-
1
-
-
0036251153
-
SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125-1131.
-
(2002)
J Clin Invest
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
2
-
-
0030941803
-
The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
-
Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89: 331-340.
-
(1997)
Cell
, vol.89
, pp. 331-340
-
-
Brown, M.S.1
Goldstein, J.L.2
-
3
-
-
0030829812
-
Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene
-
Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 1997; 100: 2115-2124.
-
(1997)
J Clin Invest
, vol.100
, pp. 2115-2124
-
-
Shimano, H.1
Shimomura, I.2
Hammer, R.E.3
Herz, J.4
Goldstein, J.L.5
Brown, M.S.6
-
4
-
-
0037162719
-
Crucial step in cholesterol homeostasis: Sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER
-
Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002; 110: 489-500.
-
(2002)
Cell
, vol.110
, pp. 489-500
-
-
Yang, T.1
Espenshade, P.J.2
Wright, M.E.3
Yabe, D.4
Gong, Y.5
Aebersold, R.6
-
6
-
-
0344270908
-
Transcription-dependent degradation controls the stability of the SREBP family of transcription factors
-
Sundqvist A, Ericsson J. Transcription-dependent degradation controls the stability of the SREBP family of transcription factors. Proc Natl Acad Sci USA 2003; 100: 13833-13838.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 13833-13838
-
-
Sundqvist, A.1
Ericsson, J.2
-
7
-
-
23844530704
-
Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7)
-
Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 2005; 1: 379-391.
-
(2005)
Cell Metab
, vol.1
, pp. 379-391
-
-
Sundqvist, A.1
Bengoechea-Alonso, M.T.2
Ye, X.3
Lukiyanchuk, V.4
Jin, J.5
Harper, J.W.6
-
8
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146: 408-420.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
Carmack, A.E.4
Kang, S.A.5
Balderas, E.6
-
9
-
-
77649251207
-
MTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis
-
Laplante M, Sabatini DM. mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proc Natl Acad Sci USA 2010; 107: 3281-3282.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 3281-3282
-
-
Laplante, M.1
Sabatini, D.M.2
-
10
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39: 171-183.
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
-
11
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
-
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008; 8: 224-236.
-
(2008)
Cell Metab
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
Santos, C.R.2
Griffiths, B.3
Cully, M.4
Wu, M.5
Leevers, S.6
-
12
-
-
79959996153
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011; 14: 21-32.
-
(2011)
Cell Metab
, vol.14
, pp. 21-32
-
-
Yecies, J.L.1
Zhang, H.H.2
Menon, S.3
Liu, S.4
Yecies, D.5
Lipovsky, A.I.6
-
13
-
-
0034515724
-
ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs
-
Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 2000; 6: 1355-1364.
-
(2000)
Mol Cell
, vol.6
, pp. 1355-1364
-
-
Ye, J.1
Rawson, R.B.2
Komuro, R.3
Chen, X.4
Dave, U.P.5
Prywes, R.6
-
14
-
-
66449137379
-
GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice
-
Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 2009; 119: 1201-1215.
-
(2009)
J Clin Invest
, vol.119
, pp. 1201-1215
-
-
Kammoun, H.L.1
Chabanon, H.2
Hainault, I.3
Luquet, S.4
Magnan, C.5
Koike, T.6
-
15
-
-
73349106233
-
Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response
-
Schuck S, Prinz WA, Thorn KS, Voss C, Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 2009; 187: 525-536.
-
(2009)
J Cell Biol
, vol.187
, pp. 525-536
-
-
Schuck, S.1
Prinz, W.A.2
Thorn, K.S.3
Voss, C.4
Walter, P.5
-
16
-
-
5444257618
-
Membrane biogenesis and the unfolded protein response
-
Ron D, Hampton RY. Membrane biogenesis and the unfolded protein response. J Cell Biol 2004; 167: 23-25.
-
(2004)
J Cell Biol
, vol.167
, pp. 23-25
-
-
Ron, D.1
Hampton, R.Y.2
-
17
-
-
79953755370
-
AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in dietinduced insulin-resistant mice
-
Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in dietinduced insulin-resistant mice. Cell Metab 2011; 13: 376-388.
-
(2011)
Cell Metab
, vol.13
, pp. 376-388
-
-
Li, Y.1
Xu, S.2
Mihaylova, M.M.3
Zheng, B.4
Hou, X.5
Jiang, B.6
-
19
-
-
84868609110
-
TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration
-
Morioka S, Inagaki M, Komatsu Y, Mishina Y, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood 2012; 120: 3846-3857.
-
(2012)
Blood
, vol.120
, pp. 3846-3857
-
-
Morioka, S.1
Inagaki, M.2
Komatsu, Y.3
Mishina, Y.4
Matsumoto, K.5
Ninomiya-Tsuji, J.6
-
20
-
-
33745851830
-
TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis
-
Omori E, Matsumoto K, Sanjo H, Sato S, Akira S, Smart RC et al. TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J Biol Chem 2006; 281: 19610-19617.
-
(2006)
J Biol Chem
, vol.281
, pp. 19610-19617
-
-
Omori, E.1
Matsumoto, K.2
Sanjo, H.3
Sato, S.4
Akira, S.5
Smart, R.C.6
-
21
-
-
49049095991
-
Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis
-
Kajino-Sakamoto R, Inagaki M, Lippert E, Akira S, Robine S, Matsumoto K et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J Immunol 2008; 181: 1143-1152.
-
(2008)
J Immunol
, vol.181
, pp. 1143-1152
-
-
Kajino-Sakamoto, R.1
Inagaki, M.2
Lippert, E.3
Akira, S.4
Robine, S.5
Matsumoto, K.6
-
22
-
-
84894628175
-
TAK1 binding protein 2 is essential for liver protection from stressors
-
Ikeda Y, Morioka S, Matsumoto K, Ninomiya-Tsuji J. TAK1 binding protein 2 is essential for liver protection from stressors. PLoS ONE 2014; 9: e88037.
-
(2014)
PLoS ONE
, vol.9
, pp. e88037
-
-
Ikeda, Y.1
Morioka, S.2
Matsumoto, K.3
Ninomiya-Tsuji, J.4
-
23
-
-
76249087046
-
Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis
-
Inokuchi S, Aoyama T, Miura K, Osterreicher CH, Kodama Y, Miyai K et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci USA 2010; 107: 844-849.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 844-849
-
-
Inokuchi, S.1
Aoyama, T.2
Miura, K.3
Osterreicher, C.H.4
Kodama, Y.5
Miyai, K.6
-
24
-
-
77952107213
-
TAK1 suppresses a NEMO-dependent but NF-B-independent pathway to liver cancer
-
Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F et al. TAK1 suppresses a NEMO-dependent but NF-B-independent pathway to liver cancer. Cancer Cell 2010; 17: 481-496.
-
(2010)
Cancer Cell
, vol.17
, pp. 481-496
-
-
Bettermann, K.1
Vucur, M.2
Haybaeck, J.3
Koppe, C.4
Janssen, J.5
Heymann, F.6
-
25
-
-
84894024528
-
TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation
-
Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G, Matsumoto K et al. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. J Cell Biol 2014; 204: 607-623.
-
(2014)
J Cell Biol
, vol.204
, pp. 607-623
-
-
Morioka, S.1
Broglie, P.2
Omori, E.3
Ikeda, Y.4
Takaesu, G.5
Matsumoto, K.6
-
26
-
-
84876474899
-
Transforming growth factor-signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1
-
e1044
-
Yang L, Inokuchi S, Roh YS, Song J, Loomba R, Park EJ et al. Transforming growth factor-signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology 2013; 144: 1042-1054 e1044.
-
(2013)
Gastroenterology
, vol.144
, pp. 1042-1054
-
-
Yang, L.1
Inokuchi, S.2
Roh, Y.S.3
Song, J.4
Loomba, R.5
Park, E.J.6
-
27
-
-
79952595097
-
The role of JNK in the development of hepatocellular carcinoma
-
Das M, Garlick DS, Greiner DL, Davis RJ. The role of JNK in the development of hepatocellular carcinoma. Genes Dev 2011; 25: 634-645.
-
(2011)
Genes Dev
, vol.25
, pp. 634-645
-
-
Das, M.1
Garlick, D.S.2
Greiner, D.L.3
Davis, R.J.4
-
28
-
-
67749117934
-
Signal integration by JNK and p38 MAPK pathways in cancer development
-
Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9: 537-549.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 537-549
-
-
Wagner, E.F.1
Nebreda, A.R.2
-
29
-
-
33846839443
-
Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma
-
Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007; 11: 119-132.
-
(2007)
Cancer Cell
, vol.11
, pp. 119-132
-
-
Luedde, T.1
Beraza, N.2
Kotsikoris, V.3
Van Loo, G.4
Nenci, A.5
De Vos, R.6
-
30
-
-
21244472975
-
IKK couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis
-
Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKK couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 977-990.
-
(2005)
Cell
, vol.121
, pp. 977-990
-
-
Maeda, S.1
Kamata, H.2
Luo, J.L.3
Leffert, H.4
Karin, M.5
-
31
-
-
33745298519
-
Nuclear factor-B in cancer development and progression
-
Karin M. Nuclear factor-B in cancer development and progression. Nature 2006; 441: 431-436.
-
(2006)
Nature
, vol.441
, pp. 431-436
-
-
Karin, M.1
-
32
-
-
0031746820
-
In situ detection of insulin-like growth factor II (IGF2) and H19 gene expression in hepatocellular carcinoma
-
Sohda T, Iwata K, Soejima H, Kamimura S, Shijo H, Yun K. In situ detection of insulin-like growth factor II (IGF2) and H19 gene expression in hepatocellular carcinoma. J Hum Genet 1998; 43: 49-53.
-
(1998)
J Hum Genet
, vol.43
, pp. 49-53
-
-
Sohda, T.1
Iwata, K.2
Soejima, H.3
Kamimura, S.4
Shijo, H.5
Yun, K.6
-
33
-
-
37149033830
-
The H19 non-coding RNA is essential for human tumor growth
-
Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A et al. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE 2007; 2: e845.
-
(2007)
PLoS ONE
, vol.2
, pp. e845
-
-
Matouk, I.J.1
DeGroot, N.2
Mezan, S.3
Ayesh, S.4
Abu-Lail, R.5
Hochberg, A.6
-
34
-
-
33748749167
-
Rex3 (reduced in expression 3) as a new tumor marker in mouse hepatocarcinogenesis
-
Braeuning A, Jaworski M, Schwarz M, Kohle C. Rex3 (reduced in expression 3) as a new tumor marker in mouse hepatocarcinogenesis. Toxicology 2006; 227: 127-135.
-
(2006)
Toxicology
, vol.227
, pp. 127-135
-
-
Braeuning, A.1
Jaworski, M.2
Schwarz, M.3
Kohle, C.4
-
35
-
-
84905472344
-
TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis
-
Inokuchi-Shimizu S, Park EJ, Roh YS, Yang L, Zhang B, Song J et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest 2014; 124: 3566-3578.
-
(2014)
J Clin Invest
, vol.124
, pp. 3566-3578
-
-
Inokuchi-Shimizu, S.1
Park, E.J.2
Roh, Y.S.3
Yang, L.4
Zhang, B.5
Song, J.6
-
36
-
-
79959517565
-
Human fatty liver disease: Old questions and new insights
-
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332: 1519-1523.
-
(2011)
Science
, vol.332
, pp. 1519-1523
-
-
Cohen, J.C.1
Horton, J.D.2
Hobbs, H.H.3
-
37
-
-
4043077961
-
Molecular mediators of hepatic steatosis and liver injury
-
Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114: 147-152.
-
(2004)
J Clin Invest
, vol.114
, pp. 147-152
-
-
Browning, J.D.1
Horton, J.D.2
-
38
-
-
70449927269
-
Prevention of steatosis by hepatic JNK1
-
Sabio G, Cavanagh-Kyros J, Ko HJ, Jung DY, Gray S, Jun JY et al. Prevention of steatosis by hepatic JNK1. Cell Metab 2009; 10: 491-498.
-
(2009)
Cell Metab
, vol.10
, pp. 491-498
-
-
Sabio, G.1
Cavanagh-Kyros, J.2
Ko, H.J.3
Jung, D.Y.4
Gray, S.5
Jun, J.Y.6
-
39
-
-
33748747706
-
Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro
-
Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 2006; 281: 25336-25343.
-
(2006)
J Biol Chem
, vol.281
, pp. 25336-25343
-
-
Momcilovic, M.1
Hong, S.P.2
Carlson, M.3
-
40
-
-
34248147701
-
TAK1 MAPK kinase kinase mediates transforming growth factor-signaling by targeting SnoN oncoprotein for degradation
-
Kajino T, Omori E, Ishii S, Matsumoto K, Ninomiya-Tsuji J. TAK1 MAPK kinase kinase mediates transforming growth factor-signaling by targeting SnoN oncoprotein for degradation. J Biol Chem 2007; 282: 9475-9481.
-
(2007)
J Biol Chem
, vol.282
, pp. 9475-9481
-
-
Kajino, T.1
Omori, E.2
Ishii, S.3
Matsumoto, K.4
Ninomiya-Tsuji, J.5
-
41
-
-
0033634977
-
TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway
-
Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000; 5: 649-658.
-
(2000)
Mol Cell
, vol.5
, pp. 649-658
-
-
Takaesu, G.1
Kishida, S.2
Hiyama, A.3
Yamaguchi, K.4
Shibuya, H.5
Irie, K.6
-
42
-
-
0034629146
-
TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop
-
Kishimoto K, Matsumoto K, Ninomiya-Tsuji J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J Biol Chem 2000; 275: 7359-7364.
-
(2000)
J Biol Chem
, vol.275
, pp. 7359-7364
-
-
Kishimoto, K.1
Matsumoto, K.2
Ninomiya-Tsuji, J.3
-
43
-
-
77955497476
-
Autoactivation of transforming growth factor-activated kinase 1 is a sequential bimolecular process
-
Scholz R, Sidler CL, Thali RF, Winssinger N, Cheung PC, Neumann D. Autoactivation of transforming growth factor-activated kinase 1 is a sequential bimolecular process. J Biol Chem 2010; 285: 25753-25766.
-
(2010)
J Biol Chem
, vol.285
, pp. 25753-25766
-
-
Scholz, R.1
Sidler, C.L.2
Thali, R.F.3
Winssinger, N.4
Cheung, P.C.5
Neumann, D.6
-
44
-
-
69049116165
-
A small molecule that blocks fat synthesis by inhibiting the activation of SREBP
-
Kamisuki S, Mao Q, Abu-Elheiga L, Gu Z, Kugimiya A, Kwon Y et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem Biol 2009; 16: 882-892.
-
(2009)
Chem Biol
, vol.16
, pp. 882-892
-
-
Kamisuki, S.1
Mao, Q.2
Abu-Elheiga, L.3
Gu, Z.4
Kugimiya, A.5
Kwon, Y.6
-
45
-
-
84860441011
-
Inflammation and lipid signaling in the etiology of insulin resistance
-
Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 2012; 15: 635-645.
-
(2012)
Cell Metab
, vol.15
, pp. 635-645
-
-
Glass, C.K.1
Olefsky, J.M.2
-
46
-
-
0036789186
-
Tumor necrosis factor-stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP
-
Zhang HH, Halbleib M, Ahmad F, Manganiello VC, Greenberg AS. Tumor necrosis factor-stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 2002; 51: 2929-2935.
-
(2002)
Diabetes
, vol.51
, pp. 2929-2935
-
-
Zhang, H.H.1
Halbleib, M.2
Ahmad, F.3
Manganiello, V.C.4
Greenberg, A.S.5
-
47
-
-
35549002789
-
TNF-interferes with lipid homeostasis and activates acute and proatherogenic processes
-
Fon Tacer K, Kuzman D, Seliskar M, Pompon D, Rozman D. TNF-interferes with lipid homeostasis and activates acute and proatherogenic processes. Physiol Genomics 2007; 31: 216-227.
-
(2007)
Physiol Genomics
, vol.31
, pp. 216-227
-
-
Fon Tacer, K.1
Kuzman, D.2
Seliskar, M.3
Pompon, D.4
Rozman, D.5
-
48
-
-
10544235694
-
SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein
-
Oliner JD, Andresen JM, Hansen SK, Zhou SL, Tjian R. SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev 1996; 10: 2903-2911.
-
(1996)
Genes Dev
, vol.10
, pp. 2903-2911
-
-
Oliner, J.D.1
Andresen, J.M.2
Hansen, S.K.3
Zhou, S.L.4
Tjian, R.5
-
49
-
-
0034693259
-
Sterol regulatory element-binding proteins (SREBPs): Key regulators of nutritional homeostasis and insulin action
-
Osborne TF. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem 2000; 275: 32379-32382.
-
(2000)
J Biol Chem
, vol.275
, pp. 32379-32382
-
-
Osborne, T.F.1
-
50
-
-
41549160315
-
Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival
-
Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2008; 22: 954-965.
-
(2008)
FASEB J
, vol.22
, pp. 954-965
-
-
Junttila, M.R.1
Li, S.P.2
Westermarck, J.3
-
51
-
-
44849108079
-
Protein phosphatase 2A is a negative regulator of transforming growth factor-1-induced TAK1 activation in mesangial cells
-
Kim SI, Kwak JH, Wang L, Choi ME. Protein phosphatase 2A is a negative regulator of transforming growth factor-1-induced TAK1 activation in mesangial cells. J Biol Chem 2008; 283: 10753-10763.
-
(2008)
J Biol Chem
, vol.283
, pp. 10753-10763
-
-
Kim, S.I.1
Kwak, J.H.2
Wang, L.3
Choi, M.E.4
-
52
-
-
33845994781
-
Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway
-
Kajino T, Ren H, Iemura S, Natsume T, Stefansson B, Brautigan DL et al. Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. J Biol Chem 2006; 281: 39891-39896.
-
(2006)
J Biol Chem
, vol.281
, pp. 39891-39896
-
-
Kajino, T.1
Ren, H.2
Iemura, S.3
Natsume, T.4
Stefansson, B.5
Brautigan, D.L.6
-
53
-
-
0032532152
-
Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: Model for congenital generalized lipodystrophy
-
Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 1998; 12: 3182-3194.
-
(1998)
Genes Dev
, vol.12
, pp. 3182-3194
-
-
Shimomura, I.1
Hammer, R.E.2
Richardson, J.A.3
Ikemoto, S.4
Bashmakov, Y.5
Goldstein, J.L.6
-
54
-
-
33947264902
-
Transgenic mice expressing nuclear sterol regulatory element-binding protein 1c in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis
-
Nakayama H, Otabe S, Ueno T, Hirota N, Yuan X, Fukutani T et al. Transgenic mice expressing nuclear sterol regulatory element-binding protein 1c in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis. Metabolism 2007; 56: 470-475.
-
(2007)
Metabolism
, vol.56
, pp. 470-475
-
-
Nakayama, H.1
Otabe, S.2
Ueno, T.3
Hirota, N.4
Yuan, X.5
Fukutani, T.6
-
55
-
-
84861738395
-
Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis
-
Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2012; 18: 2300-2308.
-
(2012)
World J Gastroenterol
, vol.18
, pp. 2300-2308
-
-
Takahashi, Y.1
Soejima, Y.2
Fukusato, T.3
-
56
-
-
20044385758
-
Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma
-
Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC et al. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci USA 2005; 102: 3389-3394.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 3389-3394
-
-
Campbell, J.S.1
Hughes, S.D.2
Gilbertson, D.G.3
Palmer, T.E.4
Holdren, M.S.5
Haran, A.C.6
-
57
-
-
68849118378
-
Experimental mouse models for hepatocellular carcinoma research.
-
Heindryckx F, Colle I, Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 2009; 90: 367-386.
-
(2009)
Int J Exp Pathol
, vol.90
, pp. 367-386
-
-
Heindryckx, F.1
Colle, I.2
Van Vlierberghe, H.3
-
58
-
-
33747830764
-
Hepatocellular carcinoma pathogenesis: From genes to environment
-
Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 674-687.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 674-687
-
-
Farazi, P.A.1
DePinho, R.A.2
-
59
-
-
84874789694
-
Epigenetic activation of the MIR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma
-
Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 2013; 34: 577-586.
-
(2013)
Carcinogenesis
, vol.34
, pp. 577-586
-
-
Zhang, L.1
Yang, F.2
Yuan, J.H.3
Yuan, S.X.4
Zhou, W.P.5
Huo, X.S.6
-
60
-
-
27544434183
-
Essential function for the kinase TAK1 in innate and adaptive immune responses
-
Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005; 6: 1087-1095.
-
(2005)
Nat Immunol
, vol.6
, pp. 1087-1095
-
-
Sato, S.1
Sanjo, H.2
Takeda, K.3
Ninomiya-Tsuji, J.4
Yamamoto, M.5
Kawai, T.6
-
61
-
-
0032898369
-
Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic cell-specific gene knock-outs using Cre recombinase
-
Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999; 274: 305-315.
-
(1999)
J Biol Chem
, vol.274
, pp. 305-315
-
-
Postic, C.1
Shiota, M.2
Niswender, K.D.3
Jetton, T.L.4
Chen, Y.5
Moates, J.M.6
-
62
-
-
0027297663
-
Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. Monocytogenes infection
-
Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 1993; 73: 457-467.
-
(1993)
Cell
, vol.73
, pp. 457-467
-
-
Pfeffer, K.1
Matsuyama, T.2
Kundig, T.M.3
Wakeham, A.4
Kishihara, K.5
Shahinian, A.6
-
63
-
-
0033580466
-
The kinase TAK1 can activate the NIK-IB as well as the MAP kinase cascade in the IL-1 signalling pathway
-
Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-IB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398: 252-256.
-
(1999)
Nature
, vol.398
, pp. 252-256
-
-
Ninomiya-Tsuji, J.1
Kishimoto, K.2
Hiyama, A.3
Inoue, J.4
Cao, Z.5
Matsumoto, K.6
-
64
-
-
4444349833
-
Selective coactivator interactions in gene activation by SREBP-1a and-1c
-
Toth JI, Datta S, Athanikar JN, Freedman LP, Osborne TF. Selective coactivator interactions in gene activation by SREBP-1a and-1c. Mol Cell Biol 2004; 24: 8288-8300.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 8288-8300
-
-
Toth, J.I.1
Datta, S.2
Athanikar, J.N.3
Freedman, L.P.4
Osborne, T.F.5
-
65
-
-
0030298339
-
Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein
-
Hua X, Nohturfft A, Goldstein JL, Brown MS. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 1996; 87: 415-426.
-
(1996)
Cell
, vol.87
, pp. 415-426
-
-
Hua, X.1
Nohturfft, A.2
Goldstein, J.L.3
Brown, M.S.4
-
66
-
-
33646359441
-
TAK1 is a component of the Epstein-Barr virus LMP1 complex and is essential for activation of JNK but not of NF-B
-
Uemura N, Kajino T, Sanjo H, Sato S, Akira S, Matsumoto K et al. TAK1 is a component of the Epstein-Barr virus LMP1 complex and is essential for activation of JNK but not of NF-B. J Biol Chem 2006; 281: 7863-7872.
-
(2006)
J Biol Chem
, vol.281
, pp. 7863-7872
-
-
Uemura, N.1
Kajino, T.2
Sanjo, H.3
Sato, S.4
Akira, S.5
Matsumoto, K.6
-
67
-
-
67349205025
-
TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP
-
Morioka S, Omori E, Kajino T, Kajino-Sakamoto R, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP. Oncogene 2009; 28: 2257-2265.
-
(2009)
Oncogene
, vol.28
, pp. 2257-2265
-
-
Morioka, S.1
Omori, E.2
Kajino, T.3
Kajino-Sakamoto, R.4
Matsumoto, K.5
Ninomiya-Tsuji, J.6
-
68
-
-
0037903145
-
A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase
-
Ninomiya-Tsuji J, Kajino T, Ono K, Ohtomo T, Matsumoto M, Shiina M et al. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem 2003; 278: 18485-18490.
-
(2003)
J Biol Chem
, vol.278
, pp. 18485-18490
-
-
Ninomiya-Tsuji, J.1
Kajino, T.2
Ono, K.3
Ohtomo, T.4
Matsumoto, M.5
Shiina, M.6
-
69
-
-
0025111798
-
Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene
-
Smith JR, Osborne TF, Goldstein JL, Brown MS. Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. J Biol Chem 1990; 265: 2306-2310.
-
(1990)
J Biol Chem
, vol.265
, pp. 2306-2310
-
-
Smith, J.R.1
Osborne, T.F.2
Goldstein, J.L.3
Brown, M.S.4
-
70
-
-
84876847812
-
Sterol regulatory element-binding proteins are regulators of the NIS gene in thyroid cells
-
Ringseis R, Rauer C, Rothe S, Gessner DK, Schutz LM, Luci S et al. Sterol regulatory element-binding proteins are regulators of the NIS gene in thyroid cells. Mol Endocrinol 2013; 27: 781-800.
-
(2013)
Mol Endocrinol
, vol.27
, pp. 781-800
-
-
Ringseis, R.1
Rauer, C.2
Rothe, S.3
Gessner, D.K.4
Schutz, L.M.5
Luci, S.6
|