-
1
-
-
79751509762
-
Parkinson's disease: genetics and pathogenesis
-
[1] Shulman, J.M., De Jager, P.L., Feany, M.B., Parkinson's disease: genetics and pathogenesis. Annu. Rev. Pathol. 6 (2011), 193–222.
-
(2011)
Annu. Rev. Pathol.
, vol.6
, pp. 193-222
-
-
Shulman, J.M.1
De Jager, P.L.2
Feany, M.B.3
-
2
-
-
84879674444
-
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
[2] Riley, B.E., Lougheed, J.C., Callaway, K., Velasquez, M., Brecht, E., Nguyen, L., et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun., 4, 2013, 1982.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1982
-
-
Riley, B.E.1
Lougheed, J.C.2
Callaway, K.3
Velasquez, M.4
Brecht, E.5
Nguyen, L.6
-
3
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
[3] Sarraf, S.A., Raman, M., Guarani-Pereira, V., Sowa, M.E., Huttlin, E.L., Gygi, S.P., et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496 (2013), 372–376.
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
-
4
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
e1000298
-
[4] Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.F., Gautier, C.A., Shen, J., et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol., 8, 2010, e1000298.
-
(2010)
PLoS Biol.
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
-
5
-
-
84887486172
-
The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
-
[5] Jin, S.M., Youle, R.J., The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9 (2013), 1750–1757.
-
(2013)
Autophagy
, vol.9
, pp. 1750-1757
-
-
Jin, S.M.1
Youle, R.J.2
-
6
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
[6] Chen, Y., Dorn, G.W. 2nd, PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340 (2013), 471–475.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
7
-
-
84948991793
-
Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice
-
(aad2459)
-
[7] Gong, G., Song, M., Kelly, D.P., Matkovich, S.J., Dorn, G.W. 2nd, Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science, 350, 2015 (aad2459).
-
(2015)
Science
, vol.350
-
-
Gong, G.1
Song, M.2
Kelly, D.P.3
Matkovich, S.J.4
Dorn, G.W.5
-
8
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
[8] Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510 (2014), 162–166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
-
9
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
[9] Kane, L.A., Lazarou, M., Fogel, A.I., Li, Y., Yamano, K., Sarraf, S.A., et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205 (2014), 143–153.
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
-
10
-
-
84939795423
-
Mechanism of phospho-ubiquitin-induced PARKIN activation
-
[10] Wauer, T., Simicek, M., Schubert, A., Komander, D., Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524 (2015), 370–374.
-
(2015)
Nature
, vol.524
, pp. 370-374
-
-
Wauer, T.1
Simicek, M.2
Schubert, A.3
Komander, D.4
-
11
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
[11] Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524 (2015), 309–314.
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
-
12
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
[12] Bingol, B., Tea, J.S., Phu, L., Reichelt, M., Bakalarski, C.E., Song, Q., et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510 (2014), 370–375.
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
Tea, J.S.2
Phu, L.3
Reichelt, M.4
Bakalarski, C.E.5
Song, Q.6
-
13
-
-
84920095272
-
The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
-
[13] Cornelissen, T., Haddad, D., Wauters, F., Van Humbeeck, C., Mandemakers, W., Koentjoro, B., et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23 (2014), 5227–5242.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 5227-5242
-
-
Cornelissen, T.1
Haddad, D.2
Wauters, F.3
Van Humbeeck, C.4
Mandemakers, W.5
Koentjoro, B.6
-
14
-
-
84920892842
-
USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin
-
[14] Durcan, T.M., Tang, M.Y., Perusse, J.R., Dashti, E.A., Aguileta, M.A., McLelland, G.L., et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 33 (2014), 2473–2491.
-
(2014)
EMBO J.
, vol.33
, pp. 2473-2491
-
-
Durcan, T.M.1
Tang, M.Y.2
Perusse, J.R.3
Dashti, E.A.4
Aguileta, M.A.5
McLelland, G.L.6
-
15
-
-
84929676117
-
Deubiquitinating enzymes regulate PARK2-mediated mitophagy
-
[15] Wang, Y., Serricchio, M., Jauregui, M., Shanbhag, R., Stoltz, T., Di Paolo, C.T., et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11 (2015), 595–606.
-
(2015)
Autophagy
, vol.11
, pp. 595-606
-
-
Wang, Y.1
Serricchio, M.2
Jauregui, M.3
Shanbhag, R.4
Stoltz, T.5
Di Paolo, C.T.6
-
16
-
-
84901639801
-
Parkin and PINK1: much more than mitophagy
-
[16] Scarffe, L.A., Stevens, D.A., Dawson, V.L., Dawson, T.M., Parkin and PINK1: much more than mitophagy. Trends Neurosci. 37 (2014), 315–324.
-
(2014)
Trends Neurosci.
, vol.37
, pp. 315-324
-
-
Scarffe, L.A.1
Stevens, D.A.2
Dawson, V.L.3
Dawson, T.M.4
-
17
-
-
36248933672
-
Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday
-
[17] Lees, A.J., Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday. Mov. Disord. 22:Suppl. 17 (2007), S327–S334.
-
(2007)
Mov. Disord.
, vol.22
, pp. S327-S334
-
-
Lees, A.J.1
-
18
-
-
77958072667
-
PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease
-
(52ra73)
-
[18] Zheng, B., Liao, Z., Locascio, J.J., Lesniak, K.A., Roderick, S.S., Watt, M.L., et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci. Transl. Med., 2, 2010 (52ra73).
-
(2010)
Sci. Transl. Med.
, vol.2
-
-
Zheng, B.1
Liao, Z.2
Locascio, J.J.3
Lesniak, K.A.4
Roderick, S.S.5
Watt, M.L.6
-
20
-
-
0031036896
-
Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease
-
[20] Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M.T., Michel, P.P., Marquez, J., et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12 (1997), 25–31.
-
(1997)
Histol. Histopathol.
, vol.12
, pp. 25-31
-
-
Anglade, P.1
Vyas, S.2
Javoy-Agid, F.3
Herrero, M.T.4
Michel, P.P.5
Marquez, J.6
-
21
-
-
84857058225
-
Control of autophagy as a therapy for neurodegenerative disease
-
[21] Harris, H., Rubinsztein, D.C., Control of autophagy as a therapy for neurodegenerative disease. Nat. Rev. Neurol. 8 (2012), 108–117.
-
(2012)
Nat. Rev. Neurol.
, vol.8
, pp. 108-117
-
-
Harris, H.1
Rubinsztein, D.C.2
-
22
-
-
84930044531
-
Live to die another way: modes of programmed cell death and the signals emanating from dying cells
-
[22] Fuchs, Y., Steller, H., Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 16 (2015), 329–344.
-
(2015)
Nat. Rev. Mol. Cell Biol.
, vol.16
, pp. 329-344
-
-
Fuchs, Y.1
Steller, H.2
-
23
-
-
84870713042
-
Metabolic labeling reveals proteome dynamics of mouse mitochondria
-
[23] Kim, T.Y., Wang, D., Kim, A.K., Lau, E., Lin, A.J., Liem, D.A., et al. Metabolic labeling reveals proteome dynamics of mouse mitochondria. Mol. Cell. Proteomics 11 (2012), 1586–1594.
-
(2012)
Mol. Cell. Proteomics
, vol.11
, pp. 1586-1594
-
-
Kim, T.Y.1
Wang, D.2
Kim, A.K.3
Lau, E.4
Lin, A.J.5
Liem, D.A.6
-
24
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
[24] Chan, N.C., Salazar, A.M., Pham, A.H., Sweredoski, M.J., Kolawa, N.J., Graham, R.L., et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20 (2011), 1726–1737.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
Graham, R.L.6
-
25
-
-
84913565821
-
Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain
-
[25] Kageyama, Y., Hoshijima, M., Seo, K., Bedja, D., Sysa-Shah, P., Andrabi, S.A., et al. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J. 33 (2014), 2798–2813.
-
(2014)
EMBO J.
, vol.33
, pp. 2798-2813
-
-
Kageyama, Y.1
Hoshijima, M.2
Seo, K.3
Bedja, D.4
Sysa-Shah, P.5
Andrabi, S.A.6
-
26
-
-
85047700403
-
Chronic deletion and acute knockdown of Parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice
-
[26] Williams, J.A., Ni, H.M., Haynes, A., Manley, S., Li, Y., Jaeschke, H., et al. Chronic deletion and acute knockdown of Parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice. J. Biol. Chem. 290 (2015), 10934–10946.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 10934-10946
-
-
Williams, J.A.1
Ni, H.M.2
Haynes, A.3
Manley, S.4
Li, Y.5
Jaeschke, H.6
-
27
-
-
68249087424
-
Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice
-
[27] Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S.O., Masuda, K., et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11 (2009), 958–966.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 958-966
-
-
Ishihara, N.1
Nomura, M.2
Jofuku, A.3
Kato, H.4
Suzuki, S.O.5
Masuda, K.6
-
28
-
-
84868110583
-
Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons
-
[28] Lee, S., Sterky, F.H., Mourier, A., Terzioglu, M., Cullheim, S., Olson, L., et al. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum. Mol. Genet. 21 (2012), 4827–4835.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 4827-4835
-
-
Lee, S.1
Sterky, F.H.2
Mourier, A.3
Terzioglu, M.4
Cullheim, S.5
Olson, L.6
-
29
-
-
84941741215
-
Interdependence of Parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts
-
[29] Song, M., Gong, G., Burelle, Y., Gustafsson, A.B., Kitsis, R.N., Matkovich, S.J., et al. Interdependence of Parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ. Res. 117 (2015), 346–351.
-
(2015)
Circ. Res.
, vol.117
, pp. 346-351
-
-
Song, M.1
Gong, G.2
Burelle, Y.3
Gustafsson, A.B.4
Kitsis, R.N.5
Matkovich, S.J.6
-
30
-
-
84929691103
-
Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
-
[30] Ordureau, A., Heo, J.M., Duda, D.M., Paulo, J.A., Olszewski, J.L., Yanishevski, D., et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 6637–6642.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 6637-6642
-
-
Ordureau, A.1
Heo, J.M.2
Duda, D.M.3
Paulo, J.A.4
Olszewski, J.L.5
Yanishevski, D.6
-
31
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
[31] Lazarou, M., Jin, S.M., Kane, L.A., Youle, R.J., Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22 (2012), 320–333.
-
(2012)
Dev. Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
32
-
-
84869030015
-
Fusion and fission: interlinked processes critical for mitochondrial health
-
[32] Chan, D.C., Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46 (2012), 265–287.
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 265-287
-
-
Chan, D.C.1
-
33
-
-
57349100367
-
Mitofusin 2 tethers endoplasmic reticulum to mitochondria
-
[33] de Brito, O.M., Scorrano, L., Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456 (2008), 605–610.
-
(2008)
Nature
, vol.456
, pp. 605-610
-
-
de Brito, O.M.1
Scorrano, L.2
-
34
-
-
84866530818
-
Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2 +) crosstalk
-
[34] Chen, Y., Csordas, G., Jowdy, C., Schneider, T.G., Csordas, N., Wang, W., et al. Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2 +) crosstalk. Circ. Res. 111 (2012), 863–875.
-
(2012)
Circ. Res.
, vol.111
, pp. 863-875
-
-
Chen, Y.1
Csordas, G.2
Jowdy, C.3
Schneider, T.G.4
Csordas, N.5
Wang, W.6
-
35
-
-
0029983366
-
Strategies for studying cardiovascular phenotypes in genetically manipulated mice
-
[35] Becker, K.D., Gottshall, K.R., Chien, K.R., Strategies for studying cardiovascular phenotypes in genetically manipulated mice. Hypertension 27 (1996), 495–501.
-
(1996)
Hypertension
, vol.27
, pp. 495-501
-
-
Becker, K.D.1
Gottshall, K.R.2
Chien, K.R.3
-
36
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
-
[36] Greene, J.C., Whitworth, A.J., Kuo, I., Andrews, L.A., Feany, M.B., Pallanck, L.J., Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 4078–4083.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
Whitworth, A.J.2
Kuo, I.3
Andrews, L.A.4
Feany, M.B.5
Pallanck, L.J.6
-
37
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
[37] Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441 (2006), 1162–1166.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
Cao, J.H.4
Huh, J.R.5
Seol, J.H.6
-
38
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
[38] Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441 (2006), 1157–1161.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
Kim, Y.4
Song, S.5
Kim, S.6
-
39
-
-
33746080412
-
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
-
[39] Yang, Y., Gehrke, S., Imai, Y., Huang, Z., Ouyang, Y., Wang, J.W., et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 10793–10798.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 10793-10798
-
-
Yang, Y.1
Gehrke, S.2
Imai, Y.3
Huang, Z.4
Ouyang, Y.5
Wang, J.W.6
-
40
-
-
84876213313
-
The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo
-
[40] Vincow, E.S., Merrihew, G., Thomas, R.E., Shulman, N.J., Beyer, R.P., MacCoss, M.J., et al. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 6400–6405.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 6400-6405
-
-
Vincow, E.S.1
Merrihew, G.2
Thomas, R.E.3
Shulman, N.J.4
Beyer, R.P.5
MacCoss, M.J.6
-
41
-
-
84886715175
-
Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease, Cold Spring Harb
-
(009944)
-
[41] Guo, M., Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease, Cold Spring Harb. Perspect. Med., 2(11), 2012 (009944).
-
(2012)
Perspect. Med.
, vol.2
, Issue.11
-
-
Guo, M.1
-
42
-
-
84886652249
-
Animal models of Parkinson's disease: vertebrate genetics, Cold Spring Harb
-
(009324)
-
[42] Lee, Y., Dawson, V.L., Dawson, T.M., Animal models of Parkinson's disease: vertebrate genetics, Cold Spring Harb. Perspect. Med., 2(10), 2012 (009324).
-
(2012)
Perspect. Med.
, vol.2
, Issue.10
-
-
Lee, Y.1
Dawson, V.L.2
Dawson, T.M.3
-
43
-
-
71849084134
-
Mitochondrial dysfunction in Parkinson's disease
-
[43] Winklhofer, K.F., Haass, C., Mitochondrial dysfunction in Parkinson's disease. Biochim. Biophys. Acta 1802 (2010), 29–44.
-
(2010)
Biochim. Biophys. Acta
, vol.1802
, pp. 29-44
-
-
Winklhofer, K.F.1
Haass, C.2
-
44
-
-
84897113087
-
Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin
-
[44] Bhandari, P., Song, M., Chen, Y., Burelle, Y., Dorn, G.W. 2nd, Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin. Circ. Res. 114 (2014), 257–265.
-
(2014)
Circ. Res.
, vol.114
, pp. 257-265
-
-
Bhandari, P.1
Song, M.2
Chen, Y.3
Burelle, Y.4
Dorn, G.W.5
-
45
-
-
84928198173
-
Combined cardiomyocyte PKCdelta and PKCepsilon gene deletion uncovers their central role in restraining developmental and reactive heart growth
-
ra39
-
[45] Song, M., Matkovich, S.J., Zhang, Y., Hammer, D.J., Dorn, G.W. 2nd, Combined cardiomyocyte PKCdelta and PKCepsilon gene deletion uncovers their central role in restraining developmental and reactive heart growth. Sci. Signal., 8, 2015, ra39.
-
(2015)
Sci. Signal.
, vol.8
-
-
Song, M.1
Matkovich, S.J.2
Zhang, Y.3
Hammer, D.J.4
Dorn, G.W.5
-
46
-
-
84872283780
-
Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction
-
[46] Kubli, D.A., Zhang, X., Lee, Y., Hanna, R.A., Quinsay, M.N., Nguyen, C.K., et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J. Biol. Chem. 288 (2013), 915–926.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 915-926
-
-
Kubli, D.A.1
Zhang, X.2
Lee, Y.3
Hanna, R.A.4
Quinsay, M.N.5
Nguyen, C.K.6
-
47
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
-
[47] Shin, J.H., Ko, H.S., Kang, H., Lee, Y., Lee, Y.I., Pletinkova, O., et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144 (2011), 689–702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
Ko, H.S.2
Kang, H.3
Lee, Y.4
Lee, Y.I.5
Pletinkova, O.6
-
48
-
-
84941711126
-
Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration
-
[48] Stevens, D.A., Lee, Y., Kang, H.C., Lee, B.D., Lee, Y.I., Bower, A., et al. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 11696–11701.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 11696-11701
-
-
Stevens, D.A.1
Lee, Y.2
Kang, H.C.3
Lee, B.D.4
Lee, Y.I.5
Bower, A.6
-
49
-
-
84881329174
-
Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes
-
e24511
-
[49] Kubli, D.A., Quinsay, M.N., Gustafsson, A.B., Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Commun. Integr. Biol., 6, 2013, e24511.
-
(2013)
Commun. Integr. Biol.
, vol.6
-
-
Kubli, D.A.1
Quinsay, M.N.2
Gustafsson, A.B.3
-
50
-
-
84871762432
-
Mitochondrial dynamics in heart disease
-
[50] Dorn, G.W. 2nd, Mitochondrial dynamics in heart disease. Biochim. Biophys. Acta 1833 (2013), 233–241.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 233-241
-
-
Dorn, G.W.1
-
51
-
-
84975111951
-
Parkin-dependent mitophagy in the heart
-
(30127-9 [Epub ahead of print])
-
[51] Dorn, G.W. 2nd, Parkin-dependent mitophagy in the heart. J. Mol. Cell. Cardiol., S0022-2828(15), 2015 (30127-9 [Epub ahead of print]).
-
(2015)
J. Mol. Cell. Cardiol.
, vol.S0022-2828
, Issue.15
-
-
Dorn, G.W.1
-
52
-
-
84938309334
-
PINK1 is dispensable for mitochondrial recruitment of parkin and activation of mitophagy in cardiac myocytes
-
e0130707
-
[52] Kubli, D.A., Cortez, M.Q., Moyzis, A.G., Najor, R.H., Lee, Y., Gustafsson, A.B., PINK1 is dispensable for mitochondrial recruitment of parkin and activation of mitophagy in cardiac myocytes. PLoS One, 10, 2015, e0130707.
-
(2015)
PLoS One
, vol.10
-
-
Kubli, D.A.1
Cortez, M.Q.2
Moyzis, A.G.3
Najor, R.H.4
Lee, Y.5
Gustafsson, A.B.6
-
53
-
-
84922926666
-
Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts
-
[53] Song, M., Mihara, K., Chen, Y., Scorrano, L., Dorn, G.W. 2nd, Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 21 (2015), 273–285.
-
(2015)
Cell Metab.
, vol.21
, pp. 273-285
-
-
Song, M.1
Mihara, K.2
Chen, Y.3
Scorrano, L.4
Dorn, G.W.5
-
54
-
-
84913540816
-
Mitochondrial genome linearization is a causative factor for cardiomyopathy in mice and Drosophila
-
[54] Chen, Y., Sparks, M., Bhandari, P., Matkovich, S.J., Dorn, G.W. 2nd, Mitochondrial genome linearization is a causative factor for cardiomyopathy in mice and Drosophila. Antioxid. Redox Signal. 21 (2014), 1949–1959.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, pp. 1949-1959
-
-
Chen, Y.1
Sparks, M.2
Bhandari, P.3
Matkovich, S.J.4
Dorn, G.W.5
-
55
-
-
84904734344
-
Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy
-
[55] Song, M., Chen, Y., Gong, G., Murphy, E., Rabinovitch, P.S., Dorn, G.W. 2nd, Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ. Res. 115 (2014), 348–353.
-
(2014)
Circ. Res.
, vol.115
, pp. 348-353
-
-
Song, M.1
Chen, Y.2
Gong, G.3
Murphy, E.4
Rabinovitch, P.S.5
Dorn, G.W.6
-
56
-
-
79954694973
-
Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure
-
[56] Dai, D.F., Johnson, S.C., Villarin, J.J., Chin, M.T., Nieves-Cintron, M., Chen, T., et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ. Res. 108 (2011), 837–846.
-
(2011)
Circ. Res.
, vol.108
, pp. 837-846
-
-
Dai, D.F.1
Johnson, S.C.2
Villarin, J.J.3
Chin, M.T.4
Nieves-Cintron, M.5
Chen, T.6
-
57
-
-
77956252454
-
Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
-
[57] Ding, W.X., Ni, H.M., Li, M., Liao, Y., Chen, X., Stolz, D.B., et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285 (2010), 27879–27890.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 27879-27890
-
-
Ding, W.X.1
Ni, H.M.2
Li, M.3
Liao, Y.4
Chen, X.5
Stolz, D.B.6
-
58
-
-
77955514158
-
Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors
-
[58] Dorn, G.W. 2nd, Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J. Cardiovasc. Transl. Res. 3 (2010), 374–383.
-
(2010)
J. Cardiovasc. Transl. Res.
, vol.3
, pp. 374-383
-
-
Dorn, G.W.1
-
59
-
-
21244492310
-
Myocardial substrate metabolism in the normal and failing heart
-
[59] Stanley, W.C., Recchia, F.A., Lopaschuk, G.D., Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85 (2005), 1093–1129.
-
(2005)
Physiol. Rev.
, vol.85
, pp. 1093-1129
-
-
Stanley, W.C.1
Recchia, F.A.2
Lopaschuk, G.D.3
-
60
-
-
0034702930
-
Perinatal changes in myocardial metabolism in lambs
-
[60] Bartelds, B., Knoester, H., Smid, G.B., Takens, J., Visser, G.H., Penninga, L., et al. Perinatal changes in myocardial metabolism in lambs. Circulation 102 (2000), 926–931.
-
(2000)
Circulation
, vol.102
, pp. 926-931
-
-
Bartelds, B.1
Knoester, H.2
Smid, G.B.3
Takens, J.4
Visser, G.H.5
Penninga, L.6
-
61
-
-
84943527056
-
Mitochondrial biogenesis and dynamics in the developing and diseased heart
-
[61] Dorn, G.W. 2nd, Vega, R.B., Kelly, D.P., Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 29 (2015), 1981–1991.
-
(2015)
Genes Dev.
, vol.29
, pp. 1981-1991
-
-
Dorn, G.W.1
Vega, R.B.2
Kelly, D.P.3
-
62
-
-
77649087980
-
Return to the fetal gene program: a suggested metabolic link to gene expression in the heart
-
[62] Taegtmeyer, H., Sen, S., Vela, D., Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann. N. Y. Acad. Sci. 1188 (2010), 191–198.
-
(2010)
Ann. N. Y. Acad. Sci.
, vol.1188
, pp. 191-198
-
-
Taegtmeyer, H.1
Sen, S.2
Vela, D.3
|