메뉴 건너뛰기




Volumn 2, Issue 5, 2014, Pages

Transposable phage Mu

Author keywords

[No Author keywords available]

Indexed keywords

TRANSPOSON; VIRAL PROTEIN; VIRUS DNA;

EID: 84958818002     PISSN: None     EISSN: 21650497     Source Type: Journal    
DOI: 10.1128/microbiolspec.MDNA3-0007-2014     Document Type: Article
Times cited : (58)

References (146)
  • 1
    • 84891491965 scopus 로고    scopus 로고
    • The Mu story: how a maverick phage moved the field forward
    • Harshey RM. 2012. The Mu story: how a maverick phage moved the field forward. Mob DNA 3:21.
    • (2012) Mob DNA , vol.3 , pp. 21
    • Harshey, R.M.1
  • 2
    • 0001060631 scopus 로고
    • Bacteriophage-induced mutations in E. coli
    • Taylor AL. 1963. Bacteriophage-induced mutations in E. coli. Proc Natl Acad Sci USA 50:1043-1051.
    • (1963) Proc Natl Acad Sci USA , vol.50 , pp. 1043-1051
    • Taylor, A.L.1
  • 3
    • 72749127435 scopus 로고
    • The origin and behavior of mutable loci in maize
    • McClintock B. 1950. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344-355.
    • (1950) Proc Natl Acad Sci USA , vol.36 , pp. 344-355
    • McClintock, B.1
  • 5
    • 0017799021 scopus 로고
    • Involvement of phage Mu-1 early functions in Mu-mediated chromosomal rearrangements
    • Faelen M, Huisman O, Toussaint A. 1978. Involvement of phage Mu-1 early functions in Mu-mediated chromosomal rearrangements. Nature 271:580-582.
    • (1978) Nature , vol.271 , pp. 580-582
    • Faelen, M.1    Huisman, O.2    Toussaint, A.3
  • 6
    • 0343250277 scopus 로고
    • Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements
    • Shapiro JA. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci USA 76:1933-1937.
    • (1979) Proc Natl Acad Sci USA , vol.76 , pp. 1933-1937
    • Shapiro, J.A.1
  • 7
    • 0021045079 scopus 로고
    • In vitro transposition of bacteriophage Mu: a biochemical approach to a novel replication reaction
    • Mizuuchi K. 1983. In vitro transposition of bacteriophage Mu: a biochemical approach to a novel replication reaction. Cell 35:785-794.
    • (1983) Cell , vol.35 , pp. 785-794
    • Mizuuchi, K.1
  • 9
    • 85158020392 scopus 로고    scopus 로고
    • Transposition of phage Mu DNA
    • Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
    • Chaconas G, Harshey RM. 2002. Transposition of phage Mu DNA, p 384-402. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 384-402
    • Chaconas, G.1    Harshey, R.M.2
  • 10
    • 85158061254 scopus 로고    scopus 로고
    • Chemical mechanisms for mobilizing DNA
    • Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
    • Mizuuchi K, Baker TA. 2002. Chemical mechanisms for mobilizing DNA, p 12-23. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 12-23
    • Mizuuchi, K.1    Baker, T.A.2
  • 11
    • 0021112205 scopus 로고
    • Infecting bacteriophage Mu DNA forms a circular DNA-protein complex
    • Harshey RM, Bukhari AI. 1983. Infecting bacteriophage Mu DNA forms a circular DNA-protein complex. J Mol Biol 167:427-441.
    • (1983) J Mol Biol , vol.167 , pp. 427-441
    • Harshey, R.M.1    Bukhari, A.I.2
  • 12
    • 0021092911 scopus 로고
    • Bacteriophage Mu DNA circularizes following infection of Escherichia coli
    • Puspurs AH, Trun NJ, Reeve JN. 1983. Bacteriophage Mu DNA circularizes following infection of Escherichia coli. EMBO J 2:345-352.
    • (1983) EMBO J , vol.2 , pp. 345-352
    • Puspurs, A.H.1    Trun, N.J.2    Reeve, J.N.3
  • 13
    • 0024283326 scopus 로고
    • Sequence of bacteriophage Mu N and P genes
    • Gloor G, Chaconas G. 1988. Sequence of bacteriophage Mu N and P genes. Nucleic Acids Res 16:5211-5212.
    • (1988) Nucleic Acids Res , vol.16 , pp. 5211-5212
    • Gloor, G.1    Chaconas, G.2
  • 14
    • 79959432785 scopus 로고    scopus 로고
    • Biological phosphoryltransfer reactions: understanding mechanism and catalysis
    • Lassila JK, Zalatan JG, Herschlag D. 2011. Biological phosphoryltransfer reactions: understanding mechanism and catalysis. Annu Rev Biochem 80:669-702.
    • (2011) Annu Rev Biochem , vol.80 , pp. 669-702
    • Lassila, J.K.1    Zalatan, J.G.2    Herschlag, D.3
  • 15
    • 33645864066 scopus 로고    scopus 로고
    • Retroviral DNA integration-mechanism and consequences
    • Lewinski MK, Bushman FD. 2005. Retroviral DNA integration-mechanism and consequences. Adv Genet 55:147-181.
    • (2005) Adv Genet , vol.55 , pp. 147-181
    • Lewinski, M.K.1    Bushman, F.D.2
  • 16
    • 79958040710 scopus 로고    scopus 로고
    • Moving DNA around: DNA transposition and retroviral integration
    • Montano SP, Rice PA. 2011. Moving DNA around: DNA transposition and retroviral integration. Curr Opin Struct Biol 21:370-378.
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 370-378
    • Montano, S.P.1    Rice, P.A.2
  • 17
    • 0034724557 scopus 로고    scopus 로고
    • Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity
    • Kennedy AK, Haniford DB, Mizuuchi K. 2000. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Cell 101:295-305.
    • (2000) Cell , vol.101 , pp. 295-305
    • Kennedy, A.K.1    Haniford, D.B.2    Mizuuchi, K.3
  • 18
    • 0025899314 scopus 로고
    • Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism
    • Mizuuchi K, Adzuma K. 1991. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66:129-140.
    • (1991) Cell , vol.66 , pp. 129-140
    • Mizuuchi, K.1    Adzuma, K.2
  • 19
    • 21244451435 scopus 로고    scopus 로고
    • Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis
    • Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. 2005. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121:1005-1016.
    • (2005) Cell , vol.121 , pp. 1005-1016
    • Nowotny, M.1    Gaidamakov, S.A.2    Crouch, R.J.3    Yang, W.4
  • 20
    • 0026799383 scopus 로고
    • Polynucleotidyl transfer reactions in transpositional DNA recombination
    • Mizuuchi K. 1992. Polynucleotidyl transfer reactions in transpositional DNA recombination. J Biol Chem 267:21273-21276.
    • (1992) J Biol Chem , vol.267 , pp. 21273-21276
    • Mizuuchi, K.1
  • 21
    • 78149434355 scopus 로고    scopus 로고
    • The mechanism of retroviral integration from X-ray structures of its key intermediates
    • Maertens GN, Hare S, Cherepanov P. 2010. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468:326-329.
    • (2010) Nature , vol.468 , pp. 326-329
    • Maertens, G.N.1    Hare, S.2    Cherepanov, P.3
  • 22
    • 77949365510 scopus 로고    scopus 로고
    • Retroviral intasome assembly and inhibition of DNA strand transfer
    • Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. 2010. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232-236.
    • (2010) Nature , vol.464 , pp. 232-236
    • Hare, S.1    Gupta, S.S.2    Valkov, E.3    Engelman, A.4    Cherepanov, P.5
  • 23
    • 84863823336 scopus 로고    scopus 로고
    • 3'-processing and strand transfer catalysed by retroviral integrase in crystallo
    • Hare S, Maertens GN, Cherepanov P. 2012. 3'-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J 31:3020-3028.
    • (2012) EMBO J , vol.31 , pp. 3020-3028
    • Hare, S.1    Maertens, G.N.2    Cherepanov, P.3
  • 24
    • 0026549933 scopus 로고
    • Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus
    • Chow SA, Vincent KA, Ellison V, Brown PO. 1992. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255:723-726.
    • (1992) Science , vol.255 , pp. 723-726
    • Chow, S.A.1    Vincent, K.A.2    Ellison, V.3    Brown, P.O.4
  • 25
    • 0027404102 scopus 로고
    • Characterization of the forward and reverse integration reactions of the Moloney murine leukemia virus integrase protein purified from Escherichia coli
    • Jonsson CB, Donzella GA, Roth MJ. 1993. Characterization of the forward and reverse integration reactions of the Moloney murine leukemia virus integrase protein purified from Escherichia coli. J Biol Chem 268:1462-1469.
    • (1993) J Biol Chem , vol.268 , pp. 1462-1469
    • Jonsson, C.B.1    Donzella, G.A.2    Roth, M.J.3
  • 27
    • 0032055477 scopus 로고    scopus 로고
    • Transposase makes critical contacts with, and is stimulated by, single-stranded DNA at the P element termini in vitro
    • Beall EL, Rio DC. 1998. Transposase makes critical contacts with, and is stimulated by, single-stranded DNA at the P element termini in vitro. EMBO J 17:2122-2136.
    • (1998) EMBO J , vol.17 , pp. 2122-2136
    • Beall, E.L.1    Rio, D.C.2
  • 28
    • 0034625261 scopus 로고    scopus 로고
    • RAG1/2-mediated resolution of transposition intermediates: two pathways and possible consequences
    • Melek M, Gellert M. 2000. RAG1/2-mediated resolution of transposition intermediates: two pathways and possible consequences. Cell 101: 625-633.
    • (2000) Cell , vol.101 , pp. 625-633
    • Melek, M.1    Gellert, M.2
  • 29
    • 4444363151 scopus 로고    scopus 로고
    • True reversal of Mu integration
    • Au TK, Pathania S, Harshey RM. 2004. True reversal of Mu integration. EMBO J 23:3408-3420.
    • (2004) EMBO J , vol.23 , pp. 3408-3420
    • Au, T.K.1    Pathania, S.2    Harshey, R.M.3
  • 30
    • 35548934207 scopus 로고    scopus 로고
    • Control of transposase activity within a transpososome by the configuration of the flanking DNA segment of the transposon
    • Mizuuchi M, Rice PA, Wardle SJ, Haniford DB, Mizuuchi K. 2007. Control of transposase activity within a transpososome by the configuration of the flanking DNA segment of the transposon. Proc Natl Acad Sci USA 104:14622-14627.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 14622-14627
    • Mizuuchi, M.1    Rice, P.A.2    Wardle, S.J.3    Haniford, D.B.4    Mizuuchi, K.5
  • 31
    • 0023663468 scopus 로고
    • Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA
    • Surette MG, Buch SJ, Chaconas G. 1987. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell 49:253-262.
    • (1987) Cell , vol.49 , pp. 253-262
    • Surette, M.G.1    Buch, S.J.2    Chaconas, G.3
  • 32
    • 79953124784 scopus 로고    scopus 로고
    • Structural insights into the retroviral DNA integration apparatus
    • Cherepanov P, Maertens GN, Hare S. 2011. Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol 21:249-256.
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 249-256
    • Cherepanov, P.1    Maertens, G.N.2    Hare, S.3
  • 33
    • 36248967135 scopus 로고    scopus 로고
    • The dynamic Mu transpososome: MuB activation prevents disintegration
    • Lemberg KM, Schweidenback CT, Baker TA. 2007. The dynamic Mu transpososome: MuB activation prevents disintegration. J Mol Biol 374: 1158-1171.
    • (2007) J Mol Biol , vol.374 , pp. 1158-1171
    • Lemberg, K.M.1    Schweidenback, C.T.2    Baker, T.A.3
  • 35
    • 0041731693 scopus 로고    scopus 로고
    • Effect of mutations in the C-terminal domain of Mu B on DNA binding and interactions with Mu A transposase
    • Coros CJ, Sekino Y, Baker TA, Chaconas G. 2003. Effect of mutations in the C-terminal domain of Mu B on DNA binding and interactions with Mu A transposase. J Biol Chem 278:31210-31217.
    • (2003) J Biol Chem , vol.278 , pp. 31210-31217
    • Coros, C.J.1    Sekino, Y.2    Baker, T.A.3    Chaconas, G.4
  • 36
    • 1242294509 scopus 로고    scopus 로고
    • Reorganization of the Mu transpososome active sites during a cooperative transition between DNA cleavage and joining
    • Williams TL, Baker TA. 2004. Reorganization of the Mu transpososome active sites during a cooperative transition between DNA cleavage and joining. J Biol Chem 279:5135-5145.
    • (2004) J Biol Chem , vol.279 , pp. 5135-5145
    • Williams, T.L.1    Baker, T.A.2
  • 37
    • 0029096898 scopus 로고
    • The phage Mu Transpososome core-DNA requirements for assembly and function
    • Savilahti H, Rice PA, Mizuuchi K. 1995. The phage Mu Transpososome core-DNA requirements for assembly and function. EMBO J 14:4893-4903.
    • (1995) EMBO J , vol.14 , pp. 4893-4903
    • Savilahti, H.1    Rice, P.A.2    Mizuuchi, K.3
  • 38
    • 0027979780 scopus 로고
    • Crucial role for DNA supercoiling in Mu transposition: a kinetic study
    • Wang Z, Harshey RM. 1994. Crucial role for DNA supercoiling in Mu transposition: a kinetic study. Proc Natl Acad Sci USA 91:699-703.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 699-703
    • Wang, Z.1    Harshey, R.M.2
  • 39
    • 0029870895 scopus 로고    scopus 로고
    • Kinetic and structural probing of the precleavage synaptic complex (type 0) formed during phage Mu transposition. Action of metal ions and reagents specific to single-stranded DNA
    • Wang Z, Namgoong SY, Zhang X, Harshey RM. 1996. Kinetic and structural probing of the precleavage synaptic complex (type 0) formed during phage Mu transposition. Action of metal ions and reagents specific to single-stranded DNA. J Biol Chem 271:9619-9626.
    • (1996) J Biol Chem , vol.271 , pp. 9619-9626
    • Wang, Z.1    Namgoong, S.Y.2    Zhang, X.3    Harshey, R.M.4
  • 40
    • 0037245974 scopus 로고    scopus 로고
    • Progressive structural transitions within Mu transpositional complexes
    • Yanagihara K, Mizuuchi K. 2003. Progressive structural transitions within Mu transpositional complexes. Mol. Cell 11:215-224.
    • (2003) Mol. Cell , vol.11 , pp. 215-224
    • Yanagihara, K.1    Mizuuchi, K.2
  • 41
    • 0042161857 scopus 로고    scopus 로고
    • Patterns of sequence conservation at termini of long terminal repeat (LTR) retrotransposons and DNA transposons in the human genome: lessons from phage Mu
    • Lee I, Harshey RM. 2003. Patterns of sequence conservation at termini of long terminal repeat (LTR) retrotransposons and DNA transposons in the human genome: lessons from phage Mu. Nucleic Acids Res 31:4531-4540.
    • (2003) Nucleic Acids Res , vol.31 , pp. 4531-4540
    • Lee, I.1    Harshey, R.M.2
  • 42
    • 3142518260 scopus 로고    scopus 로고
    • Conformational characteristics of DNA: empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps
    • El Hassan MA, Calladine CR. 1997. Conformational characteristics of DNA: empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Phil Trans R Soc Lond 355:43-100.
    • (1997) Phil Trans R Soc Lond , vol.355 , pp. 43-100
    • El Hassan, M.A.1    Calladine, C.R.2
  • 43
    • 0035976791 scopus 로고    scopus 로고
    • Importance of the conserved CA dinucleotide at Mu termini
    • Lee I, Harshey RM. 2001. Importance of the conserved CA dinucleotide at Mu termini. J Mol Biol 314:433-444.
    • (2001) J Mol Biol , vol.314 , pp. 433-444
    • Lee, I.1    Harshey, R.M.2
  • 44
    • 0037934667 scopus 로고    scopus 로고
    • The terminal nucleotide of the Mu genome controls catalysis of DNA strand transfer
    • Goldhaber-Gordon I, Early MH, Baker TA. 2003. The terminal nucleotide of the Mu genome controls catalysis of DNA strand transfer. Proc Natl Acad Sci USA 100:7509-7514.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 7509-7514
    • Goldhaber-Gordon, I.1    Early, M.H.2    Baker, T.A.3
  • 45
    • 0029941285 scopus 로고    scopus 로고
    • Three-site synapsis during Mu DNA transposition: A critical intermediate preceding engagement of the active site
    • Watson MA, Chaconas G. 1996. Three-site synapsis during Mu DNA transposition: A critical intermediate preceding engagement of the active site. Cell 85: 435-445.
    • (1996) Cell , vol.85 , pp. 435-445
    • Watson, M.A.1    Chaconas, G.2
  • 46
    • 0037785140 scopus 로고    scopus 로고
    • The conserved CA/TG motif at Mu termini: T specifies stable transpososome assembly
    • Lee I, Harshey RM. 2003. The conserved CA/TG motif at Mu termini: T specifies stable transpososome assembly. J Mol Biol 330:261-275.
    • (2003) J Mol Biol , vol.330 , pp. 261-275
    • Lee, I.1    Harshey, R.M.2
  • 47
    • 0036752746 scopus 로고    scopus 로고
    • The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment
    • Kobryn K, Watson MA, Allison RG, Chaconas G. 2002. The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment. Mol Cell 10: 659-669.
    • (2002) Mol Cell , vol.10 , pp. 659-669
    • Kobryn, K.1    Watson, M.A.2    Allison, R.G.3    Chaconas, G.4
  • 48
    • 0037040898 scopus 로고    scopus 로고
    • DNA recognition sites activate MuA transposase to perform transposition of non-Mu DNA
    • Goldhaber-Gordon I, Williams TL, Baker TA. 2002. DNA recognition sites activate MuA transposase to perform transposition of non-Mu DNA. J Biol Chem 277:7694-7702.
    • (2002) J Biol Chem , vol.277 , pp. 7694-7702
    • Goldhaber-Gordon, I.1    Williams, T.L.2    Baker, T.A.3
  • 49
    • 0037040887 scopus 로고    scopus 로고
    • Sequence and positional requirements for DNA sites in a mu transpososome
    • Goldhaber-Gordon I, Early MH, Gray MK, Baker TA. 2002. Sequence and positional requirements for DNA sites in a mu transpososome. J Biol Chem 277:7703-7712.
    • (2002) J Biol Chem , vol.277 , pp. 7703-7712
    • Goldhaber-Gordon, I.1    Early, M.H.2    Gray, M.K.3    Baker, T.A.4
  • 50
    • 33745160049 scopus 로고    scopus 로고
    • Characteristics of MuA transposasecatalyzed processing of model transposon end DNA hairpin substrates
    • Saariaho AH, Savilahti H. 2006. Characteristics of MuA transposasecatalyzed processing of model transposon end DNA hairpin substrates. Nucleic Acids Res 34:3139-3149.
    • (2006) Nucleic Acids Res , vol.34 , pp. 3139-3149
    • Saariaho, A.H.1    Savilahti, H.2
  • 51
    • 0035816220 scopus 로고    scopus 로고
    • Effect of mutations in the Mu-host junction region on transpososome assembly
    • Coros CJ, Chaconas G. 2001. Effect of mutations in the Mu-host junction region on transpososome assembly. J Mol Biol 310:299-309.
    • (2001) J Mol Biol , vol.310 , pp. 299-309
    • Coros, C.J.1    Chaconas, G.2
  • 52
    • 0025804518 scopus 로고
    • Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. In vitro transposition characteristics of mini-Mu plasmids carrying terminal base pair mutations
    • Surette MG, Harkness T, Chaconas G. 1991. Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. In vitro transposition characteristics of mini-Mu plasmids carrying terminal base pair mutations. J Biol Chem 266:3118-3124.
    • (1991) J Biol Chem , vol.266 , pp. 3118-3124
    • Surette, M.G.1    Harkness, T.2    Chaconas, G.3
  • 53
    • 0034486638 scopus 로고    scopus 로고
    • Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome
    • Mariconda S, Namgoong SY, Yoon KH, Jiang H, Harshey RM. 2000. Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome. J Biosci 25:347-360.
    • (2000) J Biosci , vol.25 , pp. 347-360
    • Mariconda, S.1    Namgoong, S.Y.2    Yoon, K.H.3    Jiang, H.4    Harshey, R.M.5
  • 54
    • 0030828364 scopus 로고    scopus 로고
    • A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer
    • Naigamwalla DZ, Chaconas G. 1997. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBO J 16:5227-5234.
    • (1997) EMBO J , vol.16 , pp. 5227-5234
    • Naigamwalla, D.Z.1    Chaconas, G.2
  • 55
    • 0037143709 scopus 로고    scopus 로고
    • Mismatch-targeted transposition of Mu: a new strategy to map genetic polymorphism
    • Yanagihara K, Mizuuchi K. 2002. Mismatch-targeted transposition of Mu: a new strategy to map genetic polymorphism. Proc Natl Acad Sci USA 99:11317-11321.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 11317-11321
    • Yanagihara, K.1    Mizuuchi, K.2
  • 58
    • 38649116679 scopus 로고    scopus 로고
    • Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection
    • Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, & Dyda F. 2008. Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell 132:208-220.
    • (2008) Cell , vol.132 , pp. 208-220
    • Barabas, O.1    Ronning, D.R.2    Guynet, C.3    Hickman, A.B.4    Ton-Hoang, B.5    Chandler, M.6    Dyda, F.7
  • 59
    • 70149109999 scopus 로고    scopus 로고
    • Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote
    • Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD. 2009. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 138:1096-1108.
    • (2009) Cell , vol.138 , pp. 1096-1108
    • Richardson, J.M.1    Colloms, S.D.2    Finnegan, D.J.3    Walkinshaw, M.D.4
  • 60
    • 79952092397 scopus 로고    scopus 로고
    • Retrovirus integrase-DNA structure elucidates concerted integration mechanisms
    • Grandgenett D, Korolev S. 2010. Retrovirus integrase-DNA structure elucidates concerted integration mechanisms. Viruses 2:1185-1189.
    • (2010) Viruses , vol.2 , pp. 1185-1189
    • Grandgenett, D.1    Korolev, S.2
  • 61
    • 17044421342 scopus 로고    scopus 로고
    • 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition
    • Yuan JF, Beniac DR, Chaconas G, Ottensmeyer FP. 2005. 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition. Genes Dev 19:840-852.
    • (2005) Genes Dev , vol.19 , pp. 840-852
    • Yuan, J.F.1    Beniac, D.R.2    Chaconas, G.3    Ottensmeyer, F.P.4
  • 62
    • 84869090034 scopus 로고    scopus 로고
    • The Mu transpososome structure sheds light on DDE recombinase evolution
    • Montano SP, Pigli YZ, Rice PA. 2012. The Mu transpososome structure sheds light on DDE recombinase evolution. Nature 491:413-417.
    • (2012) Nature , vol.491 , pp. 413-417
    • Montano, S.P.1    Pigli, Y.Z.2    Rice, P.A.3
  • 63
    • 77953405115 scopus 로고    scopus 로고
    • DNA repair by the cryptic endonuclease activity of Mu transposase
    • Choi W, Harshey RM. 2010. DNA repair by the cryptic endonuclease activity of Mu transposase. Proc Natl Acad Sci USA 107:10014-10019.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 10014-10019
    • Choi, W.1    Harshey, R.M.2
  • 64
    • 0026688321 scopus 로고
    • Role of the A protein-binding sites in the in vitro transposition of Mu DNA. A complex circuit of interactions involving the Mu ends and the transpositional enhancer
    • Allison RG, Chaconas G. 1992. Role of the A protein-binding sites in the in vitro transposition of Mu DNA. A complex circuit of interactions involving the Mu ends and the transpositional enhancer. J Biol Chem 267:19963-19970.
    • (1992) J Biol Chem , vol.267 , pp. 19963-19970
    • Allison, R.G.1    Chaconas, G.2
  • 65
    • 0033168681 scopus 로고    scopus 로고
    • Criss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition
    • Jiang H, Yang JY, Harshey RM. 1999. Criss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition. EMBO J 18:3845-3855.
    • (1999) EMBO J , vol.18 , pp. 3845-3855
    • Jiang, H.1    Yang, J.Y.2    Harshey, R.M.3
  • 66
    • 0026581223 scopus 로고
    • The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage
    • Surette MG, Chaconas G. 1992. The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage. Cell 68:1101-1108.
    • (1992) Cell , vol.68 , pp. 1101-1108
    • Surette, M.G.1    Chaconas, G.2
  • 67
    • 0035830898 scopus 로고    scopus 로고
    • The Mu enhancer is functionally asymmetric both in cis and in trans. Topological selectivity of Mu transposition is enhancer-independent
    • Jiang H, Harshey RM. 2001. The Mu enhancer is functionally asymmetric both in cis and in trans. Topological selectivity of Mu transposition is enhancer-independent. J Biol Chem 276:4373-4381.
    • (2001) J Biol Chem , vol.276 , pp. 4373-4381
    • Jiang, H.1    Harshey, R.M.2
  • 68
    • 33750910918 scopus 로고    scopus 로고
    • The Mu transpososome through a topological lens
    • Harshey RM, Jayaram M. 2006. The Mu transpososome through a topological lens. Crit Rev Biochem Mol Biol 41:387-405.
    • (2006) Crit Rev Biochem Mol Biol , vol.41 , pp. 387-405
    • Harshey, R.M.1    Jayaram, M.2
  • 69
    • 0037123778 scopus 로고    scopus 로고
    • Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils
    • Pathania S, Jayaram M, Harshey RM. 2002. Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils. Cell 109:425-436.
    • (2002) Cell , vol.109 , pp. 425-436
    • Pathania, S.1    Jayaram, M.2    Harshey, R.M.3
  • 70
    • 0041312648 scopus 로고    scopus 로고
    • A unique right endenhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition
    • Pathania S, Jayaram M, Harshey RM. 2003. A unique right endenhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition. EMBO J 22: 3725-3736.
    • (2003) EMBO J , vol.22 , pp. 3725-3736
    • Pathania, S.1    Jayaram, M.2    Harshey, R.M.3
  • 71
    • 14044272836 scopus 로고    scopus 로고
    • The Mu transposase interwraps distant DNA sites within a functional transpososome in the absence of DNA supercoiling
    • Yin Z, Jayaram M, Pathania S, Harshey RM. 2005. The Mu transposase interwraps distant DNA sites within a functional transpososome in the absence of DNA supercoiling. J Biol Chem 280:6149-6156.
    • (2005) J Biol Chem , vol.280 , pp. 6149-6156
    • Yin, Z.1    Jayaram, M.2    Pathania, S.3    Harshey, R.M.4
  • 72
    • 34547939484 scopus 로고    scopus 로고
    • Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome
    • Yin Z, Suzuki A, Lou Z, Jayaram M, Harshey RM. 2007. Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome. J Mol Biol 372:382-396.
    • (2007) J Mol Biol , vol.372 , pp. 382-396
    • Yin, Z.1    Suzuki, A.2    Lou, Z.3    Jayaram, M.4    Harshey, R.M.5
  • 74
    • 72949097879 scopus 로고    scopus 로고
    • Tangle analysis of difference topology experiments: applications to a Mu protein-DNA complex
    • Darcy IK, Luecke J, Vazquez M. 2009. Tangle analysis of difference topology experiments: applications to a Mu protein-DNA complex. Algebr Geom Topol 9:2247-2309.
    • (2009) Algebr Geom Topol , vol.9 , pp. 2247-2309
    • Darcy, I.K.1    Luecke, J.2    Vazquez, M.3
  • 75
    • 0035803484 scopus 로고    scopus 로고
    • Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB
    • Mizuuchi M, Mizuuchi K. 2001. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB. EMBO J 20:6927-6935.
    • (2001) EMBO J , vol.20 , pp. 6927-6935
    • Mizuuchi, M.1    Mizuuchi, K.2
  • 76
    • 0024322147 scopus 로고
    • Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation
    • Mizuuchi M, Mizuuchi K. 1989. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Cell 58:399-408.
    • (1989) Cell , vol.58 , pp. 399-408
    • Mizuuchi, M.1    Mizuuchi, K.2
  • 77
    • 30044434257 scopus 로고    scopus 로고
    • Enhancer-independent Mu transposition from two topologically distinct synapses
    • Yin Z, Harshey RM. 2005. Enhancer-independent Mu transposition from two topologically distinct synapses. Proc Natl Acad Sci USA 102: 18884-18889.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 18884-18889
    • Yin, Z.1    Harshey, R.M.2
  • 78
    • 0033858188 scopus 로고    scopus 로고
    • Genetic analysis of the strong gyrase site (SGS) of bacteriophage Mu: localization of determinants required for promoting Mu replication
    • Pato ML, Banerjee M. 2000. Genetic analysis of the strong gyrase site (SGS) of bacteriophage Mu: localization of determinants required for promoting Mu replication. Mol Microbiol 37:800-810.
    • (2000) Mol Microbiol , vol.37 , pp. 800-810
    • Pato, M.L.1    Banerjee, M.2
  • 79
    • 4143052776 scopus 로고    scopus 로고
    • Replication of Mu prophages lacking the central strong gyrase site
    • Pato ML. 2004. Replication of Mu prophages lacking the central strong gyrase site. Res Microbiol 155:553-558.
    • (2004) Res Microbiol , vol.155 , pp. 553-558
    • Pato, M.L.1
  • 80
    • 0029827620 scopus 로고    scopus 로고
    • The Mu strong gyrase-binding site promotes efficient synapsis of the prophage termini
    • Pato ML, Banerjee M. 1996. The Mu strong gyrase-binding site promotes efficient synapsis of the prophage termini. MolMicrobiol 22:283-292.
    • (1996) MolMicrobiol , vol.22 , pp. 283-292
    • Pato, M.L.1    Banerjee, M.2
  • 81
    • 0141818904 scopus 로고    scopus 로고
    • A biochemical analysis of the interaction of DNA gyrase with the bacteriophage Mu, pSC101 and pBR322 strong gyrase sites: the role of DNA sequence in modulating gyrase supercoiling and biological activity
    • Oram M, Howells AJ, Maxwell A, Pato ML. 2003. A biochemical analysis of the interaction of DNA gyrase with the bacteriophage Mu, pSC101 and pBR322 strong gyrase sites: the role of DNA sequence in modulating gyrase supercoiling and biological activity. Mol Microbiol 50:333-347.
    • (2003) Mol Microbiol , vol.50 , pp. 333-347
    • Oram, M.1    Howells, A.J.2    Maxwell, A.3    Pato, M.L.4
  • 82
    • 30744466703 scopus 로고    scopus 로고
    • Dissection of the bacteriophage Mu strong gyrase site (SGS): significance of the SGS right arm in Mu biology and DNA gyrase mechanism
    • Oram M, Travers AA, Howells AJ, Maxwell A, Pato ML. 2006. Dissection of the bacteriophage Mu strong gyrase site (SGS): significance of the SGS right arm in Mu biology and DNA gyrase mechanism. J Bacteriol 188:619-632.
    • (2006) J Bacteriol , vol.188 , pp. 619-632
    • Oram, M.1    Travers, A.A.2    Howells, A.J.3    Maxwell, A.4    Pato, M.L.5
  • 83
    • 84860751723 scopus 로고    scopus 로고
    • ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA
    • Basu A, Schoeffler AJ, Berger JM, Bryant Z. 2012. ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA. Nat Struct Mol Biol 19:538-546, S531.
    • (2012) Nat Struct Mol Biol , vol.19
    • Basu, A.1    Schoeffler, A.J.2    Berger, J.M.3    Bryant, Z.4
  • 84
    • 3142516478 scopus 로고    scopus 로고
    • Mu-like prophage strong gyrase site sequences: analysis of properties required for promoting efficient Mu DNA replication
    • Oram M, Pato ML. 2004. Mu-like prophage strong gyrase site sequences: analysis of properties required for promoting efficient Mu DNA replication. J Bacteriol 186:4575-4584.
    • (2004) J Bacteriol , vol.186 , pp. 4575-4584
    • Oram, M.1    Pato, M.L.2
  • 85
    • 84888224188 scopus 로고    scopus 로고
    • Transposable prophage Mu is organized as a stable chromosomal domain of E. coli
    • Saha RP, Lou Z, Meng L, Harshey RM. 2013. Transposable prophage Mu is organized as a stable chromosomal domain of E. coli. PLoS Genet 9:e1003902.
    • (2013) PLoS Genet , vol.9
    • Saha, R.P.1    Lou, Z.2    Meng, L.3    Harshey, R.M.4
  • 86
    • 0026540578 scopus 로고
    • A case of lysogenic conversion: modification of cell phenotype by constitutive expression of the Mu gem operon
    • Paolozzi L, Ghelardini P. 1992. A case of lysogenic conversion: modification of cell phenotype by constitutive expression of the Mu gem operon. Res Microbiol 143:237-243.
    • (1992) Res Microbiol , vol.143 , pp. 237-243
    • Paolozzi, L.1    Ghelardini, P.2
  • 88
    • 80055010605 scopus 로고    scopus 로고
    • Analysis of phageMu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements
    • Ge J, Lou Z, Cui H, Shang L, Harshey RM. 2011. Analysis of phageMu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements. J Biosci 36:587-601.
    • (2011) J Biosci , vol.36 , pp. 587-601
    • Ge, J.1    Lou, Z.2    Cui, H.3    Shang, L.4    Harshey, R.M.5
  • 90
    • 0037169531 scopus 로고    scopus 로고
    • DNA transposition of bacteriophage Mu. A quantitative analysis of target site selection in vitro
    • Haapa-Paananen S, Rita H, Savilahti H. 2002. DNA transposition of bacteriophage Mu. A quantitative analysis of target site selection in vitro. J Biol Chem 277:2843-2851.
    • (2002) J Biol Chem , vol.277 , pp. 2843-2851
    • Haapa-Paananen, S.1    Rita, H.2    Savilahti, H.3
  • 91
    • 18244409347 scopus 로고    scopus 로고
    • Bacteriophage Mu targets the trinucleotide sequence CGG
    • Manna D, Deng S, Breier AM, Higgins NP. 2005. Bacteriophage Mu targets the trinucleotide sequence CGG. J Bacteriol 187:3586-3588.
    • (2005) J Bacteriol , vol.187 , pp. 3586-3588
    • Manna, D.1    Deng, S.2    Breier, A.M.3    Higgins, N.P.4
  • 92
    • 0035026052 scopus 로고    scopus 로고
    • Mu and IS1 transpositions exhibit strong orientation bias at the Escherichia coli bgl locus
    • Manna D, Wang X, Higgins NP. 2001. Mu and IS1 transpositions exhibit strong orientation bias at the Escherichia coli bgl locus. J Bacteriol 183:3328-3335.
    • (2001) J Bacteriol , vol.183 , pp. 3328-3335
    • Manna, D.1    Wang, X.2    Higgins, N.P.3
  • 93
    • 3042834099 scopus 로고    scopus 로고
    • Microarray analysis of transposition targets in Escherichia coli: the impact of transcription
    • Manna D, Breier AM, Higgins NP. 2004. Microarray analysis of transposition targets in Escherichia coli: the impact of transcription. Proc Natl Acad Sci USA 101:9780-9785.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 9780-9785
    • Manna, D.1    Breier, A.M.2    Higgins, N.P.3
  • 94
    • 34748820665 scopus 로고    scopus 로고
    • Microarray analysis of Mu transposition in Salmonella enterica, serovar Typhimurium: transposon exclusion by high-density DNA binding proteins
    • Manna D, Porwollik S, McClelland M, Tan R, Higgins NP. 2007. Microarray analysis of Mu transposition in Salmonella enterica, serovar Typhimurium: transposon exclusion by high-density DNA binding proteins. Mol Microbiol 66:315-328.
    • (2007) Mol Microbiol , vol.66 , pp. 315-328
    • Manna, D.1    Porwollik, S.2    McClelland, M.3    Tan, R.4    Higgins, N.P.5
  • 95
    • 1942533398 scopus 로고    scopus 로고
    • Visualizing the assembly and disassembly mechanisms of the MuB transposition targeting complex
    • Greene EC, Mizuuchi K. 2004. Visualizing the assembly and disassembly mechanisms of the MuB transposition targeting complex. J Biol Chem 279:16736-16743.
    • (2004) J Biol Chem , vol.279 , pp. 16736-16743
    • Greene, E.C.1    Mizuuchi, K.2
  • 96
    • 35348885491 scopus 로고    scopus 로고
    • DNA transposition target immunity and the determinants of the MuB distribution patterns on DNA
    • Tan X, Mizuuchi M, Mizuuchi K. 2007. DNA transposition target immunity and the determinants of the MuB distribution patterns on DNA. Proc Natl Acad Sci USA 104:13925-13929.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 13925-13929
    • Tan, X.1    Mizuuchi, M.2    Mizuuchi, K.3
  • 97
    • 45649084701 scopus 로고    scopus 로고
    • Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration
    • Ge J, Harshey RM. 2008. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration. J Mol Biol 380:598-607.
    • (2008) J Mol Biol , vol.380 , pp. 598-607
    • Ge, J.1    Harshey, R.M.2
  • 98
    • 50449093490 scopus 로고    scopus 로고
    • Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery
    • Schweidenback CT, Baker TA. 2008. Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery. Proc Natl Acad Sci USA 105:12101-12107.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 12101-12107
    • Schweidenback, C.T.1    Baker, T.A.2
  • 99
    • 0031006969 scopus 로고    scopus 로고
    • Target site selection in transposition
    • Craig NL. 1997. Target site selection in transposition. Annu Rev Biochem 66:437-474.
    • (1997) Annu Rev Biochem , vol.66 , pp. 437-474
    • Craig, N.L.1
  • 100
    • 84856565103 scopus 로고    scopus 로고
    • Separate structural and functional domains of Tn4430 transposase contribute to target immunity
    • Lambin M, Nicolas E, Oger CA, Nguyen N, Prozzi D, Hallet B. 2012. Separate structural and functional domains of Tn4430 transposase contribute to target immunity. Mol Microbiol 83:805-820.
    • (2012) Mol Microbiol , vol.83 , pp. 805-820
    • Lambin, M.1    Nicolas, E.2    Oger, C.A.3    Nguyen, N.4    Prozzi, D.5    Hallet, B.6
  • 101
    • 77954284245 scopus 로고    scopus 로고
    • Phage Mu transposition immunity: protein pattern formation along DNA by a diffusion-ratchet mechanism
    • Han YW, Mizuuchi K. 2010. Phage Mu transposition immunity: protein pattern formation along DNA by a diffusion-ratchet mechanism. Mol Cell 39:48-58.
    • (2010) Mol Cell , vol.39 , pp. 48-58
    • Han, Y.W.1    Mizuuchi, K.2
  • 102
    • 0036282822 scopus 로고    scopus 로고
    • Direct observation of single MuB polymers: evidence for a DNA-dependent conformational change for generating an active target complex
    • Greene EC, Mizuuchi K. 2002. Direct observation of single MuB polymers: evidence for a DNA-dependent conformational change for generating an active target complex. Mol Cell 9:1079-1089.
    • (2002) Mol Cell , vol.9 , pp. 1079-1089
    • Greene, E.C.1    Mizuuchi, K.2
  • 103
    • 0037086543 scopus 로고    scopus 로고
    • Dynamics of a protein polymer: the assembly and disassembly pathways of the MuB transposition target complex
    • Greene EC, Mizuuchi K. 2002. Dynamics of a protein polymer: the assembly and disassembly pathways of the MuB transposition target complex. EMBO J 21:1477-1486.
    • (2002) EMBO J , vol.21 , pp. 1477-1486
    • Greene, E.C.1    Mizuuchi, K.2
  • 104
    • 0036923696 scopus 로고    scopus 로고
    • Target immunity during Mu DNA transposition. Transpososome assembly and DNA looping enhance MuAmediated disassembly of the MuB target complex
    • Greene EC, Mizuuchi K. 2002. Target immunity during Mu DNA transposition. Transpososome assembly and DNA looping enhance MuAmediated disassembly of the MuB target complex. Mol Cell 10:1367-1378.
    • (2002) Mol Cell , vol.10 , pp. 1367-1378
    • Greene, E.C.1    Mizuuchi, K.2
  • 105
    • 0032928724 scopus 로고    scopus 로고
    • Phage Mu transposition immunity reflects supercoil domain structure of the chromosome
    • Manna D, Higgins NP. 1999. Phage Mu transposition immunity reflects supercoil domain structure of the chromosome. Mol Microbiol 32:595-606.
    • (1999) Mol Microbiol , vol.32 , pp. 595-606
    • Manna, D.1    Higgins, N.P.2
  • 106
    • 77956357319 scopus 로고    scopus 로고
    • Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein
    • Ge J, Lou Z, Harshey RM. 2010. Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein. Mob. DNA 1:8.
    • (2010) Mob. DNA , vol.1 , pp. 8
    • Ge, J.1    Lou, Z.2    Harshey, R.M.3
  • 107
    • 0035902613 scopus 로고    scopus 로고
    • Handoff from recombinase to replisome: insights from transposition
    • Nakai H, Doseeva V, Jones JM. 2001. Handoff from recombinase to replisome: insights from transposition. Proc Natl Acad Sci USA 98:8247-8254.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8247-8254
    • Nakai, H.1    Doseeva, V.2    Jones, J.M.3
  • 108
    • 84855195754 scopus 로고    scopus 로고
    • ClpXP, an ATP-powered unfolding and protein-degradation machine
    • Baker TA, Sauer RT. 2012. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta 1823:15-28.
    • (2012) Biochim Biophys Acta , vol.1823 , pp. 15-28
    • Baker, T.A.1    Sauer, R.T.2
  • 109
    • 0034840284 scopus 로고    scopus 로고
    • ClpX-mediated remodeling ofMu transpososomes: selective unfolding of subunits destabilizes the entire complex
    • BurtonBM, WilliamsTL, Baker TA. 2001. ClpX-mediated remodeling ofMu transpososomes: selective unfolding of subunits destabilizes the entire complex. Mol Cell 8:449-454.
    • (2001) Mol Cell , vol.8 , pp. 449-454
    • Burton, B.M.1    Williams, T.L.2    Baker, T.A.3
  • 110
    • 0037688128 scopus 로고    scopus 로고
    • Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex
    • Burton BM, Baker TA. 2003. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Chem Biol 10:463-472.
    • (2003) Chem Biol , vol.10 , pp. 463-472
    • Burton, B.M.1    Baker, T.A.2
  • 111
    • 77249117211 scopus 로고    scopus 로고
    • The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome
    • Abdelhakim AH, Sauer RT, Baker TA. 2010. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Proc Natl Acad Sci USA 107:2437-2442.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 2437-2442
    • Abdelhakim, A.H.1    Sauer, R.T.2    Baker, T.A.3
  • 112
    • 41549163391 scopus 로고    scopus 로고
    • Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX
    • Abdelhakim AH, Oakes EC, Sauer RT, Baker TA. 2008. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX. Mol Cell 30:39-50.
    • (2008) Mol Cell , vol.30 , pp. 39-50
    • Abdelhakim, A.H.1    Oakes, E.C.2    Sauer, R.T.3    Baker, T.A.4
  • 113
    • 36549087125 scopus 로고    scopus 로고
    • Translation factor IF2 at the interface of transposition and replication by the PriA-PriC pathway
    • North SH, Kirtland SE, Nakai H. 2007. Translation factor IF2 at the interface of transposition and replication by the PriA-PriC pathway. Mol Microbiol 66:1566-1578.
    • (2007) Mol Microbiol , vol.66 , pp. 1566-1578
    • North, S.H.1    Kirtland, S.E.2    Nakai, H.3
  • 114
    • 20344367054 scopus 로고    scopus 로고
    • Host factors that promote transpososome disassembly and the PriA-PriC pathway for restart primosome assembly
    • North SH, Nakai H. 2005. Host factors that promote transpososome disassembly and the PriA-PriC pathway for restart primosome assembly. Mol Microbiol 56:1601-1616.
    • (2005) Mol Microbiol , vol.56 , pp. 1601-1616
    • North, S.H.1    Nakai, H.2
  • 115
    • 33644762345 scopus 로고    scopus 로고
    • Chromosomal integration mechanism of infecting mu virion DNA
    • Au TK, Agrawal P, Harshey RM. 2006. Chromosomal integration mechanism of infecting mu virion DNA. J Bacteriol 188:1829-1834.
    • (2006) J Bacteriol , vol.188 , pp. 1829-1834
    • Au, T.K.1    Agrawal, P.2    Harshey, R.M.3
  • 116
    • 0021212105 scopus 로고
    • Transposition without duplication of infecting bacteriophage Mu DNA
    • Harshey RM. 1984. Transposition without duplication of infecting bacteriophage Mu DNA. Nature 311:580-581.
    • (1984) Nature , vol.311 , pp. 580-581
    • Harshey, R.M.1
  • 117
    • 0022005924 scopus 로고
    • A truncated form of the bacteriophage Mu B protein promotes conservative integration, but not replicative transposition, of Mu DNA
    • Chaconas G, Giddens EB, Miller JL, Gloor G. 1985. A truncated form of the bacteriophage Mu B protein promotes conservative integration, but not replicative transposition, of Mu DNA. Cell 41:857-865.
    • (1985) Cell , vol.41 , pp. 857-865
    • Chaconas, G.1    Giddens, E.B.2    Miller, J.L.3    Gloor, G.4
  • 118
    • 0035047788 scopus 로고    scopus 로고
    • Differential role of the Mu B protein in phage Mu integration vs. replication: mechanistic insights into two transposition pathways
    • Roldan LA, Baker TA. 2001. Differential role of the Mu B protein in phage Mu integration vs. replication: mechanistic insights into two transposition pathways. Mol Microbiol 40:141-155.
    • (2001) Mol Microbiol , vol.40 , pp. 141-155
    • Roldan, L.A.1    Baker, T.A.2
  • 119
    • 0037243599 scopus 로고    scopus 로고
    • DNAgyrase requirements distinguish the alternate pathways of Mu transposition
    • Sokolsky TD, Baker TA. 2003. DNAgyrase requirements distinguish the alternate pathways of Mu transposition. Mol Microbiol 47:397-409.
    • (2003) Mol Microbiol , vol.47 , pp. 397-409
    • Sokolsky, T.D.1    Baker, T.A.2
  • 120
    • 84860572774 scopus 로고    scopus 로고
    • Mu insertions are repaired by the double-strand break repair pathway of Escherichia coli
    • Jang S, Sandler SJ, Harshey RM. 2012. Mu insertions are repaired by the double-strand break repair pathway of Escherichia coli. PLoS Genet 8: e1002642.
    • (2012) PLoS Genet , vol.8
    • Jang, S.1    Sandler, S.J.2    Harshey, R.M.3
  • 121
    • 0020564655 scopus 로고
    • Predominant integration end products of infecting bacteriophage Mu DNA are simple insertions with no preference for integration of either Mu DNA strand
    • Chaconas G, Kennedy DL, Evans D. 1983. Predominant integration end products of infecting bacteriophage Mu DNA are simple insertions with no preference for integration of either Mu DNA strand. Virology 128:48-59.
    • (1983) Virology , vol.128 , pp. 48-59
    • Chaconas, G.1    Kennedy, D.L.2    Evans, D.3
  • 122
    • 0029151254 scopus 로고
    • A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage
    • Wu Z, Chaconas G. 1995. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage. EMBO J 14:3835-3843.
    • (1995) EMBO J , vol.14 , pp. 3835-3843
    • Wu, Z.1    Chaconas, G.2
  • 123
    • 0345046553 scopus 로고
    • Transposable Mu-like phages
    • Symonds N, Toussaint A, Putte V.D.P., HoweMM (ed), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
    • DuBow MS. 1987. Transposable Mu-like phages, pp 201-213. In Symonds N, Toussaint A, Putte V.D.P., HoweMM (ed), Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
    • (1987) Phage Mu , pp. 201-213
    • DuBow, M.S.1
  • 124
    • 0028895084 scopus 로고
    • Enhancer-independent variants of phage Mu transposase-enhancer-specific stimulation of catalytic activity by a partner transposase
    • Yang JY, Jayaram M, Harshey RM. 1995. Enhancer-independent variants of phage Mu transposase-enhancer-specific stimulation of catalytic activity by a partner transposase. Genes Dev 9:2545-2555.
    • (1995) Genes Dev , vol.9 , pp. 2545-2555
    • Yang, J.Y.1    Jayaram, M.2    Harshey, R.M.3
  • 125
    • 0029048507 scopus 로고
    • A domain sharing model for active site assembly within theMuAtetramer during transposition: the enhancer may specify domain contributions
    • Yang JY, Kim K, Jayaram M, Harshey RM. 1995. A domain sharing model for active site assembly within theMuAtetramer during transposition: the enhancer may specify domain contributions. EMBO J 14:2374-2384.
    • (1995) EMBO J , vol.14 , pp. 2374-2384
    • Yang, J.Y.1    Kim, K.2    Jayaram, M.3    Harshey, R.M.4
  • 126
    • 0036299014 scopus 로고    scopus 로고
    • Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus
    • Morgan GJ, Hatfull GF, Casjens S, Hendrix RW. 2002. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol 317:337-359.
    • (2002) J Mol Biol , vol.317 , pp. 337-359
    • Morgan, G.J.1    Hatfull, G.F.2    Casjens, S.3    Hendrix, R.W.4
  • 127
    • 0037825641 scopus 로고    scopus 로고
    • Prophages and bacterial genomics: what have we learned so far?
    • Casjens S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49:277-300.
    • (2003) Mol Microbiol , vol.49 , pp. 277-300
    • Casjens, S.1
  • 128
    • 0347915669 scopus 로고    scopus 로고
    • Complete sequence and evolutionary genomic analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112
    • Wang PW, Chu L, Guttman DS. 2004. Complete sequence and evolutionary genomic analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol 186:400-410.
    • (2004) J Bacteriol , vol.186 , pp. 400-410
    • Wang, P.W.1    Chu, L.2    Guttman, D.S.3
  • 129
    • 80355144418 scopus 로고    scopus 로고
    • Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003
    • Fogg PC, Hynes AP, Digby E, Lang AS, Beatty JT. 2011. Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology 421:211-221.
    • (2011) Virology , vol.421 , pp. 211-221
    • Fogg, P.C.1    Hynes, A.P.2    Digby, E.3    Lang, A.S.4    Beatty, J.T.5
  • 130
    • 84866381688 scopus 로고    scopus 로고
    • Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis
    • Zehr ES, Tabatabai LB, Bayles DO. 2012. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis. BMC Genomics 13:331.
    • (2012) BMC Genomics , vol.13 , pp. 331
    • Zehr, E.S.1    Tabatabai, L.B.2    Bayles, D.O.3
  • 131
    • 9944230416 scopus 로고    scopus 로고
    • Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components
    • Saariaho AH, Lamberg A, Elo S, Savilahti H. 2005. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components. Virology 331:6-19.
    • (2005) Virology , vol.331 , pp. 6-19
    • Saariaho, A.H.1    Lamberg, A.2    Elo, S.3    Savilahti, H.4
  • 132
    • 84877004668 scopus 로고    scopus 로고
    • Transposable Mu-like phages in Firmicutes: new instances of divergence generating retroelements
    • Toussaint A. 2013. Transposable Mu-like phages in Firmicutes: new instances of divergence generating retroelements. Res Microbiol 164:281-287.
    • (2013) Res Microbiol , vol.164 , pp. 281-287
    • Toussaint, A.1
  • 133
    • 80052626091 scopus 로고    scopus 로고
    • Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria
    • Akhverdyan VZ, Gak ER, Tokmakova IL, Stoynova NV, Yomantas YA, Mashko SV. 2011. Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria. Appl Microbiol Biotechnol 91:857-871.
    • (2011) Appl Microbiol Biotechnol , vol.91 , pp. 857-871
    • Akhverdyan, V.Z.1    Gak, E.R.2    Tokmakova, I.L.3    Stoynova, N.V.4    Yomantas, Y.A.5    Mashko, S.V.6
  • 134
    • 0036156745 scopus 로고    scopus 로고
    • Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage Mu
    • Lamberg A, Nieminen S, Qiao M, Savilahti H. 2002. Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage Mu. Appl Environ Microbiol 68:705-712.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 705-712
    • Lamberg, A.1    Nieminen, S.2    Qiao, M.3    Savilahti, H.4
  • 135
    • 17644417084 scopus 로고    scopus 로고
    • Generation of transposon insertion mutant libraries for Gram-positive bacteria by electroporation of phage Mu DNA transposition complexes
    • Pajunen MI, Pulliainen AT, Finne J, Savilahti H. 2005. Generation of transposon insertion mutant libraries for Gram-positive bacteria by electroporation of phage Mu DNA transposition complexes. Microbiology 151:1209-1218.
    • (2005) Microbiology , vol.151 , pp. 1209-1218
    • Pajunen, M.I.1    Pulliainen, A.T.2    Finne, J.3    Savilahti, H.4
  • 140
    • 0342934743 scopus 로고
    • Structural domains in phage Mu transposase: identification of the site-specific DNA-binding domain
    • Nakayama C, Teplow DB, Harshey RM. 1987. Structural domains in phage Mu transposase: identification of the site-specific DNA-binding domain. Proc Natl Acad Sci USA 84:1809-1813.
    • (1987) Proc Natl Acad Sci USA , vol.84 , pp. 1809-1813
    • Nakayama, C.1    Teplow, D.B.2    Harshey, R.M.3
  • 141
    • 17044372022 scopus 로고    scopus 로고
    • Visualizing Mu transposition: assembling the puzzle pieces
    • Rice PA. 2005. Visualizing Mu transposition: assembling the puzzle pieces. Genes Dev 19:773-775.
    • (2005) Genes Dev , vol.19 , pp. 773-775
    • Rice, P.A.1
  • 142
    • 0029129435 scopus 로고
    • Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration
    • Rice P, Mizuuchi K. 1995. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82:209-220.
    • (1995) Cell , vol.82 , pp. 209-220
    • Rice, P.1    Mizuuchi, K.2
  • 143
    • 84861559424 scopus 로고    scopus 로고
    • Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues
    • Rasila TS, Vihinen M, Paulin L, Haapa-Paananen S, Savilahti H. 2012. Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues. PLoS One 7:e37922.
    • (2012) PLoS One , vol.7
    • Rasila, T.S.1    Vihinen, M.2    Paulin, L.3    Haapa-Paananen, S.4    Savilahti, H.5
  • 144
    • 0023753963 scopus 로고
    • Structurefunction relationships in the transposition protein B of bacteriophage Mu
    • Teplow DB, Nakayama C, Leung PC, Harshey RM. 1988. Structurefunction relationships in the transposition protein B of bacteriophage Mu. J Biol Chem 263:10851-10857.
    • (1988) J Biol Chem , vol.263 , pp. 10851-10857
    • Teplow, D.B.1    Nakayama, C.2    Leung, P.C.3    Harshey, R.M.4
  • 145
    • 0034331154 scopus 로고    scopus 로고
    • The solution structure of the C-terminal domain of the Mu B transposition protein
    • Hung LH, Chaconas G, Shaw GS. 2000. The solution structure of the C-terminal domain of the Mu B transposition protein. EMBO J 19:5625-5634.
    • (2000) EMBO J , vol.19 , pp. 5625-5634
    • Hung, L.H.1    Chaconas, G.2    Shaw, G.S.3
  • 146
    • 0025860233 scopus 로고
    • Two mutations of phage Mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains
    • Leung PC, Harshey RM. 1991. Two mutations of phage Mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains. J Mol Biol 219:189-199.
    • (1991) J Mol Biol , vol.219 , pp. 189-199
    • Leung, P.C.1    Harshey, R.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.