in human tissue transcriptomes Nature. 456 2008 470 476
    • (2008) Nature. , vol.456 , pp. 470-476
    • Wang, E.T.1    Sandberg, R.2    Luo, S.3    Khrebtukova, I.4    Zhang, L.5    Mayr, C.6
  • 26
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Q. Pan, O. Shai, L.J. Lee, B.J. Frey, and B.J. Blencowe Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing Nat. Genet. 40 2008 1413 1415
    • (2008) Nat. Genet. , vol.40 , pp. 1413-1415
    • Pan, Q.1    Shai, O.2    Lee, L.J.3    Frey, B.J.4    Blencowe, B.J.5
  • 27
    • 84974615755 scopus 로고    scopus 로고
    • Defective control of pre-messenger RNA splicing in human disease
    • B. Chabot, and L. Shkreta Defective control of pre-messenger RNA splicing in human disease J. Cell Biol. 212 2016 13 27
    • (2016) J. Cell Biol. , vol.212 , pp. 13-27
    • Chabot, B.1    Shkreta, L.2
  • 28
    • 70349125488 scopus 로고    scopus 로고
    • Co-transcriptional splicing of constitutive and alternative exons
    • A. Pandya-Jones, and D.L. Black Co-transcriptional splicing of constitutive and alternative exons RNA 15 2009 1896 1908
    • (2009) RNA , vol.15 , pp. 1896-1908
    • Pandya-Jones, A.1    Black, D.L.2
  • 29
    • 84930716439 scopus 로고    scopus 로고
    • Regulation of alternative splicing through coupling with transcription and chromatin structure
    • S. Naftelberg, I.E. Schor, G. Ast, and A.R. Kornblihtt Regulation of alternative splicing through coupling with transcription and chromatin structure Annu. Rev. Biochem. 84 2015 165 198
    • (2015) Annu. Rev. Biochem. , vol.84 , pp. 165-198
    • Naftelberg, S.1    Schor, I.E.2    Ast, G.3    Kornblihtt, A.R.4
  • 31
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • S. Buratowski Progression through the RNA polymerase II CTD cycle Mol. Cell. 36 2009 541 546
    • (2009) Mol. Cell. , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 32
    • 0034307008 scopus 로고    scopus 로고
    • Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription
    • P. Komarnitsky, E.J. Cho, and S. Buratowski Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription Genes Dev. 14 2000 2452 2460
    • (2000) Genes Dev. , vol.14 , pp. 2452-2460
    • Komarnitsky, P.1    Cho, E.J.2    Buratowski, S.3
  • 33
    • 0034307172 scopus 로고    scopus 로고
    • Dynamic association of capping enzymes with transcribing RNA polymerase II
    • S.C. Schroeder, B. Schwer, S. Shuman, and D. Bentley Dynamic association of capping enzymes with transcribing RNA polymerase II Genes Dev. 14 2000 2435 2440
    • (2000) Genes Dev. , vol.14 , pp. 2435-2440
    • Schroeder, S.C.1    Schwer, B.2    Shuman, S.3    Bentley, D.4
  • 34
    • 79960455840 scopus 로고    scopus 로고
    • Deciphering the RNA polymerase II CTD code in fission yeast
    • B. Schwer, and S. Shuman Deciphering the RNA polymerase II CTD code in fission yeast Mol. Cell. 43 2011 311 318
    • (2011) Mol. Cell. , vol.43 , pp. 311-318
    • Schwer, B.1    Shuman, S.2
  • 36
    • 1542334001 scopus 로고    scopus 로고
    • Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing
    • S.H. Ahn, M. Kim, and S. Buratowski Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing Mol. Cell. 13 2004 67 76
    • (2004) Mol. Cell. , vol.13 , pp. 67-76
    • Ahn, S.H.1    Kim, M.2    Buratowski, S.3
  • 37
    • 79955691547 scopus 로고    scopus 로고
    • The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex
    • C.J. David, A.R. Boyne, S.R. Millhouse, and J.L. Manley The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex Genes Dev. 25 2011 972 983
    • (2011) Genes Dev. , vol.25 , pp. 972-983
    • David, C.J.1    Boyne, A.R.2    Millhouse, S.R.3    Manley, J.L.4
  • 38
    • 84873676209 scopus 로고    scopus 로고
    • CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo
    • B. Gu, D. Eick, and O. Bensaude CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo Nucleic Acids Res. 41 2013 1591 1603
    • (2013) Nucleic Acids Res. , vol.41 , pp. 1591-1603
    • Gu, B.1    Eick, D.2    Bensaude, O.3
  • 39
    • 84937125225 scopus 로고    scopus 로고
    • FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP
    • Y. Yu, and R. Reed FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP Proc. Natl. Acad. Sci. U. S. A. 112 2015 8608 8613
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 8608-8613
    • Yu, Y.1    Reed, R.2
  • 40
    • 34250363024 scopus 로고    scopus 로고
    • SR proteins function in coupling RNAP II transcription to pre-mRNA splicing
    • R. Das, J. Yu, Z. Zhang, M.P. Gygi, A.R. Krainer, S.P. Gygi, and R. Reed SR proteins function in coupling RNAP II transcription to pre-mRNA splicing Mol. Cell. 26 2007 867 881
    • (2007) Mol. Cell. , vol.26 , pp. 867-881
    • Das, R.1    Yu, J.2    Zhang, Z.3    Gygi, M.P.4    Krainer, A.R.5    Gygi, S.P.6    Reed, R.7
  • 41
    • 33750596100 scopus 로고    scopus 로고
    • RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20
    • M. de la Mata, and A.R. Kornblihtt RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20 Nat. Struct. Mol. Biol. 13 2006 973 980
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 973-980
    • De La Mata, M.1    Kornblihtt, A.R.2
  • 42
    • 84949009421 scopus 로고    scopus 로고
    • Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD
    • M. Koga, M. Hayashi, and D. Kaida Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD Nucleic Acids Res. 43 2015 8258 8267
    • (2015) Nucleic Acids Res. , vol.43 , pp. 8258-8267
    • Koga, M.1    Hayashi, M.2    Kaida, D.3
  • 43
    • 84866126892 scopus 로고    scopus 로고
    • Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain
    • B. Rogelj, L.E. Easton, G.K. Bogu, L.W. Stanton, G. Rot, T. Curk, and et al. Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain Sci. Rep. 2 2012 603
    • (2012) Sci. Rep. , vol.2 , pp. 603
    • Rogelj, B.1    Easton, L.E.2    Bogu, G.K.3    Stanton, L.W.4    Rot, G.5    Curk, T.6
  • 45
    • 84862777556 scopus 로고    scopus 로고
    • Mediator complex regulates alternative mRNA processing via the MED23 subunit
    • Y. Huang, W. Li, X. Yao, Q.J. Lin, J.W. Yin, Y. Liang, and et al. Mediator complex regulates alternative mRNA processing via the MED23 subunit Mol. Cell. 45 2012 459 469
    • (2012) Mol. Cell. , vol.45 , pp. 459-469
    • Huang, Y.1    Li, W.2    Yao, X.3    Lin, Q.J.4    Yin, J.W.5    Liang, Y.6
  • 46
    • 0030761276 scopus 로고    scopus 로고
    • Functional association between promoter structure and transcript alternative splicing
    • P. Cramer, C.G. Pesce, F.E. Baralle, and A.R. Kornblihtt Functional association between promoter structure and transcript alternative splicing Proc. Natl. Acad. Sci. U. S. A. 94 1997 11456 11460
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 11456-11460
    • Cramer, P.1    Pesce, C.G.2    Baralle, F.E.3    Kornblihtt, A.R.4
  • 49
    • 0041305816 scopus 로고    scopus 로고
    • Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae
    • K.J. Howe, C.M. Kane, and M. Ares Jr. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae RNA. 9 2003 993 1006
    • (2003) RNA. , vol.9 , pp. 993-1006
    • Howe, K.J.1    Kane, C.M.2    Ares, M.3
  • 50
    • 0023185274 scopus 로고
    • Precision and orderliness in splicing
    • M. Aebi, and C. Weissman Precision and orderliness in splicing Trends Genet. 3 1987 102 107
    • (1987) Trends Genet. , vol.3 , pp. 102-107
    • Aebi, M.1    Weissman, C.2
  • 51
    • 84991566019 scopus 로고    scopus 로고
    • 4sUDRB-seq: Measuring genomewide transcriptional elongation rates and initiation frequencies within cells
    • G. Fuchs, Y. Voichek, S. Benjamin, S. Gilad, I. Amit, and M. Oren 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells Genome Biol. 15 2014 R69
    • (2014) Genome Biol. , vol.15 , pp. R69
    • Fuchs, G.1    Voichek, Y.2    Benjamin, S.3    Gilad, S.4    Amit, I.5    Oren, M.6
  • 52
    • 63149192174 scopus 로고    scopus 로고
    • Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing
    • I.E. Schor, N. Rascovan, F. Pelisch, M. Allo, and A.R. Kornblihtt Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing Proc. Natl. Acad. Sci. U. S. A. 106 2009 4325 4330
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 4325-4330
    • Schor, I.E.1    Rascovan, N.2    Pelisch, F.3    Allo, M.4    Kornblihtt, A.R.5
  • 53
    • 84882895575 scopus 로고    scopus 로고
    • From structure to systems: High-resolution, quantitative genetic analysis of RNA polymerase II
    • H. Braberg, H. Jin, E.A. Moehle, Y.A. Chan, S. Wang, M. Shales, and et al. From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II Cell. 154 2013 775 788
    • (2013) Cell. , vol.154 , pp. 775-788
    • Braberg, H.1    Jin, H.2    Moehle, E.A.3    Chan, Y.A.4    Wang, S.5    Shales, M.6
  • 56
    • 70350754211 scopus 로고    scopus 로고
    • Rates of in situ transcription and splicing in large human genes
    • J. Singh, and R.A. Padgett Rates of in situ transcription and splicing in large human genes Nat. Struct. Mol. Biol. 16 2009 1128 1133
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1128-1133
    • Singh, J.1    Padgett, R.A.2
  • 57
    • 84888991588 scopus 로고    scopus 로고
    • The RNA polymerase II carboxy-terminal domain (CTD) code
    • D. Eick, and M. Geyer The RNA polymerase II carboxy-terminal domain (CTD) code Chem. Rev. 113 2013 8456 8490
    • (2013) Chem. Rev. , vol.113 , pp. 8456-8490
    • Eick, D.1    Geyer, M.2
  • 59
    • 78751659330 scopus 로고    scopus 로고
    • Nascent transcript sequencing visualizes transcription at nucleotide resolution
    • L.S. Churchman, and J.S. Weissman Nascent transcript sequencing visualizes transcription at nucleotide resolution Nature. 469 2011 368 373
    • (2011) Nature. , vol.469 , pp. 368-373
    • Churchman, L.S.1    Weissman, J.S.2
  • 60
    • 77950870601 scopus 로고    scopus 로고
    • Exon definition complexes contain the Tri-snRNP and can be directly converted into B-like precatalytic splicing complexes
    • M. Schneider, C.L. Will, M. Anokhina, J. Tazi, H. Urlaub, and R. Lührmann Exon definition complexes contain the Tri-snRNP and can be directly converted into B-like precatalytic splicing complexes Mol. Cell. 38 2010 223 235
    • (2010) Mol. Cell. , vol.38 , pp. 223-235
    • Schneider, M.1    Will, C.L.2    Anokhina, M.3    Tazi, J.4    Urlaub, H.5    Lührmann, R.6
  • 61
    • 9644307897 scopus 로고    scopus 로고
    • Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II
    • A. Ujvari, and D.S. Luse Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II J. Biol. Chem. 279 2004 49,773 49,779
    • (2004) J. Biol. Chem. , vol.279 , pp. 49773-49779
    • Ujvari, A.1    Luse, D.S.2
  • 62
    • 12244297083 scopus 로고    scopus 로고
    • The distribution of RNA polymerase II largest subunit (RPB1) in the Xenopus germinal vesicle
    • O. Doyle, J.L. Corden, C. Murphy, and J.G. Gall The distribution of RNA polymerase II largest subunit (RPB1) in the Xenopus germinal vesicle J. Struct. Biol. 140 2002 154 166
    • (2002) J. Struct. Biol. , vol.140 , pp. 154-166
    • Doyle, O.1    Corden, J.L.2    Murphy, C.3    Gall, J.G.4
  • 63
    • 84896727449 scopus 로고    scopus 로고
    • A splicing-dependent transcriptional checkpoint associated with prespliceosome formation
    • K.T. Chathoth, J.D. Barrass, S. Webb, and J.D. Beggs A splicing-dependent transcriptional checkpoint associated with prespliceosome formation Mol. Cell. 53 2014 779 790
    • (2014) Mol. Cell. , vol.53 , pp. 779-790
    • Chathoth, K.T.1    Barrass, J.D.2    Webb, S.3    Beggs, J.D.4
  • 64
    • 84861905610 scopus 로고    scopus 로고
    • Co-transcriptional degradation of aberrant pre-mRNA by Xrn2
    • L. Davidson, A. Kerr, and S. West Co-transcriptional degradation of aberrant pre-mRNA by Xrn2 EMBO J. 31 2012 2566 2578
    • (2012) EMBO J. , vol.31 , pp. 2566-2578
    • Davidson, L.1    Kerr, A.2    West, S.3
  • 65
    • 0035924345 scopus 로고    scopus 로고
    • Stimulatory effect of splicing factors on transcriptional elongation
    • Y. Fong, and Q. Zhou Stimulatory effect of splicing factors on transcriptional elongation Nature. 414 2001 929 932
    • (2001) Nature. , vol.414 , pp. 929-932
    • Fong, Y.1    Zhou, Q.2
  • 67
    • 18844398607 scopus 로고    scopus 로고
    • A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat
    • V. Bres, N. Gomes, L. Pickle, and K.A. Jones A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat Genes Dev. 19 2005 1211 1226
    • (2005) Genes Dev. , vol.19 , pp. 1211-1226
    • Bres, V.1    Gomes, N.2    Pickle, L.3    Jones, K.A.4
  • 68
    • 84896786505 scopus 로고    scopus 로고
    • Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase
    • C.M. Weber, S. Ramachandran, and S. Henikoff Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase Mol. Cell. 53 2014 819 830
    • (2014) Mol. Cell. , vol.53 , pp. 819-830
    • Weber, C.M.1    Ramachandran, S.2    Henikoff, S.3
  • 70
    • 84862673628 scopus 로고    scopus 로고
    • RNA polymerase backtracking in gene regulation and genome instability
    • E. Nudler RNA polymerase backtracking in gene regulation and genome instability Cell. 149 2012 1438 1445
    • (2012) Cell. , vol.149 , pp. 1438-1445
    • Nudler, E.1
  • 72
    • 79953228899 scopus 로고    scopus 로고
    • Efficient and rapid nucleosome traversal by RNA polymerase II depends on a combination of transcript elongation factors
    • D.S. Luse, L.C. Spangler, and A. Ujvari Efficient and rapid nucleosome traversal by RNA polymerase II depends on a combination of transcript elongation factors J. Biol. Chem. 286 2011 6040 6048
    • (2011) J. Biol. Chem. , vol.286 , pp. 6040-6048
    • Luse, D.S.1    Spangler, L.C.2    Ujvari, A.3
  • 73
    • 0026648570 scopus 로고
    • The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′-5′ direction in the presence of elongation factor SII
    • M.G. Izban, and D.S. Luse The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′-5′ direction in the presence of elongation factor SII Genes Dev. 6 1992 1342 1356
    • (1992) Genes Dev. , vol.6 , pp. 1342-1356
    • Izban, M.G.1    Luse, D.S.2
  • 74
    • 79952440464 scopus 로고    scopus 로고
    • Structural basis of RNA polymerase II backtracking, arrest and reactivation
    • A.C. Cheung, and P. Cramer Structural basis of RNA polymerase II backtracking, arrest and reactivation Nature. 471 2011 249 253
    • (2011) Nature. , vol.471 , pp. 249-253
    • Cheung, A.C.1    Cramer, P.2
  • 76
    • 84899867364 scopus 로고    scopus 로고
    • Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms
    • V. Schweikhard, C. Meng, K. Murakami, C.D. Kaplan, R.D. Kornberg, and S.M. Block Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms Proc. Natl. Acad. Sci. U. S. A. 111 2014 6642 6647
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 6642-6647
    • Schweikhard, V.1    Meng, C.2    Murakami, K.3    Kaplan, C.D.4    Kornberg, R.D.5    Block, S.M.6
  • 78
    • 84862909057 scopus 로고    scopus 로고
    • Functional association of Gdown1 with RNA polymerase II poised on human genes
    • B. Cheng, T. Li, P.B. Rahl, T.E. Adamson, N.B. Loudas, J. Guo, and et al. Functional association of Gdown1 with RNA polymerase II poised on human genes Mol. Cell. 45 2012 38 50
    • (2012) Mol. Cell. , vol.45 , pp. 38-50
    • Cheng, B.1    Li, T.2    Rahl, P.B.3    Adamson, T.E.4    Loudas, N.B.5    Guo, J.6
  • 79
    • 55449110096 scopus 로고    scopus 로고
    • Analysis of a splice Array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing
    • Y. Xiao, Y.H. Yang, T.A. Burckin, L. Shiue, G.A. Hartzog, and M.R. Segal Analysis of a splice Array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing PLoS Comput. Biol. 1 2005 e39
    • (2005) PLoS Comput. Biol. , vol.1
    • Xiao, Y.1    Yang, Y.H.2    Burckin, T.A.3    Shiue, L.4    Hartzog, G.A.5    Segal, M.R.6
  • 80
    • 69949132191 scopus 로고    scopus 로고
    • Chromatin organization marks exon-intron structure
    • S. Schwartz, E. Meshorer, and G. Ast Chromatin organization marks exon-intron structure Nat. Struct. Mol. Biol. 16 2009 990 995
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 990-995
    • Schwartz, S.1    Meshorer, E.2    Ast, G.3
  • 82
    • 70350013550 scopus 로고    scopus 로고
    • Biased chromatin signatures around polyadenylation sites and exons
    • N. Spies, C.B. Nielsen, R.A. Padgett, and C.B. Burge Biased chromatin signatures around polyadenylation sites and exons Mol. Cell 36 2009 245 254
    • (2009) Mol. Cell , vol.36 , pp. 245-254
    • Spies, N.1    Nielsen, C.B.2    Padgett, R.A.3    Burge, C.B.4
  • 84
    • 84861694712 scopus 로고    scopus 로고
    • Differential GC content between exons and introns establishes distinct strategies of splice-site recognition
    • M. Amit, M. Donyo, D. Hollander, A. Goren, E. Kim, S. Gelfman, and et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition Cell Rep. 1 2012 543 556
    • (2012) Cell Rep. , vol.1 , pp. 543-556
    • Amit, M.1    Donyo, M.2    Hollander, D.3    Goren, A.4    Kim, E.5    Gelfman, S.6
  • 85
    • 84863493503 scopus 로고    scopus 로고
    • Nucleosome organization in sequences of alternative events in human genome
    • H. Huang, S. Yu, H. Liu, and X. Sun Nucleosome organization in sequences of alternative events in human genome Biosystems. 109 2012 214 219
    • (2012) Biosystems. , vol.109 , pp. 214-219
    • Huang, H.1    Yu, S.2    Liu, H.3    Sun, X.4
  • 88
    • 77957243147 scopus 로고    scopus 로고
    • BRG1 helps RNA polymerase II to overcome a nucleosomal barrier during elongation, in vivo
    • A. Subtil-Rodriguez, and J.C. Reyes BRG1 helps RNA polymerase II to overcome a nucleosomal barrier during elongation, in vivo EMBO Rep. 11 2010 751 757
    • (2010) EMBO Rep. , vol.11 , pp. 751-757
    • Subtil-Rodriguez, A.1    Reyes, J.C.2
  • 93
    • 77957878986 scopus 로고    scopus 로고
    • Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution
    • P. Dhami, P. Saffrey, A.W. Bruce, S.C. Dillon, K. Chiang, N. Bonhoure, and et al. Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution PLoS One. 5 2010 e12339
    • (2010) PLoS One. , vol.5
    • Dhami, P.1    Saffrey, P.2    Bruce, A.W.3    Dillon, S.C.4    Chiang, K.5    Bonhoure, N.6
  • 94
    • 84901855485 scopus 로고    scopus 로고
    • Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications
    • A. Veloso, K.S. Kirkconnell, B. Magnuson, B. Biewen, M.T. Paulsen, T.E. Wilson, and M. Ljungman Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications Genome Res. 24 2014 896 905
    • (2014) Genome Res. , vol.24 , pp. 896-905
    • Veloso, A.1    Kirkconnell, K.S.2    Magnuson, B.3    Biewen, B.4    Paulsen, M.T.5    Wilson, T.E.6    Ljungman, M.7
  • 95
    • 80052033449 scopus 로고    scopus 로고
    • Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast
    • B.T. Wilhelm, S. Marguerat, S. Aligianni, S. Codlin, S. Watt, and J. Bahler Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast Genome Biol. 12 2011 R82
    • (2011) Genome Biol. , vol.12 , pp. R82
    • Wilhelm, B.T.1    Marguerat, S.2    Aligianni, S.3    Codlin, S.4    Watt, S.5    Bahler, J.6
  • 96
    • 84923021868 scopus 로고    scopus 로고
    • Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells
    • C. Iannone, A. Pohl, P. Papasaikas, D. Soronellas, G.P. Vicent, M. Beato, and J. ValcaRcel Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells RNA. 21 2015 360 374
    • (2015) RNA. , vol.21 , pp. 360-374
    • Iannone, C.1    Pohl, A.2    Papasaikas, P.3    Soronellas, D.4    Vicent, G.P.5    Beato, M.6    ValcaRcel, J.7
  • 101
    • 84898883789 scopus 로고    scopus 로고
    • Histone variants: Dynamic punctuation in transcription
    • C.M. Weber, and S. Henikoff Histone variants: dynamic punctuation in transcription Genes Dev. 28 2014 672 682
    • (2014) Genes Dev. , vol.28 , pp. 672-682
    • Weber, C.M.1    Henikoff, S.2
  • 102
    • 84923782190 scopus 로고    scopus 로고
    • Histone exchange, chromatin structure and the regulation of transcription
    • S. Venkatesh, and J.L. Workman Histone exchange, chromatin structure and the regulation of transcription Nat. Rev. Mol. Cell Biol. 16 2015 178 189
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 178-189
    • Venkatesh, S.1    Workman, J.L.2
  • 103
    • 79955432482 scopus 로고    scopus 로고
    • Histone variant H2A.Z and RNA polymerase II transcription elongation
    • M.S. Santisteban, M. Hang, and M.M. Smith Histone variant H2A.Z and RNA polymerase II transcription elongation Mol. Cell. Biol. 31 2011 1848 1860
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 1848-1860
    • Santisteban, M.S.1    Hang, M.2    Smith, M.M.3
  • 104
    • 84856185363 scopus 로고    scopus 로고
    • Proteome analysis of protein partners to nucleosomes containing canonical H2A or the variant histones H2A.Z or H2A.X
    • S. Fujimoto, C. Seebart, T. Guastafierro, J. Prenni, P. Caiafa, and J. Zlatanova Proteome analysis of protein partners to nucleosomes containing canonical H2A or the variant histones H2A.Z or H2A.X Biol. Chem. 393 2012 47 61
    • (2012) Biol. Chem. , vol.393 , pp. 47-61
    • Fujimoto, S.1    Seebart, C.2    Guastafierro, T.3    Prenni, J.4    Caiafa, P.5    Zlatanova, J.6
  • 105
    • 30044441988 scopus 로고    scopus 로고
    • The human SWI/SNF subunit Brm is a regulator of alternative splicing
    • E. Batsche, M. Yaniv, and C. Muchardt The human SWI/SNF subunit Brm is a regulator of alternative splicing Nat. Struct. Mol. Biol. 13 2006 22 29
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 22-29
    • Batsche, E.1    Yaniv, M.2    Muchardt, C.3
  • 106
    • 84899620204 scopus 로고    scopus 로고
    • The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1
    • P.J. Skene, A.E. Hernandez, M. Groudine, and S. Henikoff The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1 Elife 3 2014 e02042
    • (2014) Elife , vol.3
    • Skene, P.J.1    Hernandez, A.E.2    Groudine, M.3    Henikoff, S.4
  • 108
    • 84896820949 scopus 로고    scopus 로고
    • Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster
    • S. Yu, J. Waldholm, S. Bohm, and N. Visa Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster RNA Biol. 11 2014 134 145
    • (2014) RNA Biol. , vol.11 , pp. 134-145
    • Yu, S.1    Waldholm, J.2    Bohm, S.3    Visa, N.4
  • 110
    • 84926390537 scopus 로고    scopus 로고
    • Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast
    • K.L. Patrick, C.J. Ryan, J. Xu, J.J. Lipp, K.E. Nissen, A. Roguev, and et al. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast PLoS Genet. 11 2015 e1005074
    • (2015) PLoS Genet. , vol.11
    • Patrick, K.L.1    Ryan, C.J.2    Xu, J.3    Lipp, J.J.4    Nissen, K.E.5    Roguev, A.6
  • 111
    • 67149138094 scopus 로고    scopus 로고
    • SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing
    • A. Tyagi, J. Ryme, D. Brodin, A.K. Ostlund Farrants, and N. Visa SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing PLoS Genet. 5 2009 e1000470
    • (2009) PLoS Genet. , vol.5
    • Tyagi, A.1    Ryme, J.2    Brodin, D.3    Ostlund Farrants, A.K.4    Visa, N.5
  • 112
    • 70349333201 scopus 로고    scopus 로고
    • Nucleosomes are well positioned in exons and carry characteristic histone modifications
    • R. Andersson, S. Enroth, A. Rada-Iglesias, C. Wadelius, and J. Komorowski Nucleosomes are well positioned in exons and carry characteristic histone modifications Genome Res. 19 2009 1732 1741
    • (2009) Genome Res. , vol.19 , pp. 1732-1741
    • Andersson, R.1    Enroth, S.2    Rada-Iglesias, A.3    Wadelius, C.4    Komorowski, J.5
  • 113
    • 78649836342 scopus 로고    scopus 로고
    • Reciprocal intronic and exonic histone modification regions in humans
    • J.T. Huff, A.M. Plocik, C. Guthrie, and K.R. Yamamoto Reciprocal intronic and exonic histone modification regions in humans Nat. Struct. Mol. Biol. 17 2010 1495 1499
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1495-1499
    • Huff, J.T.1    Plocik, A.M.2    Guthrie, C.3    Yamamoto, K.R.4
  • 114
    • 84893210532 scopus 로고    scopus 로고
    • Regulation of alternative splicing by local histone modifications: Potential roles for RNA-guided mechanisms
    • H.L. Zhou, G. Luo, J.A. Wise, and H. Lou Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms Nucleic Acids Res. 42 2014 701 713
    • (2014) Nucleic Acids Res. , vol.42 , pp. 701-713
    • Zhou, H.L.1    Luo, G.2    Wise, J.A.3    Lou, H.4
  • 115
    • 84889081371 scopus 로고    scopus 로고
    • Chromatin's thread to alternative splicing regulation
    • C. Iannone, and J. Valcarcel Chromatin's thread to alternative splicing regulation Chromosoma. 122 2013 465 474
    • (2013) Chromosoma. , vol.122 , pp. 465-474
    • Iannone, C.1    Valcarcel, J.2
  • 116
    • 16244384503 scopus 로고    scopus 로고
    • A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation
    • K.O. Kizer, H.P. Phatnani, Y. Shibata, H. Hall, A.L. Greenleaf, and B.D. Strahl A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation Mol. Cell. Biol. 25 2005 3305 3316
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3305-3316
    • Kizer, K.O.1    Phatnani, H.P.2    Shibata, Y.3    Hall, H.4    Greenleaf, A.L.5    Strahl, B.D.6
  • 117
    • 58049206591 scopus 로고    scopus 로고
    • The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation
    • S.M. Yoh, J.S. Lucas, and K.A. Jones The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation Genes Dev. 22 2008 3422 3434
    • (2008) Genes Dev. , vol.22 , pp. 3422-3434
    • Yoh, S.M.1    Lucas, J.S.2    Jones, K.A.3
  • 118
    • 84893664978 scopus 로고    scopus 로고
    • Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects
    • J.M. Simon, K.E. Hacker, D. Singh, A.R. Brannon, J.S. Parker, M. Weiser, and et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects Genome Res. 24 2014 241 250
    • (2014) Genome Res. , vol.24 , pp. 241-250
    • Simon, J.M.1    Hacker, K.E.2    Singh, D.3    Brannon, A.R.4    Parker, J.S.5    Weiser, M.6
  • 120
  • 122
    • 84863654457 scopus 로고    scopus 로고
    • Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing
    • M.M. Pradeepa, H.G. Sutherland, J. Ule, G.R. Grimes, and W.A. Bickmore Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing PLoS Genet. 8 2012 e1002717
    • (2012) PLoS Genet. , vol.8
    • Pradeepa, M.M.1    Sutherland, H.G.2    Ule, J.3    Grimes, G.R.4    Bickmore, W.A.5
  • 123
    • 60549110477 scopus 로고    scopus 로고
    • Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation
    • R.J. Loomis, Y. Naoe, J.B. Parker, V. Savic, M.R. Bozovsky, T. Macfarlan, and et al. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation Mol. Cell. 33 2009 450 461
    • (2009) Mol. Cell. , vol.33 , pp. 450-461
    • Loomis, R.J.1    Naoe, Y.2    Parker, J.B.3    Savic, V.4    Bozovsky, M.R.5    Macfarlan, T.6
  • 124
    • 36249027156 scopus 로고    scopus 로고
    • Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing
    • R.J. Sims III, S. Millhouse, C.F. Chen, B.A. Lewis, H. Erdjument-Bromage, P. Tempst, and et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing Mol. Cell. 28 2007 665 676
    • (2007) Mol. Cell. , vol.28 , pp. 665-676
    • Sims, R.J.1    Millhouse, S.2    Chen, C.F.3    Lewis, B.A.4    Erdjument-Bromage, H.5    Tempst, P.6
  • 125
    • 84866497062 scopus 로고    scopus 로고
    • Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes
    • S. Venkatesh, M. Smolle, H. Li, M.M. Gogol, M. Saint, S. Kumar, and et al. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes Nature. 489 2012 452 455
    • (2012) Nature. , vol.489 , pp. 452-455
    • Venkatesh, S.1    Smolle, M.2    Li, H.3    Gogol, M.M.4    Saint, M.5    Kumar, S.6
  • 126
    • 84886731038 scopus 로고    scopus 로고
    • Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3
    • D.C. Kraushaar, W. Jin, A. Maunakea, B. Abraham, M. Ha, and K. Zhao Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 Genome Biol. 14 2013 R121
    • (2013) Genome Biol. , vol.14 , pp. R121
    • Kraushaar, D.C.1    Jin, W.2    Maunakea, A.3    Abraham, B.4    Ha, M.5    Zhao, K.6
  • 127
    • 84907541195 scopus 로고    scopus 로고
    • Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate
    • G. Fuchs, D. Hollander, Y. Voichek, G. Ast, and M. Oren Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate Genome Res. 24 2014 1572 1583
    • (2014) Genome Res. , vol.24 , pp. 1572-1583
    • Fuchs, G.1    Hollander, D.2    Voichek, Y.3    Ast, G.4    Oren, M.5
  • 128
    • 33646691283 scopus 로고    scopus 로고
    • Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
    • R. Pavri, B. Zhu, G. Li, P. Trojer, S. Mandal, A. Shilatifard, and D. Reinberg Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II Cell. 125 2006 703 717
    • (2006) Cell. , vol.125 , pp. 703-717
    • Pavri, R.1    Zhu, B.2    Li, G.3    Trojer, P.4    Mandal, S.5    Shilatifard, A.6    Reinberg, D.7
  • 129
    • 84881612908 scopus 로고    scopus 로고
    • Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription
    • E. Shema-Yaacoby, M. Nikolov, M. Haj-Yahya, P. Siman, E. Allemand, Y. Yamaguchi, and et al. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription Cell Rep. 4 2013 601 608
    • (2013) Cell Rep. , vol.4 , pp. 601-608
    • Shema-Yaacoby, E.1    Nikolov, M.2    Haj-Yahya, M.3    Siman, P.4    Allemand, E.5    Yamaguchi, Y.6
  • 130
    • 84880424207 scopus 로고    scopus 로고
    • USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing
    • Z. Zhang, A. Jones, H.Y. Joo, D. Zhou, Y. Cao, S. Chen, and et al. USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing Genes Dev. 27 2013 1581 1595
    • (2013) Genes Dev. , vol.27 , pp. 1581-1595
    • Zhang, Z.1    Jones, A.2    Joo, H.Y.3    Zhou, D.4    Cao, Y.5    Chen, S.6
  • 131
    • 84911875903 scopus 로고    scopus 로고
    • Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes
    • A. Sharma, H. Nguyen, C. Geng, M.N. Hinman, G. Luo, and H. Lou Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes Proc. Natl. Acad. Sci. U. S. A. 111 2014 E4920 E4928
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. E4920-E4928
    • Sharma, A.1    Nguyen, H.2    Geng, C.3    Hinman, M.N.4    Luo, G.5    Lou, H.6
  • 132
    • 80052594686 scopus 로고    scopus 로고
    • Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner
    • H.L. Zhou, M.N. Hinman, V.A. Barron, C. Geng, G. Zhou, G. Luo, and et al. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner Proc. Natl. Acad. Sci. U. S. A. 108 2011 E627 E635
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. E627-E635
    • Zhou, H.L.1    Hinman, M.N.2    Barron, V.A.3    Geng, C.4    Zhou, G.5    Luo, G.6
  • 133
    • 23944495664 scopus 로고    scopus 로고
    • The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes
    • M. Sjolinder, P. Bjork, E. Soderberg, N. Sabri, A.K. Farrants, and N. Visa The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes Genes Dev. 19 2005 1871 1884
    • (2005) Genes Dev. , vol.19 , pp. 1871-1884
    • Sjolinder, M.1    Bjork, P.2    Soderberg, E.3    Sabri, N.4    Farrants, A.K.5    Visa, N.6
  • 134
    • 84896726160 scopus 로고    scopus 로고
    • RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing
    • D.H. Khan, C. Gonzalez, C. Cooper, J.M. Sun, H.Y. Chen, S. Healy, and et al. RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing Nucleic Acids Res. 42 2014 1656 1670
    • (2014) Nucleic Acids Res. , vol.42 , pp. 1656-1670
    • Khan, D.H.1    Gonzalez, C.2    Cooper, C.3    Sun, J.M.4    Chen, H.Y.5    Healy, S.6
  • 137
    • 84874279332 scopus 로고    scopus 로고
    • Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: Alternative pre-mRNA splicing and transcriptional repression
    • J.M. Taliaferro, J.L. Aspden, T. Bradley, D. Marwha, M. Blanchette, and D.C. Rio Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression Genes Dev. 27 2013 378 389
    • (2013) Genes Dev. , vol.27 , pp. 378-389
    • Taliaferro, J.M.1    Aspden, J.L.2    Bradley, T.3    Marwha, D.4    Blanchette, M.5    Rio, D.C.6
  • 138
    • 84914674878 scopus 로고    scopus 로고
    • Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells
    • M. Allo, E. Agirre, S. Bessonov, P. Bertucci, L. Gomez Acuna, V. Buggiano, and et al. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells Proc. Natl. Acad. Sci. U. S. A. 111 2014 15,622 15,629
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 15622-15629
    • Allo, M.1    Agirre, E.2    Bessonov, S.3    Bertucci, P.4    Gomez Acuna, L.5    Buggiano, V.6
  • 140
    • 77953961505 scopus 로고    scopus 로고
    • Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription
    • S. Guang, A.F. Bochner, K.B. Burkhart, N. Burton, D.M. Pavelec, and S. Kennedy Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription Nature. 465 2010 1097 1101
    • (2010) Nature. , vol.465 , pp. 1097-1101
    • Guang, S.1    Bochner, A.F.2    Burkhart, K.B.3    Burton, N.4    Pavelec, D.M.5    Kennedy, S.6
  • 141
    • 84924578243 scopus 로고    scopus 로고
    • HP1 is involved in regulating the global impact of DNA methylation on alternative splicing
    • A. Yearim, S. Gelfman, R. Shayevitch, S. Melcer, O. Glaich, J.P. Mallm, and et al. HP1 is involved in regulating the global impact of DNA methylation on alternative splicing Cell Rep. 10 2015 1122 1134
    • (2015) Cell Rep. , vol.10 , pp. 1122-1134
    • Yearim, A.1    Gelfman, S.2    Shayevitch, R.3    Melcer, S.4    Glaich, O.5    Mallm, J.P.6
  • 143
    • 79952364016 scopus 로고    scopus 로고
    • Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons
    • V. Saint-Andre, E. Batsche, C. Rachez, and C. Muchardt Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons Nat. Struct. Mol. Biol. 18 2011 337 344
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 337-344
    • Saint-Andre, V.1    Batsche, E.2    Rachez, C.3    Muchardt, C.4
  • 144
    • 84887214395 scopus 로고    scopus 로고
    • Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition
    • A.K. Maunakea, I. Chepelev, K. Cui, and K. Zhao Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition Cell Res. 23 2013 1256 1269
    • (2013) Cell Res. , vol.23 , pp. 1256-1269
    • Maunakea, A.K.1    Chepelev, I.2    Cui, K.3    Zhao, K.4
  • 145
  • 146
    • 84974790790 scopus 로고    scopus 로고
    • TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing
    • R.J. Marina, D. Sturgill, M.A. Bailly, M. Thenoz, G. Varma, M.F. Prigge, and et al. TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing EMBO J. 2015
    • (2015) EMBO J.
    • Marina, R.J.1    Sturgill, D.2    Bailly, M.A.3    Thenoz, M.4    Varma, G.5    Prigge, M.F.6
  • 147
    • 29144447632 scopus 로고    scopus 로고
    • Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2
    • J.I. Young, E.P. Hong, J.C. Castle, J. Crespo-Barreto, A.B. Bowman, M.F. Rose, and et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2 Proc. Natl. Acad. Sci. U. S. A. 102 2005 17,551 17,558
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 17551-17558
    • Young, J.I.1    Hong, E.P.2    Castle, J.C.3    Crespo-Barreto, J.4    Bowman, A.B.5    Rose, M.F.6
  • 148
    • 84255189090 scopus 로고    scopus 로고
    • The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks
    • S.E. Butcher, and A.M. Pyle The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks Acc. Chem. Res. 44 2011 1302 1311
    • (2011) Acc. Chem. Res. , vol.44 , pp. 1302-1311
    • Butcher, S.E.1    Pyle, A.M.2
  • 149
    • 84899912064 scopus 로고    scopus 로고
    • Gene regulation by structured mRNA elements
    • A. Wachter Gene regulation by structured mRNA elements Trends Genet. 30 2014 172 181
    • (2014) Trends Genet. , vol.30 , pp. 172-181
    • Wachter, A.1
  • 150
    • 0027514174 scopus 로고
    • Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast
    • V. Goguel, and M. Rosbash Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast Cell. 72 1993 893 901
    • (1993) Cell. , vol.72 , pp. 893-901
    • Goguel, V.1    Rosbash, M.2
  • 151
    • 0024299506 scopus 로고
    • Effects of RNA secondary structure on alternative splicing of pre-mRNA: Is folding limited to a region behind the transcribing RNA polymerase?
    • L.P. Eperon, I.R. Graham, A.D. Griffiths, and I.C. Eperon Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell. 54 1988 393 401
    • (1988) Cell. , vol.54 , pp. 393-401
    • Eperon, L.P.1    Graham, I.R.2    Griffiths, A.D.3    Eperon, I.C.4
  • 152
    • 10044274340 scopus 로고    scopus 로고
    • Influence of RNA secondary structure on the pre-mRNA splicing process
    • E. Buratti, and F.E. Baralle Influence of RNA secondary structure on the pre-mRNA splicing process Mol. Cell. Biol. 24 2004 10,505 10,514
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 10505-10514
    • Buratti, E.1    Baralle, F.E.2
  • 153
    • 80053008165 scopus 로고    scopus 로고
    • Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing
    • M. Meyer, M. Plass, J. Perez-Valle, E. Eyras, and J. Vilardell Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing Mol. Cell. 43 2011 1033 1039
    • (2011) Mol. Cell. , vol.43 , pp. 1033-1039
    • Meyer, M.1    Plass, M.2    Perez-Valle, J.3    Eyras, E.4    Vilardell, J.5
  • 155
    • 84876513474 scopus 로고    scopus 로고
    • Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR)
    • O. Solomon, S. Oren, M. Safran, N. Deshet-Unger, P. Akiva, J. Jacob-Hirsch, and et al. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR) RNA. 19 2013 591 604
    • (2013) RNA. , vol.19 , pp. 591-604
    • Solomon, O.1    Oren, S.2    Safran, M.3    Deshet-Unger, N.4    Akiva, P.5    Jacob-Hirsch, J.6
  • 156
    • 13944265983 scopus 로고    scopus 로고
    • Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin
    • Q. Wang, Z. Zhang, K. Blackwell, and G.G. Carmichael Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin Curr. Biol. 15 2005 384 391
    • (2005) Curr. Biol. , vol.15 , pp. 384-391
    • Wang, Q.1    Zhang, Z.2    Blackwell, K.3    Carmichael, G.G.4
  • 157
    • 50649086851 scopus 로고    scopus 로고
    • On the mechanism of induction of heterochromatin by the RNA-binding protein vigilin
    • J. Zhou, Q. Wang, L.L. Chen, and G.G. Carmichael On the mechanism of induction of heterochromatin by the RNA-binding protein vigilin RNA. 14 2008 1773 1781
    • (2008) RNA. , vol.14 , pp. 1773-1781
    • Zhou, J.1    Wang, Q.2    Chen, L.L.3    Carmichael, G.G.4
  • 158
    • 84924584607 scopus 로고    scopus 로고
    • Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome
    • D. Incarnato, F. Neri, F. Anselmi, and S. Oliviero Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome Genome Biol. 15 2014 491
    • (2014) Genome Biol. , vol.15 , pp. 491
    • Incarnato, D.1    Neri, F.2    Anselmi, F.3    Oliviero, S.4
  • 159
    • 84893427735 scopus 로고    scopus 로고
    • In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features
    • Y. Ding, Y. Tang, C.K. Kwok, Y. Zhang, P.C. Bevilacqua, and S.M. Assmann In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features Nature. 505 2014 696 700
    • (2014) Nature. , vol.505 , pp. 696-700
    • Ding, Y.1    Tang, Y.2    Kwok, C.K.3    Zhang, Y.4    Bevilacqua, P.C.5    Assmann, S.M.6
  • 160
    • 84893358533 scopus 로고    scopus 로고
    • Landscape and variation of RNA secondary structure across the human transcriptome
    • Y. Wan, K. Qu, Q.C. Zhang, R.A. Flynn, O. Manor, Z. Ouyang, and et al. Landscape and variation of RNA secondary structure across the human transcriptome Nature. 505 2014 706 709
    • (2014) Nature. , vol.505 , pp. 706-709
    • Wan, Y.1    Qu, K.2    Zhang, Q.C.3    Flynn, R.A.4    Manor, O.5    Ouyang, Z.6
  • 161
    • 0038475911 scopus 로고    scopus 로고
    • Effect of transcription on folding of the Tetrahymena ribozyme
    • S.L. Heilman-Miller, and S.A. Woodson Effect of transcription on folding of the Tetrahymena ribozyme RNA. 9 2003 722 733
    • (2003) RNA. , vol.9 , pp. 722-733
    • Heilman-Miller, S.L.1    Woodson, S.A.2
  • 162
    • 0027305857 scopus 로고
    • Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase
    • B.T. Lewicki, T. Margus, J. Remme, and K.H. Nierhaus Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase J. Mol. Biol. 231 1993 581 593
    • (1993) J. Mol. Biol. , vol.231 , pp. 581-593
    • Lewicki, B.T.1    Margus, T.2    Remme, J.3    Nierhaus, K.H.4
  • 163
    • 0032900052 scopus 로고    scopus 로고
    • Formation of metastable RNA structures by sequential folding during transcription: Time-resolved structural analysis of potato spindle tuber viroid (-)-stranded RNA by temperature-gradient gel electrophoresis
    • D. Repsilber, S. Wiese, M. Rachen, A.W. Schroder, D. Riesner, and G. Steger Formation of metastable RNA structures by sequential folding during transcription: time-resolved structural analysis of potato spindle tuber viroid (-)-stranded RNA by temperature-gradient gel electrophoresis RNA. 5 1999 574 584
    • (1999) RNA. , vol.5 , pp. 574-584
    • Repsilber, D.1    Wiese, S.2    Rachen, M.3    Schroder, A.W.4    Riesner, D.5    Steger, G.6
  • 164
    • 84861846613 scopus 로고    scopus 로고
    • Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases
    • B. Zamft, L. Bintu, T. Ishibashi, and C. Bustamante Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases Proc. Natl. Acad. Sci. U. S. A. 109 2012 8948 8953
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 8948-8953
    • Zamft, B.1    Bintu, L.2    Ishibashi, T.3    Bustamante, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.