메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Author Correction: Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury (Scientific Reports, (2016), 6, 1, (21709), 10.1038/srep21709);Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVATING TRANSCRIPTION FACTOR 4; ATF4 PROTEIN, HUMAN; CCL2 PROTEIN, MOUSE; MONOCYTE CHEMOTACTIC PROTEIN 1; X BOX BINDING PROTEIN 1; XBP1 PROTEIN, MOUSE;

EID: 84959432869     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-021-04003-2     Document Type: Erratum
Times cited : (78)

References (62)
  • 2
    • 84892420334 scopus 로고    scopus 로고
    • Contrasting the glial response to axon injury in the central and peripheral nervous systems
    • Lutz, A. B. & Barres, B. A. Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev. Cell 28, 7-17 (2014).
    • (2014) Dev. Cell , vol.28 , pp. 7-17
    • Lutz, A.B.1    Barres, B.A.2
  • 3
    • 0001754953 scopus 로고
    • Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations prduced thereby in the structure of their primitive fibres
    • Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations prduced thereby in the structure of their primitive fibres. Philos. Trans. R. Soc. B Biol. Sci. 140, 423-429 (1850).
    • (1850) Philos. Trans. R. Soc. B Biol. Sci. , vol.140 , pp. 423-429
    • Waller, A.1
  • 4
    • 84861674629 scopus 로고    scopus 로고
    • Mitochondria as a central sensor for axonal degenerative stimuli
    • Court, F. A. & Coleman, M. P. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci. 35, 364-72 (2012).
    • (2012) Trends Neurosci. , vol.35 , pp. 364-372
    • Court, F.A.1    Coleman, M.P.2
  • 5
    • 84865381057 scopus 로고    scopus 로고
    • C-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration
    • Arthur-Farraj, P. J. et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75, 633-47 (2012).
    • (2012) Neuron , vol.75 , pp. 633-647
    • Arthur-Farraj, P.J.1
  • 6
    • 84887402375 scopus 로고    scopus 로고
    • Signals regulating myelination in peripheral nerves and the Schwann cell response to injury
    • Glenn, T. D. & Talbot, W. S. Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr. Opin. Neurobiol. 23, 1041-8 (2013).
    • (2013) Curr. Opin. Neurobiol. , vol.23 , pp. 1041-1048
    • Glenn, T.D.1    Talbot, W.S.2
  • 7
    • 70449678738 scopus 로고    scopus 로고
    • Molecular dissection of reactive astrogliosis and glial scar formation
    • Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638-647 (2009).
    • (2009) Trends Neurosci. , vol.32 , pp. 638-647
    • Sofroniew, M.V.1
  • 8
    • 84892948203 scopus 로고    scopus 로고
    • Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration
    • Li, S., Yang, L. & Selzer, M. E. Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration. Ann. Neurol. 74, 768-777 (2013).
    • (2013) Ann. Neurol. , vol.74 , pp. 768-777
    • Li, S.1    Yang, L.2    Selzer, M.E.3
  • 9
    • 84934275896 scopus 로고    scopus 로고
    • Proteostasis control by the unfolded protein response
    • Hetz, C., Chevet, E. & Oakes, S. A. Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17, 829-38 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 829-838
    • Hetz, C.1    Chevet, E.2    Oakes, S.A.3
  • 10
    • 34250794495 scopus 로고    scopus 로고
    • XBP1 controls diverse transcriptional regulatory networks
    • Acosta-Alvear, D. et al. XBP1 Controls Diverse Transcriptional Regulatory Networks. Mol. Cell 27, 53-66 (2007).
    • (2007) Mol. Cell , vol.27 , pp. 53-66
    • Acosta-Alvear, D.1
  • 11
    • 0037353039 scopus 로고    scopus 로고
    • An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
    • Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619-633 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 619-633
    • Harding, H.P.1
  • 13
    • 84897094564 scopus 로고    scopus 로고
    • Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases
    • Hetz, C. & Mollereau, B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat. Rev. Neurosci. 15, 233-49 (2014).
    • (2014) Nat. Rev. Neurosci. , vol.15 , pp. 233-249
    • Hetz, C.1    Mollereau, B.2
  • 14
    • 84857852395 scopus 로고    scopus 로고
    • Activation of the unfolded protein response enhances motor recovery after spinal cord injury
    • Valenzuela, V. et al. Activation of the unfolded protein response enhances motor recovery after spinal cord injury. Cell Death Dis. 3, e272 (2012).
    • (2012) Cell Death Dis. , vol.3 , pp. e272
    • Valenzuela, V.1
  • 15
    • 84879368095 scopus 로고    scopus 로고
    • Restoring endoplasmic reticulum homeostasis improves functional recovery after spinal cord injury
    • Ohri, S. S., Hetman, M. & Whittemore, S. R. Restoring endoplasmic reticulum homeostasis improves functional recovery after spinal cord injury. Neurobiol. Dis. 58, 29-37 (2013).
    • (2013) Neurobiol. Dis. , vol.58 , pp. 29-37
    • Ohri, S.S.1    Hetman, M.2    Whittemore, S.R.3
  • 16
    • 84915821489 scopus 로고    scopus 로고
    • Inhibition of GADD34, the stress-inducible regulatory subunit of the endoplasmic reticulum stress response, does not enhance functional recovery after spinal cord Injury
    • Ohri, S. S., Mullins, A., Hetman, M. & Whittemore, S. R. Inhibition of GADD34, the stress-inducible regulatory subunit of the endoplasmic reticulum stress response, does not enhance functional recovery after spinal cord Injury. PLoS One 9, e109703 (2014).
    • (2014) PLoS One , vol.9 , pp. e109703
    • Ohri, S.S.1    Mullins, A.2    Hetman, M.3    Whittemore, S.R.4
  • 17
    • 84942263830 scopus 로고    scopus 로고
    • Functional role of the disulfide isomerase ERp57 in axonal regeneration
    • Castillo, V. et al. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration. PLoS One 10, e0136620 (2015).
    • (2015) PLoS One , vol.10 , pp. e0136620
    • Castillo, V.1
  • 18
    • 67349164383 scopus 로고    scopus 로고
    • A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice
    • Saxena, S., Cabuy, E. & Caroni, P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat. Neurosci. 12, 627-36 (2009).
    • (2009) Nat. Neurosci. , vol.12 , pp. 627-636
    • Saxena, S.1    Cabuy, E.2    Caroni, P.3
  • 19
    • 80052777066 scopus 로고    scopus 로고
    • Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons
    • Penas, C. et al. Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death Differ. 18, 1617-27 (2011).
    • (2011) Cell Death Differ. , vol.18 , pp. 1617-1627
    • Penas, C.1
  • 20
    • 84945586145 scopus 로고    scopus 로고
    • The unfolded protein response and cholesterol biosynthesis Link Luman/CREB3 to regenerative axon growth in sensory neurons
    • Ying, Z. et al. The Unfolded Protein Response and Cholesterol Biosynthesis Link Luman/CREB3 to Regenerative Axon Growth in Sensory Neurons. J. Neurosci. 35, 14557-14570 (2015).
    • (2015) J. Neurosci. , vol.35 , pp. 14557-14570
    • Ying, Z.1
  • 22
    • 33645280897 scopus 로고    scopus 로고
    • XBP1 induces WFS1 through an endoplasmic reticulum stress response elementlike motif in SH-SY5Y cells
    • Kakiuchi, C., Ishiwata, M., Hayashi, A. & Kato, T. XBP1 induces WFS1 through an endoplasmic reticulum stress response elementlike motif in SH-SY5Y cells. J. Neurochem. 97, 545-555 (2006).
    • (2006) J. Neurochem. , vol.97 , pp. 545-555
    • Kakiuchi, C.1    Ishiwata, M.2    Hayashi, A.3    Kato, T.4
  • 23
    • 38649108109 scopus 로고    scopus 로고
    • Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis
    • Hetz, C. et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. PNAS 105, 757-762 (2008).
    • (2008) PNAS , vol.105 , pp. 757-762
    • Hetz, C.1
  • 24
    • 0036464604 scopus 로고    scopus 로고
    • Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice
    • Masuoka, H. C. & Townes, T. M. Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood 99, 736-745 (2002).
    • (2002) Blood , vol.99 , pp. 736-745
    • Masuoka, H.C.1    Townes, T.M.2
  • 25
    • 84958124223 scopus 로고    scopus 로고
    • Regulation of memory formation by the transcription factor XBP1
    • Martínez, G. et al. Regulation of memory formation by the transcription factor XBP1. Cell reports. doi:10.1016/j.celrep.2016.01.028 (2016).
    • (2016) Cell Reports
    • Martínez, G.1
  • 26
    • 16844365105 scopus 로고    scopus 로고
    • Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration
    • Perrin, F. E., Lacroix, S., Avilés-Trigueros, M. & David, S. Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain 128, 854-66 (2005).
    • (2005) Brain , vol.128 , pp. 854-866
    • Perrin, F.E.1    Lacroix, S.2    Avilés-Trigueros, M.3    David, S.4
  • 27
    • 84899844505 scopus 로고    scopus 로고
    • Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1
    • Valdés, P. et al. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. PNAS 111, 6804-9 (2014).
    • (2014) PNAS , vol.111 , pp. 6804-6809
    • Valdés, P.1
  • 28
    • 41749109317 scopus 로고    scopus 로고
    • Species and strain differences in rodent sciatic nerve anatomy; Implications for studies of neuropathic pain
    • Rigaud, M. et al. Species and strain differences in rodent sciatic nerve anatomy; Implications for studies of neuropathic pain. Pain 136, 188-201 (2008).
    • (2008) Pain , vol.136 , pp. 188-201
    • Rigaud, M.1
  • 29
    • 84901049664 scopus 로고    scopus 로고
    • Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction
    • Villegas, R. et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J. Neurosci. 34, 7179-89 (2014).
    • (2014) J. Neurosci. , vol.34 , pp. 7179-7189
    • Villegas, R.1
  • 30
    • 78751565419 scopus 로고    scopus 로고
    • Axonal degeneration is mediated by the mitochondrial permeability transition pore
    • Barrientos, S. et al. Axonal degeneration is mediated by the mitochondrial permeability transition pore. J. Neurosci. 31, 966-978 (2011).
    • (2011) J. Neurosci. , vol.31 , pp. 966-978
    • Barrientos, S.1
  • 31
    • 84872038812 scopus 로고    scopus 로고
    • Diapause formation and downregulation of insulin-like signaling via DAF-16/FOXO delays axonal degeneration and neuronal loss
    • Calixto, A., Jara, J. S. & Court, F. A. Diapause formation and downregulation of insulin-like signaling via DAF-16/FOXO delays axonal degeneration and neuronal loss. PLoS Genet. 8, e1003141 (2012).
    • (2012) PLoS Genet. , vol.8 , pp. e1003141
    • Calixto, A.1    Jara, J.S.2    Court, F.A.3
  • 32
    • 80053019359 scopus 로고    scopus 로고
    • The unfolded protein response is a major mechanism by which LRP1 regulates Schwann cell survival after injury
    • Mantuano, E. et al. The unfolded protein response is a major mechanism by which LRP1 regulates Schwann cell survival after injury. J. Neurosci. 31, 13376-85 (2011).
    • (2011) J. Neurosci. , vol.31 , pp. 13376-13385
    • Mantuano, E.1
  • 33
    • 84947474736 scopus 로고    scopus 로고
    • Dynamic change and target prediction of axon-specific MicroRNAs in regenerating sciatic nerve
    • Phay, M., Kim, H. H. & Yoo, S. Dynamic Change and Target Prediction of Axon-Specific MicroRNAs in Regenerating Sciatic Nerve. PLoS One 10, e0137461 (2015).
    • (2015) PLoS One , vol.10 , pp. e0137461
    • Phay, M.1    Kim, H.H.2    Yoo, S.3
  • 34
    • 38749104284 scopus 로고    scopus 로고
    • Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice
    • Pennuto, M. et al. Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 57, 393-405 (2008).
    • (2008) Neuron , vol.57 , pp. 393-405
    • Pennuto, M.1
  • 35
    • 84878632676 scopus 로고    scopus 로고
    • Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice
    • D'Antonio, M. et al. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. J. Exp. Med. 210, 821-38 (2013).
    • (2013) J. Exp. Med. , vol.210 , pp. 821-838
    • D'Antonio, M.1
  • 36
    • 84859954603 scopus 로고    scopus 로고
    • Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair
    • Jung, H., Yoon, B. & Holt, C. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat. Rev. Neurosci. 13, 308-324 (2012).
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 308-324
    • Jung, H.1    Yoon, B.2    Holt, C.3
  • 37
    • 84909619336 scopus 로고    scopus 로고
    • Sensing nerve injury at the axonal ER: Activated Luman/CREB3 serves as a novel axonally synthesized retrograde regeneration signal
    • Ying, Z., Misra, V. & Verge, V. Sensing nerve injury at the axonal ER: Activated Luman/CREB3 serves as a novel axonally synthesized retrograde regeneration signal. PNAS 111, 16142-7 (2014).
    • (2014) PNAS , vol.111 , pp. 16142-16147
    • Ying, Z.1    Misra, V.2    Verge, V.3
  • 38
    • 84876991539 scopus 로고    scopus 로고
    • Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments
    • Shoulders, M. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279-92 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 1279-1292
    • Shoulders, M.1
  • 39
    • 0035966269 scopus 로고    scopus 로고
    • XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor
    • Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881-891 (2001).
    • (2001) Cell , vol.107 , pp. 881-891
    • Yoshida, H.1    Matsui, T.2    Yamamoto, A.3    Okada, T.4    Mori, K.5
  • 40
    • 84863012403 scopus 로고    scopus 로고
    • Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells
    • Hu, Y. et al. Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells. Neuron 73, 445-52 (2012).
    • (2012) Neuron , vol.73 , pp. 445-452
    • Hu, Y.1
  • 41
    • 70349627027 scopus 로고    scopus 로고
    • XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy
    • Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294-2306 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2294-2306
    • Hetz, C.1
  • 42
    • 84880423261 scopus 로고    scopus 로고
    • Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis
    • Matus, S., Lopez, E., Valenzuela, V., Nassif, M. & Hetz, C. Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis. PLoS One 8, e66672 (2013).
    • (2013) PLoS One , vol.8 , pp. e66672
    • Matus, S.1    Lopez, E.2    Valenzuela, V.3    Nassif, M.4    Hetz, C.5
  • 43
    • 84860471873 scopus 로고    scopus 로고
    • Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy
    • Vidal, R. et al. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy. Hum. Mol. Genet. 21, 2245-2262 (2012).
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 2245-2262
    • Vidal, R.1
  • 44
    • 84885463900 scopus 로고    scopus 로고
    • Oral treatment targeting the Unfolded Protein Response prevents neurodegeneration and clinical disease in prion-infected mice
    • Moreno, J. A. et al. Oral treatment targeting the Unfolded Protein Response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013).
    • (2013) Sci. Transl. Med. , vol.5 , pp. 206ra138
    • Moreno, J.A.1
  • 45
    • 84871408179 scopus 로고    scopus 로고
    • Neurotrophin regulation of neural circuit development and function
    • Park, H. & Poo, M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7-23 (2012).
    • (2012) Nat. Rev. Neurosci. , vol.14 , pp. 7-23
    • Park, H.1    Poo, M.2
  • 46
    • 84891273860 scopus 로고    scopus 로고
    • Role of the unfolded protein response in organ physiology: Lessons from mouse models
    • Cornejo, V. H., Pihán, P., Vidal, R. L. & Hetz, C. Role of the unfolded protein response in organ physiology: lessons from mouse models. IUBMB Life 65, 962-75 (2013).
    • (2013) IUBMB Life , vol.65 , pp. 962-975
    • Cornejo, V.H.1    Pihán, P.2    Vidal, R.L.3    Hetz, C.4
  • 47
    • 0035913294 scopus 로고    scopus 로고
    • Plasma cell differentiation requires the transcription factor XBP-1
    • Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300-307 (2001).
    • (2001) Nature , vol.412 , pp. 300-307
    • Reimold, A.M.1
  • 48
    • 0037385313 scopus 로고    scopus 로고
    • Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1
    • Iwakoshi, N. N. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol. 4, 321-9 (2003).
    • (2003) Nat. Immunol. , vol.4 , pp. 321-329
    • Iwakoshi, N.N.1
  • 49
    • 78649688693 scopus 로고    scopus 로고
    • XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum
    • Huh, W. J. et al. XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum. Gastroenterology 139, 2038-2049 (2010).
    • (2010) Gastroenterology , vol.139 , pp. 2038-2049
    • Huh, W.J.1
  • 50
    • 29244448729 scopus 로고    scopus 로고
    • XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands
    • Lee, A.-H., Chu, G. C., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 24, 4368-80 (2005).
    • (2005) EMBO J. , vol.24 , pp. 4368-4380
    • Lee, A.-H.1    Chu, G.C.2    Iwakoshi, N.N.3    Glimcher, L.H.4
  • 51
    • 80054722420 scopus 로고    scopus 로고
    • The unfolded protein response: Integrating stress signals through the stress sensor IRE1α
    • Hetz, C., Martinon, F., Rodriguez, D. & Glimcher, L. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol. Rev. 91, 1219-43 (2011).
    • (2011) Physiol. Rev. , vol.91 , pp. 1219-1243
    • Hetz, C.1    Martinon, F.2    Rodriguez, D.3    Glimcher, L.4
  • 52
    • 33947274572 scopus 로고    scopus 로고
    • Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function
    • Tsang, K. Y. et al. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function. PLoS Biol. 5, e44 (2007).
    • (2007) PLoS Biol. , vol.5 , pp. e44
    • Tsang, K.Y.1
  • 53
    • 84920464700 scopus 로고    scopus 로고
    • De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling
    • Del Vecchio, C. A. et al. De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biol. 12, e1001945 (2014).
    • (2014) PLoS Biol. , vol.12 , pp. e1001945
    • Del Vecchio, C.A.1
  • 54
    • 84944686104 scopus 로고    scopus 로고
    • ER-stress-induced differentiation sensitizes colon cancer stem cells to chemotherapy
    • Wielenga, M. C. B. et al. ER-Stress-Induced Differentiation Sensitizes Colon Cancer Stem Cells to Chemotherapy. Cell Rep. 13, 489-494 (2015).
    • (2015) Cell Rep. , vol.13 , pp. 489-494
    • Wielenga, M.C.B.1
  • 55
    • 80755127213 scopus 로고    scopus 로고
    • Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci
    • Patzig, J. et al. Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J. Neurosci. 31, 16369-86 (2011).
    • (2011) J. Neurosci. , vol.31 , pp. 16369-16386
    • Patzig, J.1
  • 56
    • 63649109017 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress in disorders of myelinating cells
    • Lin, W. & Popko, B. Endoplasmic reticulum stress in disorders of myelinating cells. Nat. Neurosci. 12, 379-385 (2009).
    • (2009) Nat. Neurosci. , vol.12 , pp. 379-385
    • Lin, W.1    Popko, B.2
  • 57
    • 79951676940 scopus 로고    scopus 로고
    • Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum
    • Martinon, F. & Glimcher, L. H. Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr. Opin. Immunol. 23, 35-40 (2011).
    • (2011) Curr. Opin. Immunol. , vol.23 , pp. 35-40
    • Martinon, F.1    Glimcher, L.H.2
  • 58
    • 0036703899 scopus 로고    scopus 로고
    • Denervated Schwann cells attract macrophages by secretion of Leukemia Inhibitory Factor (LIF) and Monocyte Chemoattractant Protein-1 in a process regulated by interleukin-6 and LIF
    • Tofaris, G. K., Patterson, P. H., Jessen, K. R. & Mirsky, R. Denervated Schwann cells attract macrophages by secretion of Leukemia Inhibitory Factor (LIF) and Monocyte Chemoattractant Protein-1 in a process regulated by interleukin-6 and LIF. J. Neurosci. 22, 6696-6703 (2002).
    • (2002) J. Neurosci. , vol.22 , pp. 6696-6703
    • Tofaris, G.K.1    Patterson, P.H.2    Jessen, K.R.3    Mirsky, R.4
  • 59
    • 84883387793 scopus 로고    scopus 로고
    • Targeting the unfolded protein response in disease
    • Hetz, C., Chevet, E. & Harding, H. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12, 703-19 (2013).
    • (2013) Nat. Rev. Drug Discov. , vol.12 , pp. 703-719
    • Hetz, C.1    Chevet, E.2    Harding, H.3
  • 60
    • 0030499678 scopus 로고    scopus 로고
    • A vector for expressing foreign genes in the brains and hearts of transgenic mice
    • Borchelt, D. et al. A vector for expressing foreign genes in the brains and hearts of transgenic mice. Genet. Anal. Biomol. Eng. 13, 159-163 (1996).
    • (1996) Genet. Anal. Biomol. Eng. , vol.13 , pp. 159-163
    • Borchelt, D.1
  • 61
    • 84861188701 scopus 로고    scopus 로고
    • BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1α
    • Rodriguez, D. A. et al. BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1α. EMBO J. 31, 2322-35 (2012).
    • (2012) EMBO J. , vol.31 , pp. 2322-2335
    • Rodriguez, D.A.1
  • 62
    • 0031750867 scopus 로고    scopus 로고
    • Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse
    • Inserra, M., Bloch, D. & Terris, D. Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery 18, 119-24 (1998).
    • (1998) Microsurgery , vol.18 , pp. 119-124
    • Inserra, M.1    Bloch, D.2    Terris, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.