-
1
-
-
84899503695
-
Oxidative stress-mediated reperfusion injury: mechanism and therapies
-
[1] Xia, Z., Chen, Y., Fan, Q., Xue, M., Oxidative stress-mediated reperfusion injury: mechanism and therapies. Oxid. Med. Cell. Longevity, 2014, 2014, 373081.
-
(2014)
Oxid. Med. Cell. Longevity
, vol.2014
, pp. 373081
-
-
Xia, Z.1
Chen, Y.2
Fan, Q.3
Xue, M.4
-
2
-
-
84896266772
-
Oxidative stress in traumatic brain injury
-
[2] Rodriguez-Rodriguez, A., Egea-Guerrero, J.J., Murillo-Cabezas, F., Carrillo-Vico, A., Oxidative stress in traumatic brain injury. Curr. Med. Chem. 21 (2014), 1201–1211.
-
(2014)
Curr. Med. Chem.
, vol.21
, pp. 1201-1211
-
-
Rodriguez-Rodriguez, A.1
Egea-Guerrero, J.J.2
Murillo-Cabezas, F.3
Carrillo-Vico, A.4
-
3
-
-
84902322007
-
Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning
-
[3] Kalogeris, T., Bao, Y., Korthuis, R.J., Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2 (2014), 702–714.
-
(2014)
Redox Biol.
, vol.2
, pp. 702-714
-
-
Kalogeris, T.1
Bao, Y.2
Korthuis, R.J.3
-
4
-
-
82755197676
-
Lysosomes and lysosomal cathepsins in cell death
-
[4] Repnik, U., Stoka, V., Turk, V., Turk, B., Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta 1824 (2012), 22–33.
-
(2012)
Biochim. Biophys. Acta
, vol.1824
, pp. 22-33
-
-
Repnik, U.1
Stoka, V.2
Turk, V.3
Turk, B.4
-
5
-
-
34247490186
-
Mitochondria, oxidative stress and cell death
-
[5] Ott, M., Gogvadze, V., Orrenius, S., Zhivotovsky, B., Mitochondria, oxidative stress and cell death. Apoptosis 12 (2007), 913–922.
-
(2007)
Apoptosis
, vol.12
, pp. 913-922
-
-
Ott, M.1
Gogvadze, V.2
Orrenius, S.3
Zhivotovsky, B.4
-
6
-
-
32944481457
-
Metallothionein protects against oxidative stress-induced lysosomal destabilization
-
[6] Baird, S.K., Kurz, T., Brunk, U.T., Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem. J. 394 (2006), 275–283.
-
(2006)
Biochem. J.
, vol.394
, pp. 275-283
-
-
Baird, S.K.1
Kurz, T.2
Brunk, U.T.3
-
7
-
-
84877773212
-
Different molecular mechanisms involved in spontaneous and oxidative stress-induced mitochondrial fragmentation in tripeptidyl peptidase-1 (TPP-1)-deficient fibroblasts
-
[7] Van Beersel, G., Tihon, E., Demine, S., Hamer, I., Jadot, M., Arnould, T., Different molecular mechanisms involved in spontaneous and oxidative stress-induced mitochondrial fragmentation in tripeptidyl peptidase-1 (TPP-1)-deficient fibroblasts. Biosci. Rep., 33, 2013, e00023.
-
(2013)
Biosci. Rep.
, vol.33
, pp. e00023
-
-
Van Beersel, G.1
Tihon, E.2
Demine, S.3
Hamer, I.4
Jadot, M.5
Arnould, T.6
-
8
-
-
84890909950
-
Loss of TRPML1 promotes production of reactive oxygen species: is oxidative damage a factor in mucolipidosis type IV?
-
[8] Coblentz, J., St Croix, C., Kiselyov, K., Loss of TRPML1 promotes production of reactive oxygen species: is oxidative damage a factor in mucolipidosis type IV?. Biochem. J. 457 (2014), 361–368.
-
(2014)
Biochem. J.
, vol.457
, pp. 361-368
-
-
Coblentz, J.1
St Croix, C.2
Kiselyov, K.3
-
9
-
-
41049114693
-
Lysosomes in iron metabolism, ageing and apoptosis
-
[9] Kurz, T., Terman, A., Gustafsson, B., Brunk, U.T., Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell. Biol. 129 (2008), 389–406.
-
(2008)
Histochem. Cell. Biol.
, vol.129
, pp. 389-406
-
-
Kurz, T.1
Terman, A.2
Gustafsson, B.3
Brunk, U.T.4
-
10
-
-
77449152992
-
Oxidative stress and its role in the pathogenesis of ischaemic stroke
-
[10] Allen, C.L., Bayraktutan, U., Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke 4 (2009), 461–470.
-
(2009)
Int. J. Stroke
, vol.4
, pp. 461-470
-
-
Allen, C.L.1
Bayraktutan, U.2
-
11
-
-
0036018104
-
The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals
-
[11] Yoshioka, M., Tanaka, K., Miyazaki, I., Fujita, N., Higashi, Y., Asanuma, M., Ogawa, N., The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals. Neurosci. Res. 43 (2002), 259–267.
-
(2002)
Neurosci. Res.
, vol.43
, pp. 259-267
-
-
Yoshioka, M.1
Tanaka, K.2
Miyazaki, I.3
Fujita, N.4
Higashi, Y.5
Asanuma, M.6
Ogawa, N.7
-
13
-
-
84908477211
-
Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis
-
[13] Miller, M.W., Sadeh, N., Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis. Mol. Psychiatry 19 (2014), 1156–1162.
-
(2014)
Mol. Psychiatry
, vol.19
, pp. 1156-1162
-
-
Miller, M.W.1
Sadeh, N.2
-
14
-
-
84897365963
-
A delicate balance: iron metabolism and diseases of the brain
-
[14] Hare, D., Ayton, S., Bush, A., Lei, P., A delicate balance: iron metabolism and diseases of the brain. Front. Aging Neurosci., 5, 2013, 34.
-
(2013)
Front. Aging Neurosci.
, vol.5
, pp. 34
-
-
Hare, D.1
Ayton, S.2
Bush, A.3
Lei, P.4
-
15
-
-
3242715838
-
Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover
-
[15] Terman, A., Dalen, H., Eaton, J.W., Neuzil, J., Brunk, U.T., Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Annu. N.Y. Acad. Sci. 1019 (2004), 70–77.
-
(2004)
Annu. N.Y. Acad. Sci.
, vol.1019
, pp. 70-77
-
-
Terman, A.1
Dalen, H.2
Eaton, J.W.3
Neuzil, J.4
Brunk, U.T.5
-
16
-
-
0038781698
-
Stroke: molecular mechanisms and potential targets for treatment
-
[16] Zheng, Z., Lee, J.E., Yenari, M.A., Stroke: molecular mechanisms and potential targets for treatment. Curr. Mol. Med. 3 (2003), 361–372.
-
(2003)
Curr. Mol. Med.
, vol.3
, pp. 361-372
-
-
Zheng, Z.1
Lee, J.E.2
Yenari, M.A.3
-
17
-
-
84891718802
-
Evaluation of oxidative stress in patients with acute ischemic stroke
-
[17] Cojocaru, I.M., Cojocaru, M., Sapira, V., Ionescu, A., Evaluation of oxidative stress in patients with acute ischemic stroke. Rom. J. Intern. Med. 51 (2013), 97–106.
-
(2013)
Rom. J. Intern. Med.
, vol.51
, pp. 97-106
-
-
Cojocaru, I.M.1
Cojocaru, M.2
Sapira, V.3
Ionescu, A.4
-
18
-
-
84930971549
-
Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction
-
[18] Neri, M., Fineschi, V., Di Paolo, M., Pomara, C., Riezzo, I., Turillazzi, E., Cerretani, D., Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr. Vasc. Pharmacol. 13 (2015), 26–36.
-
(2015)
Curr. Vasc. Pharmacol.
, vol.13
, pp. 26-36
-
-
Neri, M.1
Fineschi, V.2
Di Paolo, M.3
Pomara, C.4
Riezzo, I.5
Turillazzi, E.6
Cerretani, D.7
-
19
-
-
84882712899
-
Traumatic brain injury: oxidative stress and neuroprotection
-
[19] Cornelius, C., Crupi, R., Calabrese, V., Graziano, A., Milone, P., Pennisi, G., Radak, Z., Calabrese, E.J., Cuzzocrea, S., Traumatic brain injury: oxidative stress and neuroprotection. Antioxid. Redox Signal. 19 (2013), 836–853.
-
(2013)
Antioxid. Redox Signal.
, vol.19
, pp. 836-853
-
-
Cornelius, C.1
Crupi, R.2
Calabrese, V.3
Graziano, A.4
Milone, P.5
Pennisi, G.6
Radak, Z.7
Calabrese, E.J.8
Cuzzocrea, S.9
-
20
-
-
84899153721
-
Metabolism and functions of copper in brain
-
[20] Scheiber, I.F., Mercer, J.F., Dringen, R., Metabolism and functions of copper in brain. Prog. Neurobiol. 116 (2014), 33–57.
-
(2014)
Prog. Neurobiol.
, vol.116
, pp. 33-57
-
-
Scheiber, I.F.1
Mercer, J.F.2
Dringen, R.3
-
21
-
-
84918521408
-
Oxidative stress and inflammatory signaling in cerulein pancreatitis
-
[21] Yu, J.H., Kim, H., Oxidative stress and inflammatory signaling in cerulein pancreatitis. World J. Gastroenterol. 20 (2014), 17324–17329.
-
(2014)
World J. Gastroenterol.
, vol.20
, pp. 17324-17329
-
-
Yu, J.H.1
Kim, H.2
-
22
-
-
80051578926
-
Mitochondrial recoupling: a novel therapeutic strategy for cancer?
-
[22] Baffy, G., Derdak, Z., Robson, S.C., Mitochondrial recoupling: a novel therapeutic strategy for cancer?. Br. J. Cancer 105 (2011), 469–474.
-
(2011)
Br. J. Cancer
, vol.105
, pp. 469-474
-
-
Baffy, G.1
Derdak, Z.2
Robson, S.C.3
-
23
-
-
84863738048
-
Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
-
[23] Drose, S., Brandt, U., Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol. 748 (2012), 145–169.
-
(2012)
Adv. Exp. Med. Biol.
, vol.748
, pp. 145-169
-
-
Drose, S.1
Brandt, U.2
-
24
-
-
84905921169
-
Regulators of mitochondrial Ca(2+) homeostasis in cerebral ischemia
-
[24] Schafer, M.K., Pfeiffer, A., Jaeckel, M., Pouya, A., Dolga, A.M., Methner, A., Regulators of mitochondrial Ca(2+) homeostasis in cerebral ischemia. Cell Tissue Res. 357 (2014), 395–405.
-
(2014)
Cell Tissue Res.
, vol.357
, pp. 395-405
-
-
Schafer, M.K.1
Pfeiffer, A.2
Jaeckel, M.3
Pouya, A.4
Dolga, A.M.5
Methner, A.6
-
25
-
-
77549083577
-
Calcium, ischemia and excitotoxicity
-
[25] Szydlowska, K., Tymianski, M., Calcium, ischemia and excitotoxicity. Cell Calcium 47 (2010), 122–129.
-
(2010)
Cell Calcium
, vol.47
, pp. 122-129
-
-
Szydlowska, K.1
Tymianski, M.2
-
26
-
-
0037307212
-
To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways
-
[26] Liou, A.K., Clark, R.S., Henshall, D.C., Yin, X.M., Chen, J., To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog. Neurobiol. 69 (2003), 103–142.
-
(2003)
Prog. Neurobiol.
, vol.69
, pp. 103-142
-
-
Liou, A.K.1
Clark, R.S.2
Henshall, D.C.3
Yin, X.M.4
Chen, J.5
-
27
-
-
0026663037
-
A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis
-
[27] Brunk, U.T., Jones, C.B., Sohal, R.S., A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat. Res. 275 (1992), 395–403.
-
(1992)
Mutat. Res.
, vol.275
, pp. 395-403
-
-
Brunk, U.T.1
Jones, C.B.2
Sohal, R.S.3
-
28
-
-
84952772333
-
Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV
-
1591–601
-
[28] Grishchuk, Y., Peña, K.A., Coblentz, J., King, V.E., Humphrey, D.M., Wang, S.L., Kiselyov, K.I., Slaugenhaupt, S.A., Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV. Dis. Models Mech., 8, 2015 1591–601.
-
(2015)
Dis. Models Mech.
, vol.8
-
-
Grishchuk, Y.1
Peña, K.A.2
Coblentz, J.3
King, V.E.4
Humphrey, D.M.5
Wang, S.L.6
Kiselyov, K.I.7
Slaugenhaupt, S.A.8
-
29
-
-
80755181339
-
The neurophysiology and pathology of brain zinc
-
[29] Sensi, S.L., Paoletti, P., Koh, J.Y., Aizenman, E., Bush, A.I., Hershfinkel, M., The neurophysiology and pathology of brain zinc. J. Neurosci. 31 (2011), 16076–16085.
-
(2011)
J. Neurosci.
, vol.31
, pp. 16076-16085
-
-
Sensi, S.L.1
Paoletti, P.2
Koh, J.Y.3
Aizenman, E.4
Bush, A.I.5
Hershfinkel, M.6
-
30
-
-
77954359335
-
Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions
-
[30] Lee, S.J., Park, M.H., Kim, H.J., Koh, J.Y., Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 58 (2010), 1186–1196.
-
(2010)
Glia
, vol.58
, pp. 1186-1196
-
-
Lee, S.J.1
Park, M.H.2
Kim, H.J.3
Koh, J.Y.4
-
31
-
-
77958147359
-
Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes
-
[31] Lee, S.J., Koh, J.Y., Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol. Brain, 3, 2010, 30.
-
(2010)
Mol. Brain
, vol.3
, pp. 30
-
-
Lee, S.J.1
Koh, J.Y.2
-
32
-
-
84946169585
-
Intracellular zinc is a critical intermediate in the excitotoxic cascade
-
[32] Granzotto, A., Sensi, S.L., Intracellular zinc is a critical intermediate in the excitotoxic cascade. Neurobiol. Dis. 81 (2015), 25–37.
-
(2015)
Neurobiol. Dis.
, vol.81
, pp. 25-37
-
-
Granzotto, A.1
Sensi, S.L.2
-
33
-
-
84930753441
-
Oxidative stress in hypertension: mechanisms and therapeutic opportunities
-
[33] Brito, R., Castillo, G., Gonzalez, J., Valls, N., Rodrigo, R., Oxidative stress in hypertension: mechanisms and therapeutic opportunities. Exp. Clin. Endocrinol. Diabetes 123 (2015), 325–335.
-
(2015)
Exp. Clin. Endocrinol. Diabetes
, vol.123
, pp. 325-335
-
-
Brito, R.1
Castillo, G.2
Gonzalez, J.3
Valls, N.4
Rodrigo, R.5
-
34
-
-
70349096774
-
Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc
-
[34] Lee, S.J., Cho, K.S., Koh, J.Y., Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc. Glia 57 (2009), 1351–1361.
-
(2009)
Glia
, vol.57
, pp. 1351-1361
-
-
Lee, S.J.1
Cho, K.S.2
Koh, J.Y.3
-
35
-
-
84937973607
-
Advances in revealing the molecular targets downstream of oxidative stress-induced proapoptotic kinase signaling in diabetic embryopathy
-
[35] Wang, F., Reece, E.A., Yang, P., Advances in revealing the molecular targets downstream of oxidative stress-induced proapoptotic kinase signaling in diabetic embryopathy. Am. J. Obstet. Gynecol. 213 (2015), 125–134.
-
(2015)
Am. J. Obstet. Gynecol.
, vol.213
, pp. 125-134
-
-
Wang, F.1
Reece, E.A.2
Yang, P.3
-
36
-
-
84901847600
-
CaMKII oxidative activation and the pathogenesis of cardiac disease
-
[36] Luczak, E.D., Anderson, M.E., CaMKII oxidative activation and the pathogenesis of cardiac disease. J. Mol. Cell. Cardiol. 73 (2014), 112–116.
-
(2014)
J. Mol. Cell. Cardiol.
, vol.73
, pp. 112-116
-
-
Luczak, E.D.1
Anderson, M.E.2
-
37
-
-
79960709505
-
Roles of TRPM2 in oxidative stress
-
[37] Takahashi, N., Kozai, D., Kobayashi, R., Ebert, M., Mori, Y., Roles of TRPM2 in oxidative stress. Cell Calcium 50 (2011), 279–287.
-
(2011)
Cell Calcium
, vol.50
, pp. 279-287
-
-
Takahashi, N.1
Kozai, D.2
Kobayashi, R.3
Ebert, M.4
Mori, Y.5
-
38
-
-
84923069024
-
Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels
-
[38] Veit, F., Pak, O., Brandes, R.P., Weissmann, N., Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid. Redox Signal 22 (2015), 537–552.
-
(2015)
Antioxid. Redox Signal
, vol.22
, pp. 537-552
-
-
Veit, F.1
Pak, O.2
Brandes, R.P.3
Weissmann, N.4
-
39
-
-
84938494066
-
TRPM2 channel-mediated ROS-sensitive Ca(2+) signaling mechanisms in immune cells
-
[39] Syed Mortadza, S.A., Wang, L., Li, D., Jiang, L.H., TRPM2 channel-mediated ROS-sensitive Ca(2+) signaling mechanisms in immune cells. Front. Immunol., 6, 2015, 407.
-
(2015)
Front. Immunol.
, vol.6
, pp. 407
-
-
Syed Mortadza, S.A.1
Wang, L.2
Li, D.3
Jiang, L.H.4
-
40
-
-
84923106525
-
Redox regulation of ion channels in the pulmonary circulation
-
[40] Olschewski, A., Weir, E.K., Redox regulation of ion channels in the pulmonary circulation. Antioxid. Redox Signal. 22 (2015), 465–485.
-
(2015)
Antioxid. Redox Signal.
, vol.22
, pp. 465-485
-
-
Olschewski, A.1
Weir, E.K.2
-
41
-
-
84923086739
-
Redox and nitric oxide-mediated regulation of sensory neuron ion channel function
-
[41] Gamper, N., Ooi, L., Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid. Redox Signal. 22 (2015), 486–504.
-
(2015)
Antioxid. Redox Signal.
, vol.22
, pp. 486-504
-
-
Gamper, N.1
Ooi, L.2
-
42
-
-
84988490977
-
Oxidation of KCNB1 K(+) channels in central nervous system and beyond
-
[42] Sesti, F., Wu, X., Liu, S., Oxidation of KCNB1 K(+) channels in central nervous system and beyond. World J. Biol. Chem. 5 (2014), 85–92.
-
(2014)
World J. Biol. Chem.
, vol.5
, pp. 85-92
-
-
Sesti, F.1
Wu, X.2
Liu, S.3
-
43
-
-
84905015021
-
Oxidative modulation of voltage-gated potassium channels
-
[43] Sahoo, N., Hoshi, T., Heinemann, S.H., Oxidative modulation of voltage-gated potassium channels. Antioxid. Redox Signal. 21 (2014), 933–952.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, pp. 933-952
-
-
Sahoo, N.1
Hoshi, T.2
Heinemann, S.H.3
-
44
-
-
84905029508
-
Redox regulation of transient receptor potential channels
-
[44] Kozai, D., Ogawa, N., Mori, Y., Redox regulation of transient receptor potential channels. Antioxid. Redox Signal. 21 (2014), 971–986.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, pp. 971-986
-
-
Kozai, D.1
Ogawa, N.2
Mori, Y.3
-
45
-
-
43049153016
-
Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications
-
[45] Hidalgo, C., Donoso, P., Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid. Redox Signal. 10 (2008), 1275–1312.
-
(2008)
Antioxid. Redox Signal.
, vol.10
, pp. 1275-1312
-
-
Hidalgo, C.1
Donoso, P.2
-
46
-
-
79954992084
-
Modulation of cardiac ryanodine receptor activity by ROS and RNS
-
[46] Donoso, P., Sanchez, G., Bull, R., Hidalgo, C., Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front. Biosci. (Landmark Ed.) 16 (2011), 553–567.
-
(2011)
Front. Biosci. (Landmark Ed.)
, vol.16
, pp. 553-567
-
-
Donoso, P.1
Sanchez, G.2
Bull, R.3
Hidalgo, C.4
-
47
-
-
84952629360
-
The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca(2)(+)-release channel
-
[47] Vervloessem, T., Yule, D.I., Bultynck, G., Parys, J.B., The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca(2)(+)-release channel. Biochim. Biophys. Acta 1853 (2015), 1992–2005.
-
(2015)
Biochim. Biophys. Acta
, vol.1853
, pp. 1992-2005
-
-
Vervloessem, T.1
Yule, D.I.2
Bultynck, G.3
Parys, J.B.4
-
48
-
-
84920772190
-
Role of IP3 receptor signaling in cell functions and diseases
-
[48] Mikoshiba, K., Role of IP3 receptor signaling in cell functions and diseases. Adv. Biol. Regul. 57 (2015), 217–227.
-
(2015)
Adv. Biol. Regul.
, vol.57
, pp. 217-227
-
-
Mikoshiba, K.1
-
49
-
-
84930535797
-
Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: a single-channel point of view
-
[49] Mak, D.O., Foskett, J.K., Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: a single-channel point of view. Cell Calcium 58 (2015), 67–78.
-
(2015)
Cell Calcium
, vol.58
, pp. 67-78
-
-
Mak, D.O.1
Foskett, J.K.2
-
50
-
-
0026444081
-
2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor
-
2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 267 (1992), 25113–25119.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 25113-25119
-
-
Bootman, M.D.1
Taylor, C.W.2
Berridge, M.J.3
-
51
-
-
0028900714
-
The effect of mersalyl on inositol trisphosphate receptor binding and ion channel function
-
[51] Joseph, S.K., Ryan, S.V., Pierson, S., Renard-Rooney, D., Thomas, A.P., The effect of mersalyl on inositol trisphosphate receptor binding and ion channel function. J. Biol. Chem. 270 (1995), 3588–3593.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 3588-3593
-
-
Joseph, S.K.1
Ryan, S.V.2
Pierson, S.3
Renard-Rooney, D.4
Thomas, A.P.5
-
52
-
-
0029093480
-
Effect of oxidized glutathione and temperature on inositol 1 4,5-trisphosphate binding in permeabilized hepatocytes
-
[52] Renard-Rooney, D.C., Joseph, S.K., Seitz, M.B., Thomas, A.P., Effect of oxidized glutathione and temperature on inositol 1 4,5-trisphosphate binding in permeabilized hepatocytes. Biochem. J. 310:Pt 1 (1995), 185–192.
-
(1995)
Biochem. J.
, vol.310
, pp. 185-192
-
-
Renard-Rooney, D.C.1
Joseph, S.K.2
Seitz, M.B.3
Thomas, A.P.4
-
54
-
-
27644495213
-
H2O2 directly activates inositol 1,4,5-trisphosphate receptors in endothelial cells
-
[54] Zheng, Y., Shen, X., H2O2 directly activates inositol 1,4,5-trisphosphate receptors in endothelial cells. Redox Rep. 10 (2005), 29–36.
-
(2005)
Redox Rep.
, vol.10
, pp. 29-36
-
-
Zheng, Y.1
Shen, X.2
-
56
-
-
84897010947
-
Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species
-
[56] Bansaghi, S., Golenar, T., Madesh, M., Csordas, G., RamachandraRao, S., Sharma, K., Yule, D.I., Joseph, S.K., Hajnoczky, G., Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species. J. Biol. Chem. 289 (2014), 8170–8181.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 8170-8181
-
-
Bansaghi, S.1
Golenar, T.2
Madesh, M.3
Csordas, G.4
RamachandraRao, S.5
Sharma, K.6
Yule, D.I.7
Joseph, S.K.8
Hajnoczky, G.9
-
57
-
-
25444525139
-
Selective role for superoxide in InsP3 receptor-mediated mitochondrial dysfunction and endothelial apoptosis
-
[57] Madesh, M., Hawkins, B.J., Milovanova, T., Bhanumathy, C.D., Joseph, S.K., Ramachandrarao, S.P., Sharma, K., Kurosaki, T., Fisher, A.B., Selective role for superoxide in InsP3 receptor-mediated mitochondrial dysfunction and endothelial apoptosis. J. Cell Biol. 170 (2005), 1079–1090.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 1079-1090
-
-
Madesh, M.1
Hawkins, B.J.2
Milovanova, T.3
Bhanumathy, C.D.4
Joseph, S.K.5
Ramachandrarao, S.P.6
Sharma, K.7
Kurosaki, T.8
Fisher, A.B.9
-
58
-
-
79954596666
-
Reactive oxygen species in the regulation of synaptic plasticity and memory
-
[58] Massaad, C.A., Klann, E., Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid. Redox Signal. 14 (2011), 2013–2054.
-
(2011)
Antioxid. Redox Signal.
, vol.14
, pp. 2013-2054
-
-
Massaad, C.A.1
Klann, E.2
-
59
-
-
84928572321
-
Interorganellar membrane microdomains: dynamic platforms in the control of calcium signaling and apoptosis
-
[59] Annunziata, I., d'Azzo, A., Interorganellar membrane microdomains: dynamic platforms in the control of calcium signaling and apoptosis. Cells 2 (2013), 574–590.
-
(2013)
Cells
, vol.2
, pp. 574-590
-
-
Annunziata, I.1
d'Azzo, A.2
-
60
-
-
84855799966
-
The ER-mitochondria interface: the social network of cell death
-
[60] Grimm, S., The ER-mitochondria interface: the social network of cell death. Biochim. Biophys. Acta 1823 (2012), 327–334.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 327-334
-
-
Grimm, S.1
-
61
-
-
84919687734
-
Ryanodine receptors: allosteric ion channel giants
-
[61] Van Petegem, F., Ryanodine receptors: allosteric ion channel giants. J. Mol. Biol. 427 (2015), 31–53.
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 31-53
-
-
Van Petegem, F.1
-
62
-
-
84908387174
-
Calcium in the heart: from physiology to disease
-
[62] Eisner, D., Calcium in the heart: from physiology to disease. Exp. Physiol. 99 (2014), 1273–1282.
-
(2014)
Exp. Physiol.
, vol.99
, pp. 1273-1282
-
-
Eisner, D.1
-
63
-
-
84886099424
-
Ryanodine receptor calcium release channels: lessons from structure-function studies
-
[63] Amador, F.J., Stathopulos, P.B., Enomoto, M., Ikura, M., Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J. 280 (2013), 5456–5470.
-
(2013)
FEBS J.
, vol.280
, pp. 5456-5470
-
-
Amador, F.J.1
Stathopulos, P.B.2
Enomoto, M.3
Ikura, M.4
-
64
-
-
84875058166
-
Posttranslational modifications of cardiac ryanodine receptors: ca(2+) signaling and EC-coupling
-
[64] Niggli, E., Ullrich, N.D., Gutierrez, D., Kyrychenko, S., Polakova, E., Shirokova, N., Posttranslational modifications of cardiac ryanodine receptors: ca(2+) signaling and EC-coupling. Biochim. Biophys. Acta 1833 (2013), 866–875.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 866-875
-
-
Niggli, E.1
Ullrich, N.D.2
Gutierrez, D.3
Kyrychenko, S.4
Polakova, E.5
Shirokova, N.6
-
66
-
-
79960940824
-
Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging
-
[66] Andersson, D.C., Betzenhauser, M.J., Reiken, S., Meli, A.C., Umanskaya, A., Xie, W., Shiomi, T., Zalk, R., Lacampagne, A., Marks, A.R., Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 14 (2011), 196–207.
-
(2011)
Cell Metab.
, vol.14
, pp. 196-207
-
-
Andersson, D.C.1
Betzenhauser, M.J.2
Reiken, S.3
Meli, A.C.4
Umanskaya, A.5
Xie, W.6
Shiomi, T.7
Zalk, R.8
Lacampagne, A.9
Marks, A.R.10
-
67
-
-
84941243899
-
Mitochondrial calcium overload is a key determinant in heart failure
-
[67] Santulli, G., Xie, W., Reiken, S.R., Marks, A.R., Mitochondrial calcium overload is a key determinant in heart failure. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 11389–11394.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 11389-11394
-
-
Santulli, G.1
Xie, W.2
Reiken, S.R.3
Marks, A.R.4
-
68
-
-
58149347130
-
2+ and redox modification of ryanodine receptor channels from rat brain cortex
-
2+ and redox modification of ryanodine receptor channels from rat brain cortex. J. Neurosci. 28 (2008), 9463–9472.
-
(2008)
J. Neurosci.
, vol.28
, pp. 9463-9472
-
-
Bull, R.1
Finkelstein, J.P.2
Galvez, J.3
Sanchez, G.4
Donoso, P.5
Behrens, M.I.6
Hidalgo, C.7
-
69
-
-
84888433466
-
2+ handling in ageing rabbit hearts
-
2+ handling in ageing rabbit hearts. J. Physiol. 591 (2013), 5895–5911.
-
(2013)
J. Physiol.
, vol.591
, pp. 5895-5911
-
-
Cooper, L.L.1
Li, W.2
Lu, Y.3
Centracchio, J.4
Terentyeva, R.5
Koren, G.6
Terentyev, D.7
-
70
-
-
84952651106
-
Crosstalk between RyR2 oxidation and phosphorylation contributes to cardiac dysfunction in mice with Duchenne muscular dystrophy
-
[70] Wang, Q., Wang, W., Wang, G., Rodney, G.G., Wehrens, X.H., Crosstalk between RyR2 oxidation and phosphorylation contributes to cardiac dysfunction in mice with Duchenne muscular dystrophy. J. Mol. Cell Cardiol. 89 (2015), 177–184.
-
(2015)
J. Mol. Cell Cardiol.
, vol.89
, pp. 177-184
-
-
Wang, Q.1
Wang, W.2
Wang, G.3
Rodney, G.G.4
Wehrens, X.H.5
-
71
-
-
84935006953
-
2+ release via ROS-stimulated ryanodine receptors
-
2+ release via ROS-stimulated ryanodine receptors. PLoS One, 10, 2015, e0129238.
-
(2015)
PLoS One
, vol.10
, pp. e0129238
-
-
Llanos, P.1
Contreras-Ferrat, A.2
Barrientos, G.3
Valencia, M.4
Mears, D.5
Hidalgo, C.6
-
72
-
-
84899745823
-
Insulin elicits a ROS-activated and an IP(3)-dependent Ca(2)(+) release, which both impinge on GLUT4 translocation
-
[72] Contreras-Ferrat, A., Llanos, P., Vasquez, C., Espinosa, A., Osorio-Fuentealba, C., Arias-Calderon, M., Lavandero, S., Klip, A., Hidalgo, C., Jaimovich, E., Insulin elicits a ROS-activated and an IP(3)-dependent Ca(2)(+) release, which both impinge on GLUT4 translocation. J. Cell Sci. 127 (2014), 1911–1923.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 1911-1923
-
-
Contreras-Ferrat, A.1
Llanos, P.2
Vasquez, C.3
Espinosa, A.4
Osorio-Fuentealba, C.5
Arias-Calderon, M.6
Lavandero, S.7
Klip, A.8
Hidalgo, C.9
Jaimovich, E.10
-
74
-
-
77955175462
-
Oxidative posttranslational modifications mediate decreased SERCA activity and myocyte dysfunction in Galphaq-overexpressing mice
-
[74] Lancel, S., Qin, F., Lennon, S.L., Zhang, J., Tong, X., Mazzini, M.J., Kang, Y.J., Siwik, D.A., Cohen, R.A., Colucci, W.S., Oxidative posttranslational modifications mediate decreased SERCA activity and myocyte dysfunction in Galphaq-overexpressing mice. Circ. Res. 107 (2010), 228–232.
-
(2010)
Circ. Res.
, vol.107
, pp. 228-232
-
-
Lancel, S.1
Qin, F.2
Lennon, S.L.3
Zhang, J.4
Tong, X.5
Mazzini, M.J.6
Kang, Y.J.7
Siwik, D.A.8
Cohen, R.A.9
Colucci, W.S.10
-
75
-
-
0037205291
-
Antioxidant improves smooth muscle sarco/endoplasmic reticulum Ca(2+)-ATPase function and lowers tyrosine nitration in hypercholesterolemia and improves nitric oxide-induced relaxation
-
[75] Adachi, T., Matsui, R., Xu, S., Kirber, M., Lazar, H.L., Sharov, V.S., Schoneich, C., Cohen, R.A., Antioxidant improves smooth muscle sarco/endoplasmic reticulum Ca(2+)-ATPase function and lowers tyrosine nitration in hypercholesterolemia and improves nitric oxide-induced relaxation. Circ. Res. 90 (2002), 1114–1121.
-
(2002)
Circ. Res.
, vol.90
, pp. 1114-1121
-
-
Adachi, T.1
Matsui, R.2
Xu, S.3
Kirber, M.4
Lazar, H.L.5
Sharov, V.S.6
Schoneich, C.7
Cohen, R.A.8
-
76
-
-
78649711041
-
The effects of hydrogen peroxide on intracellular calcium handling and contractility in the rat ventricular myocyte
-
[76] Greensmith, D.J., Eisner, D.A., Nirmalan, M., The effects of hydrogen peroxide on intracellular calcium handling and contractility in the rat ventricular myocyte. Cell Calcium 48 (2010), 341–351.
-
(2010)
Cell Calcium
, vol.48
, pp. 341-351
-
-
Greensmith, D.J.1
Eisner, D.A.2
Nirmalan, M.3
-
78
-
-
0030721991
-
2+ pump in endothelium: implications to coronary artery function
-
2+ pump in endothelium: implications to coronary artery function. Am. J. Physiol. 273 (1997), C1250–1258.
-
(1997)
Am. J. Physiol.
, vol.273
, pp. C1250-1258
-
-
Grover, A.K.1
Samson, S.E.2
-
79
-
-
84898631678
-
The families of zinc (SLC30 and SLC39) and copper (SLC31) transporters
-
[79] Schweigel-Rontgen, M., The families of zinc (SLC30 and SLC39) and copper (SLC31) transporters. Curr. Top Membr. 73 (2014), 321–355.
-
(2014)
Curr. Top Membr.
, vol.73
, pp. 321-355
-
-
Schweigel-Rontgen, M.1
-
80
-
-
36749037766
-
Mammalian iron metabolism
-
[80] Valerio, L.G., Mammalian iron metabolism. Toxicol. Mech. Methods 17 (2007), 497–517.
-
(2007)
Toxicol. Mech. Methods
, vol.17
, pp. 497-517
-
-
Valerio, L.G.1
-
81
-
-
84875196486
-
The SLC30 family of zinc transporters—a review of current understanding of their biological and pathophysiological roles
-
[81] Huang, L., Tepaamorndech, S., The SLC30 family of zinc transporters—a review of current understanding of their biological and pathophysiological roles. Mol. Aspects Med. 34 (2013), 548–560.
-
(2013)
Mol. Aspects Med.
, vol.34
, pp. 548-560
-
-
Huang, L.1
Tepaamorndech, S.2
-
82
-
-
84867152630
-
Molecular architecture and function of ZnT transporters
-
[82] Kambe, T., Molecular architecture and function of ZnT transporters. Curr. Top Membr. 69 (2012), 199–220.
-
(2012)
Curr. Top Membr.
, vol.69
, pp. 199-220
-
-
Kambe, T.1
-
83
-
-
84918579143
-
GPR39 Zn(2+)-sensing receptor: a new target in antidepressant development?
-
[83] Mlyniec, K., Singewald, N., Holst, B., Nowak, G., GPR39 Zn(2+)-sensing receptor: a new target in antidepressant development?. J. Affect. Disord. 174 (2015), 89–100.
-
(2015)
J. Affect. Disord.
, vol.174
, pp. 89-100
-
-
Mlyniec, K.1
Singewald, N.2
Holst, B.3
Nowak, G.4
-
84
-
-
84942111349
-
Zinc in the glutamatergic theory of depression
-
[84] Mlyniec, K., Zinc in the glutamatergic theory of depression. Curr. Neuropharmacol. 13 (2015), 505–513.
-
(2015)
Curr. Neuropharmacol.
, vol.13
, pp. 505-513
-
-
Mlyniec, K.1
-
85
-
-
0028343364
-
Zinc toxicity on cultured cortical neurons: involvement of N-methyl-D-aspartate receptors
-
[85] Koh, J.Y., Choi, D.W., Zinc toxicity on cultured cortical neurons: involvement of N-methyl-D-aspartate receptors. Neuroscience 60 (1994), 1049–1057.
-
(1994)
Neuroscience
, vol.60
, pp. 1049-1057
-
-
Koh, J.Y.1
Choi, D.W.2
-
86
-
-
84939896720
-
Permeation regulation and control of expression of TRP channels by trace metal ions
-
1143–64
-
[86] Bouron, A., Kiselyov, K., Oberwinkler, J., Permeation regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch., 467, 2014 1143–64.
-
(2014)
Pflugers Arch.
, vol.467
-
-
Bouron, A.1
Kiselyov, K.2
Oberwinkler, J.3
-
87
-
-
0031194657
-
Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells
-
[87] Manev, H., Kharlamov, E., Uz, T., Mason, R.P., Cagnoli, C.M., Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells. Exp. Neurol. 146 (1997), 171–178.
-
(1997)
Exp. Neurol.
, vol.146
, pp. 171-178
-
-
Manev, H.1
Kharlamov, E.2
Uz, T.3
Mason, R.P.4
Cagnoli, C.M.5
-
88
-
-
9144252732
-
ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc
-
[88] Nolte, C., Gore, A., Sekler, I., Kresse, W., Hershfinkel, M., Hoffmann, A., Kettenmann, H., Moran, A., ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 48 (2004), 145–155.
-
(2004)
Glia
, vol.48
, pp. 145-155
-
-
Nolte, C.1
Gore, A.2
Sekler, I.3
Kresse, W.4
Hershfinkel, M.5
Hoffmann, A.6
Kettenmann, H.7
Moran, A.8
-
89
-
-
84923012081
-
-
ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution, Science Reports in press 5, 2015, 8033.
-
[89] S.R. Hennigar, Y.A. Seo, S. Sharma, D.I. Soybel, S.L. Kelleher, ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution, Science Reports in press 5, 2015, 8033.
-
-
-
Hennigar, S.R.1
Seo, Y.A.2
Sharma, S.3
Soybel, D.I.4
Kelleher, S.L.5
-
90
-
-
78649753206
-
Functional analysis of two single nucleotide polymorphisms in SLC30A2 (ZnT2): implications for mammary gland function and breast disease in women
-
[90] Seo, Y.A., Kelleher, S.L., Functional analysis of two single nucleotide polymorphisms in SLC30A2 (ZnT2): implications for mammary gland function and breast disease in women. Physiol. Genomics 42A (2010), 219–227.
-
(2010)
Physiol. Genomics
, vol.42A
, pp. 219-227
-
-
Seo, Y.A.1
Kelleher, S.L.2
-
91
-
-
84896493072
-
The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution
-
[91] McCormick, N.H., Hennigar, S.R., Kiselyov, K., Kelleher, S.L., The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution. J. Mammary Gland Biol. Neoplasia 19 (2014), 59–71.
-
(2014)
J. Mammary Gland Biol. Neoplasia
, vol.19
, pp. 59-71
-
-
McCormick, N.H.1
Hennigar, S.R.2
Kiselyov, K.3
Kelleher, S.L.4
-
92
-
-
34447105299
-
Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1)
-
[92] Laity, J.H., Andrews, G.K., Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch. Biochem. Biophys. 463 (2007), 201–210.
-
(2007)
Arch. Biochem. Biophys.
, vol.463
, pp. 201-210
-
-
Laity, J.H.1
Andrews, G.K.2
-
93
-
-
0037036433
-
Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription
-
[93] Saydam, N., Adams, T.K., Steiner, F., Schaffner, W., Freedman, J.H., Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J. Biol. Chem. 277 (2002), 20438–20445.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 20438-20445
-
-
Saydam, N.1
Adams, T.K.2
Steiner, F.3
Schaffner, W.4
Freedman, J.H.5
-
94
-
-
0035696187
-
Cellular zinc sensors: mTF-1 regulation of gene expression
-
[94] Andrews, G.K., Cellular zinc sensors: mTF-1 regulation of gene expression. Biometals 14 (2001), 223–237.
-
(2001)
Biometals
, vol.14
, pp. 223-237
-
-
Andrews, G.K.1
-
95
-
-
79958276507
-
A review of metallothionein isoforms and their role in pathophysiology
-
[95] Thirumoorthy, N., Shyam Sunder, A., Manisenthil Kumar, K., Senthil Kumar, M., Ganesh, G., Chatterjee, M., A review of metallothionein isoforms and their role in pathophysiology. World J. Surg. Oncol., 9, 2011, 54.
-
(2011)
World J. Surg. Oncol.
, vol.9
, pp. 54
-
-
Thirumoorthy, N.1
Shyam Sunder, A.2
Manisenthil Kumar, K.3
Senthil Kumar, M.4
Ganesh, G.5
Chatterjee, M.6
-
96
-
-
34548512038
-
Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease
-
[96] Maret, W., Krezel, A., Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol. Med. 13 (2007), 371–375.
-
(2007)
Mol. Med.
, vol.13
, pp. 371-375
-
-
Maret, W.1
Krezel, A.2
-
97
-
-
84904672562
-
Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis
-
[97] Polishchuk, E.V., Concilli, M., Iacobacci, S., Chesi, G., Pastore, N., Piccolo, P., Paladino, S., Baldantoni, D., van, I.S.C., Chan, J., Chang, C.J., Amoresano, A., Pane, F., Pucci, P., Tarallo, A., Parenti, G., Brunetti-Pierri, N., Settembre, C., Ballabio, A., Polishchuk, R.S., Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell, 2014.
-
(2014)
Dev. Cell
-
-
Polishchuk, E.V.1
Concilli, M.2
Iacobacci, S.3
Chesi, G.4
Pastore, N.5
Piccolo, P.6
Paladino, S.7
Baldantoni, D.8
van, I.S.C.9
Chan, J.10
Chang, C.J.11
Amoresano, A.12
Pane, F.13
Pucci, P.14
Tarallo, A.15
Parenti, G.16
Brunetti-Pierri, N.17
Settembre, C.18
Ballabio, A.19
Polishchuk, R.S.20
more..
-
98
-
-
19944433044
-
The Wilson disease protein ATP7B resides in the late endosomes with Rab7 and the Niemann-Pick C1 protein
-
[98] Harada, M., Kawaguchi, T., Kumemura, H., Terada, K., Ninomiya, H., Taniguchi, E., Hanada, S., Baba, S., Maeyama, M., Koga, H., Ueno, T., Furuta, K., Suganuma, T., Sugiyama, T., Sata, M., The Wilson disease protein ATP7B resides in the late endosomes with Rab7 and the Niemann-Pick C1 protein. Am. J. Pathol. 166 (2005), 499–510.
-
(2005)
Am. J. Pathol.
, vol.166
, pp. 499-510
-
-
Harada, M.1
Kawaguchi, T.2
Kumemura, H.3
Terada, K.4
Ninomiya, H.5
Taniguchi, E.6
Hanada, S.7
Baba, S.8
Maeyama, M.9
Koga, H.10
Ueno, T.11
Furuta, K.12
Suganuma, T.13
Sugiyama, T.14
Sata, M.15
-
99
-
-
77956330693
-
Copper handling machinery of the brain
-
[99] Lutsenko, S., Bhattacharjee, A., Hubbard, A.L., Copper handling machinery of the brain. Metallomics 2 (2010), 596–608.
-
(2010)
Metallomics
, vol.2
, pp. 596-608
-
-
Lutsenko, S.1
Bhattacharjee, A.2
Hubbard, A.L.3
-
100
-
-
84882379413
-
Transcription factors Sp1 and Hif2 alpha mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia
-
[100] Xie, L., Collins, J.F., Transcription factors Sp1 and Hif2 alpha mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia. J. Biol. Chem. 288 (2013), 23943–23952.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 23943-23952
-
-
Xie, L.1
Collins, J.F.2
-
101
-
-
79957643510
-
Transcriptional regulation of the Menkes copper ATPase (Atp7a) gene by hypoxia-inducible factor (HIF2{alpha}) in intestinal epithelial cells
-
[101] Xie, L., Collins, J.F., Transcriptional regulation of the Menkes copper ATPase (Atp7a) gene by hypoxia-inducible factor (HIF2{alpha}) in intestinal epithelial cells. Am. J. Physiol. Cell Physiol. 300 (2011), C1298–1305.
-
(2011)
Am. J. Physiol. Cell Physiol.
, vol.300
, pp. C1298-1305
-
-
Xie, L.1
Collins, J.F.2
-
102
-
-
84928010413
-
Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons
-
[102] Ji, C., Kosman, D.J., Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons. J. Neurochem. 133 (2015), 668–683.
-
(2015)
J. Neurochem.
, vol.133
, pp. 668-683
-
-
Ji, C.1
Kosman, D.J.2
-
104
-
-
79952714265
-
Divalent metal transporter 1 is a hypoxia-inducible gene
-
[104] Qian, Z.M., Wu, X.M., Fan, M., Yang, L., Du, F., Yung, W.H., Ke, Y., Divalent metal transporter 1 is a hypoxia-inducible gene. J. Cell Physiol. 226 (2011), 1596–1603.
-
(2011)
J. Cell Physiol.
, vol.226
, pp. 1596-1603
-
-
Qian, Z.M.1
Wu, X.M.2
Fan, M.3
Yang, L.4
Du, F.5
Yung, W.H.6
Ke, Y.7
-
105
-
-
68649116755
-
SR/ER-mitochondrial local communication: calcium and ROS
-
[105] Csordas, G., Hajnoczky, G., SR/ER-mitochondrial local communication: calcium and ROS. Biochim. Biophys. Acta 1787 (2009), 1352–1362.
-
(2009)
Biochim. Biophys. Acta
, vol.1787
, pp. 1352-1362
-
-
Csordas, G.1
Hajnoczky, G.2
-
106
-
-
11144338185
-
Redox active calcium ion channels and cell death
-
[106] Waring, P., Redox active calcium ion channels and cell death. Arch. Biochem. Biophys. 434 (2005), 33–42.
-
(2005)
Arch. Biochem. Biophys.
, vol.434
, pp. 33-42
-
-
Waring, P.1
-
108
-
-
78751528230
-
Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior
-
[108] Li, Z., Ji, G., Neugebauer, V., Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior. J. Neurosci. 31 (2011), 1114–1127.
-
(2011)
J. Neurosci.
, vol.31
, pp. 1114-1127
-
-
Li, Z.1
Ji, G.2
Neugebauer, V.3
-
109
-
-
84891351174
-
Ryanodine receptor phosphorylation by oxidized CaMKII contributes to the cardiotoxic effects of cardiac glycosides
-
[109] Ho, H.T., Liu, B., Snyder, J.S., Lou, Q., Brundage, E.A., Velez-Cortes, F., Wang, H., Ziolo, M.T., Anderson, M.E., Sen, C.K., Wehrens, X.H., Fedorov, V.V., Biesiadecki, B.J., Hund, T.J., Gyorke, S., Ryanodine receptor phosphorylation by oxidized CaMKII contributes to the cardiotoxic effects of cardiac glycosides. Cardiovasc. Res. 101 (2014), 165–174.
-
(2014)
Cardiovasc. Res.
, vol.101
, pp. 165-174
-
-
Ho, H.T.1
Liu, B.2
Snyder, J.S.3
Lou, Q.4
Brundage, E.A.5
Velez-Cortes, F.6
Wang, H.7
Ziolo, M.T.8
Anderson, M.E.9
Sen, C.K.10
Wehrens, X.H.11
Fedorov, V.V.12
Biesiadecki, B.J.13
Hund, T.J.14
Gyorke, S.15
-
110
-
-
84938784867
-
Transition metals activate TFEB in overpexpressing cells
-
[110] Peña, K.A., Kiselyov, K., Transition metals activate TFEB in overpexpressing cells. Biochem. J. 470 (2015), 65–76.
-
(2015)
Biochem. J.
, vol.470
, pp. 65-76
-
-
Peña, K.A.1
Kiselyov, K.2
-
112
-
-
34250349160
-
Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling
-
[112] Hawkins, B.J., Madesh, M., Kirkpatrick, C.J., Fisher, A.B., Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol. Biol. Cell 18 (2007), 2002–2012.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2002-2012
-
-
Hawkins, B.J.1
Madesh, M.2
Kirkpatrick, C.J.3
Fisher, A.B.4
-
113
-
-
84885430473
-
ClC-3 deficiency prevents apoptosis induced by angiotensin II in endothelial progenitor cells via inhibition of NADPH oxidase
-
[113] Liu, J., Zhang, F.F., Li, L., Yang, J., Liu, J., Guan, Y.Y., Du, Y.H., ClC-3 deficiency prevents apoptosis induced by angiotensin II in endothelial progenitor cells via inhibition of NADPH oxidase. Apoptosis 18 (2013), 1262–1273.
-
(2013)
Apoptosis
, vol.18
, pp. 1262-1273
-
-
Liu, J.1
Zhang, F.F.2
Li, L.3
Yang, J.4
Liu, J.5
Guan, Y.Y.6
Du, Y.H.7
-
114
-
-
65349100528
-
Redox signaling across cell membranes
-
[114] Fisher, A.B., Redox signaling across cell membranes. Antioxid. Redox Signal. 11 (2009), 1349–1356.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 1349-1356
-
-
Fisher, A.B.1
-
115
-
-
54049156405
-
The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel
-
[115] Dong, X.P., Cheng, X., Mills, E., Delling, M., Wang, F., Kurz, T., Xu, H., The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455 (2008), 992–996.
-
(2008)
Nature
, vol.455
, pp. 992-996
-
-
Dong, X.P.1
Cheng, X.2
Mills, E.3
Delling, M.4
Wang, F.5
Kurz, T.6
Xu, H.7
-
116
-
-
84904884169
-
TRPML1: an ion channel in the lysosome
-
[116] Wang, W., Zhang, X., Gao, Q., Xu, H., TRPML1: an ion channel in the lysosome. Handb. Exp. Pharmacol. 222 (2014), 631–645.
-
(2014)
Handb. Exp. Pharmacol.
, vol.222
, pp. 631-645
-
-
Wang, W.1
Zhang, X.2
Gao, Q.3
Xu, H.4
-
117
-
-
33748090285
-
Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1
-
[117] Moos, T., Skjoerringe, T., Gosk, S., Morgan, E.H., Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. J. Neurochem. 98 (2006), 1946–1958.
-
(2006)
J. Neurochem.
, vol.98
, pp. 1946-1958
-
-
Moos, T.1
Skjoerringe, T.2
Gosk, S.3
Morgan, E.H.4
-
118
-
-
0347993815
-
The significance of the mutated divalent metal transporter (DMT1) on iron transport into the Belgrade rat brain
-
[118] Moos, T., Morgan, E.H., The significance of the mutated divalent metal transporter (DMT1) on iron transport into the Belgrade rat brain. J. Neurochem. 88 (2004), 233–245.
-
(2004)
J. Neurochem.
, vol.88
, pp. 233-245
-
-
Moos, T.1
Morgan, E.H.2
-
119
-
-
0035892632
-
Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat
-
[119] Burdo, J.R., Menzies, S.L., Simpson, I.A., Garrick, L.M., Garrick, M.D., Dolan, K.G., Haile, D.J., Beard, J.L., Connor, J.R., Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J. Neurosci. Res 66 (2001), 1198–1207.
-
(2001)
J. Neurosci. Res
, vol.66
, pp. 1198-1207
-
-
Burdo, J.R.1
Menzies, S.L.2
Simpson, I.A.3
Garrick, L.M.4
Garrick, M.D.5
Dolan, K.G.6
Haile, D.J.7
Beard, J.L.8
Connor, J.R.9
-
120
-
-
84921960605
-
The intracellular Ca(2)(+) channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy
-
[120] Cheng, X., Zhang, X., Gao, Q., Ali Samie, M., Azar, M., Tsang, W.L., Dong, L., Sahoo, N., Li, X., Zhuo, Y., Garrity, A.G., Wang, X., Ferrer, M., Dowling, J., Xu, L., Han, R., Xu, H., The intracellular Ca(2)(+) channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat. Med. 20 (2014), 1187–1192.
-
(2014)
Nat. Med.
, vol.20
, pp. 1187-1192
-
-
Cheng, X.1
Zhang, X.2
Gao, Q.3
Ali Samie, M.4
Azar, M.5
Tsang, W.L.6
Dong, L.7
Sahoo, N.8
Li, X.9
Zhuo, Y.10
Garrity, A.G.11
Wang, X.12
Ferrer, M.13
Dowling, J.14
Xu, L.15
Han, R.16
Xu, H.17
-
121
-
-
84884154195
-
A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis
-
[121] Samie, M., Wang, X., Zhang, X., Goschka, A., Li, X., Cheng, X., Gregg, E., Azar, M., Zhuo, Y., Garrity, A.G., Gao, Q., Slaugenhaupt, S., Pickel, J., Zolov, S.N., Weisman, L.S., Lenk, G.M., Titus, S., Bryant-Genevier, M., Southall, N., Juan, M., Ferrer, M., Xu, H., A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26 (2013), 511–524.
-
(2013)
Dev. Cell
, vol.26
, pp. 511-524
-
-
Samie, M.1
Wang, X.2
Zhang, X.3
Goschka, A.4
Li, X.5
Cheng, X.6
Gregg, E.7
Azar, M.8
Zhuo, Y.9
Garrity, A.G.10
Gao, Q.11
Slaugenhaupt, S.12
Pickel, J.13
Zolov, S.N.14
Weisman, L.S.15
Lenk, G.M.16
Titus, S.17
Bryant-Genevier, M.18
Southall, N.19
Juan, M.20
Ferrer, M.21
Xu, H.22
more..
-
122
-
-
33751120702
-
Lysosomal exocytosis is impaired in mucolipidosis type IV
-
[122] Laplante, J.M., Sun, M., Falardeau, J., Dai, D., Brown, E.M., Slaugenhaupt, S.A., Vassilev, P.M., Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol. Genet. Metab. 89 (2006), 339–348.
-
(2006)
Mol. Genet. Metab.
, vol.89
, pp. 339-348
-
-
Laplante, J.M.1
Sun, M.2
Falardeau, J.3
Dai, D.4
Brown, E.M.5
Slaugenhaupt, S.A.6
Vassilev, P.M.7
-
124
-
-
78049405392
-
Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel
-
[124] Eichelsdoerfer, J.L., Evans, J.A., Slaugenhaupt, S.A., Cuajungco, M.P., Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel. J. Biol. Chem. 285 (2010), 34304–34308.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 34304-34308
-
-
Eichelsdoerfer, J.L.1
Evans, J.A.2
Slaugenhaupt, S.A.3
Cuajungco, M.P.4
-
125
-
-
84911417800
-
Cellular zinc levels are modulated by TRPML1-TMEM163 interaction
-
[125] Cuajungco, M.P., Basilio, L.C., Silva, J., Hart, T., Tringali, J., Chen, C.C., Biel, M., Grimm, C., Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic 15 (2014), 1247–1265.
-
(2014)
Traffic
, vol.15
, pp. 1247-1265
-
-
Cuajungco, M.P.1
Basilio, L.C.2
Silva, J.3
Hart, T.4
Tringali, J.5
Chen, C.C.6
Biel, M.7
Grimm, C.8
-
126
-
-
84864969759
-
Cross-talk between TRPML1 channel, lipids and lysosomal storage diseases
-
[126] Weiss, N., Cross-talk between TRPML1 channel, lipids and lysosomal storage diseases. Commun. Integr. Biol. 5 (2012), 111–113.
-
(2012)
Commun. Integr. Biol.
, vol.5
, pp. 111-113
-
-
Weiss, N.1
-
127
-
-
84863922724
-
Phosphoinositide isoforms determine compartment-specific ion channel activity
-
11384–9
-
[127] Zhang, X., Li, X., Xu, H., Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc. Natl. Acad. Sci. U. S. A., 109, 2012 11384–9.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
-
-
Zhang, X.1
Li, X.2
Xu, H.3
-
128
-
-
84942077592
-
Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine
-
[128] Vucicevic, L., Misirkic-Marjanovic, M., Paunovic, V., Kravic-Stevovic, T., Martinovic, T., Ciric, D., Maric, N., Petricevic, S., Harhaji-Trajkovic, L., Bumbasirevic, V., Trajkovic, V., Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine. Autophagy 10 (2014), 2362–2378.
-
(2014)
Autophagy
, vol.10
, pp. 2362-2378
-
-
Vucicevic, L.1
Misirkic-Marjanovic, M.2
Paunovic, V.3
Kravic-Stevovic, T.4
Martinovic, T.5
Ciric, D.6
Maric, N.7
Petricevic, S.8
Harhaji-Trajkovic, L.9
Bumbasirevic, V.10
Trajkovic, V.11
-
129
-
-
84930413971
-
A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion
-
[129] Miao, Y., Li, G., Zhang, X., Xu, H., Abraham, S.N., A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 161 (2015), 1306–1319.
-
(2015)
Cell
, vol.161
, pp. 1306-1319
-
-
Miao, Y.1
Li, G.2
Zhang, X.3
Xu, H.4
Abraham, S.N.5
-
130
-
-
84930541540
-
The role of TRPMLs in endolysosomal trafficking and function
-
[130] Venkatachalam, K., Wong, C.O., Zhu, M.X., The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58 (2014), 48–56.
-
(2014)
Cell Calcium
, vol.58
, pp. 48-56
-
-
Venkatachalam, K.1
Wong, C.O.2
Zhu, M.X.3
-
131
-
-
79955075253
-
Macroautophagy is defective in mucolipin-1-deficient mouse neurons
-
[131] Curcio-Morelli, C., Charles, F.A., Micsenyi, M.C., Cao, Y., Venugopal, B., Browning, M.F., Dobrenis, K., Cotman, S.L., Walkley, S.U., Slaugenhaupt, S.A., Macroautophagy is defective in mucolipin-1-deficient mouse neurons. Neurobiol. Dis. 40 (2010), 370–377.
-
(2010)
Neurobiol. Dis.
, vol.40
, pp. 370-377
-
-
Curcio-Morelli, C.1
Charles, F.A.2
Micsenyi, M.C.3
Cao, Y.4
Venugopal, B.5
Browning, M.F.6
Dobrenis, K.7
Cotman, S.L.8
Walkley, S.U.9
Slaugenhaupt, S.A.10
-
132
-
-
67649882769
-
The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway
-
[132] Martina, J.A., Lelouvier, B., Puertollano, R., The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 10 (2009), 1143–1156.
-
(2009)
Traffic
, vol.10
, pp. 1143-1156
-
-
Martina, J.A.1
Lelouvier, B.2
Puertollano, R.3
-
133
-
-
49649089300
-
Autophagic dysfunction in mucolipidosis type IV patients
-
[133] Vergarajauregui, S., Connelly, P.S., Daniels, M.P., Puertollano, R., Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet. 17 (2008), 2723–2737.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 2723-2737
-
-
Vergarajauregui, S.1
Connelly, P.S.2
Daniels, M.P.3
Puertollano, R.4
-
134
-
-
84863321591
-
Campaign to Identify Agonists of Transient Receptor Potential Channels 3 and 2 (TRPML3 & TRPML2)
-
Probe Reports from the NIH Molecular Libraries Program Bethesda (MD)
-
[134] Saldanha, S.A., Grimm, C., Mercer, B.A., Choi, J.Y., Allais, C., Roush, W.R., Heller, S., Hodder, P., Campaign to Identify Agonists of Transient Receptor Potential Channels 3 and 2 (TRPML3 & TRPML2)., 2010, Probe Reports from the NIH Molecular Libraries Program, Bethesda (MD).
-
(2010)
-
-
Saldanha, S.A.1
Grimm, C.2
Mercer, B.A.3
Choi, J.Y.4
Allais, C.5
Roush, W.R.6
Heller, S.7
Hodder, P.8
-
135
-
-
84907320441
-
A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV
-
[135] Chen, C.C., Keller, M., Hess, M., Schiffmann, R., Urban, N., Wolfgardt, A., Schaefer, M., Bracher, F., Biel, M., Wahl-Schott, C., Grimm, C., A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat. Commun., 5, 2014, 4681.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4681
-
-
Chen, C.C.1
Keller, M.2
Hess, M.3
Schiffmann, R.4
Urban, N.5
Wolfgardt, A.6
Schaefer, M.7
Bracher, F.8
Biel, M.9
Wahl-Schott, C.10
Grimm, C.11
-
136
-
-
84988513869
-
Identification of Selective Agonists of the Transient Receptor Potential Channels 3 (TRPML3)
-
Probe Reports from the NIH Molecular Libraries Program Bethesda (MD)
-
[136] Saldanha, S.A., Grimm, C., Allais, C., Smith, E., Ouizem, S., Mercer, B.A., Roush, W.R., Heller, S., Hodder, P., Identification of Selective Agonists of the Transient Receptor Potential Channels 3 (TRPML3)., 2010, Probe Reports from the NIH Molecular Libraries Program, Bethesda (MD).
-
(2010)
-
-
Saldanha, S.A.1
Grimm, C.2
Allais, C.3
Smith, E.4
Ouizem, S.5
Mercer, B.A.6
Roush, W.R.7
Heller, S.8
Hodder, P.9
-
137
-
-
77049105199
-
Small molecule activators of TRPML3
-
[137] Grimm, C., Jors, S., Saldanha, S.A., Obukhov, A.G., Pan, B., Oshima, K., Cuajungco, M.P., Chase, P., Hodder, P., Heller, S., Small molecule activators of TRPML3. Chem. Biol. 17 (2010), 135–148.
-
(2010)
Chem. Biol.
, vol.17
, pp. 135-148
-
-
Grimm, C.1
Jors, S.2
Saldanha, S.A.3
Obukhov, A.G.4
Pan, B.5
Oshima, K.6
Cuajungco, M.P.7
Chase, P.8
Hodder, P.9
Heller, S.10
|