-
1
-
-
78751703950
-
Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution
-
K. Taguchi, H. Motohashi, M. Yamamoto, Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16, 123-140 (2011).
-
(2011)
Genes Cells
, vol.16
, pp. 123-140
-
-
Taguchi, K.1
Motohashi, H.2
Yamamoto, M.3
-
2
-
-
7244253081
-
Nrf2-Keap1 defines a physiologically important stress response mechanism
-
H. Motohashi, M. Yamamoto, Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10, 549-557 (2004).
-
(2004)
Trends Mol. Med.
, vol.10
, pp. 549-557
-
-
Motohashi, H.1
Yamamoto, M.2
-
3
-
-
4344674527
-
Cortactin signalling and dynamic actin networks
-
R. J. Daly, Cortactin signalling and dynamic actin networks. Biochem. J. 382, 13-25 (2004).
-
(2004)
Biochem. J.
, vol.382
, pp. 13-25
-
-
Daly, R.J.1
-
4
-
-
12744271503
-
Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control
-
B. L. Lua, B. C. Low, Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control. FEBS Lett. 579, 577-585 (2005).
-
(2005)
FEBS Lett.
, vol.579
, pp. 577-585
-
-
Lua, B.L.1
Low, B.C.2
-
5
-
-
16244370694
-
Cortactin: An Achilles' heel of the actin cytoskeleton targeted by pathogens
-
M. Selbach, S. Backert, Cortactin: An Achilles' heel of the actin cytoskeleton targeted by pathogens. Trends Microbiol. 13, 181-189 (2005).
-
(2005)
Trends Microbiol.
, vol.13
, pp. 181-189
-
-
Selbach, M.1
Backert, S.2
-
6
-
-
0035475450
-
Cortactin: Coupling membrane dynamics to cortical actin assembly
-
S. A. Weed, J. T. Parsons, Cortactin: Coupling membrane dynamics to cortical actin assembly. Oncogene 20, 6418-6434 (2001).
-
(2001)
Oncogene
, vol.20
, pp. 6418-6434
-
-
Weed, S.A.1
Parsons, J.T.2
-
7
-
-
34250170819
-
Roles of cortactin in tumor pathogenesis
-
L. Buday, J. Downward, Roles of cortactin in tumor pathogenesis. Biochim. Biophys. Acta 1775, 263-273 (2007).
-
(2007)
Biochim. Biophys. Acta
, vol.1775
, pp. 263-273
-
-
Buday, L.1
Downward, J.2
-
8
-
-
44149091903
-
Cortactin in tumor invasiveness
-
A. M. Weaver, Cortactin in tumor invasiveness. Cancer Lett. 265, 157-166 (2008).
-
(2008)
Cancer Lett.
, vol.265
, pp. 157-166
-
-
Weaver, A.M.1
-
9
-
-
0029116096
-
Chromosomal abnormalities involving 11q13 are associated with poor prognosis in patients with squamous cell carcinoma of the head and neck
-
J. A. Åkervall Y. Jin, J. P.Wennerberg, U. K. Zatterström, E. Kjellén, F. Mertens, R. Willén, N. Mandahl, S. Heim, F. Mitelman, Chromosomal abnormalities involving 11q13 are associated with poor prognosis in patients with squamous cell carcinoma of the head and neck. Cancer 76, 853-859 (1995).
-
(1995)
Cancer
, vol.76
, pp. 853-859
-
-
Åkervall, J.A.1
Jin, Y.2
Wennerberg, J.P.3
Zatterström, U.K.4
Kjellén, E.5
Mertens, F.6
Willén, R.7
Mandahl, N.8
Heim, S.9
Mitelman, F.10
-
10
-
-
76349088746
-
Cytoskeleton alterations in melanoma: Aberrant expression of cortactin, an actin-binding adapter protein, correlates with melanocytic tumor progression
-
X.-Z. Xu, M. V. Garcia, T.-Y. Li, L.-Y. Khor, R. S. Gajapathy, C. Spittle, S. Weed, S. R. Lessin, H. Wu, Cytoskeleton alterations in melanoma: Aberrant expression of cortactin, an actin-binding adapter protein, correlates with melanocytic tumor progression. Mod. Pathol. 23, 187-196 (2010).
-
(2010)
Mod. Pathol.
, vol.23
, pp. 187-196
-
-
Xu, X.-Z.1
Garcia, M.V.2
Li, T.-Y.3
Khor, L.-Y.4
Gajapathy, R.S.5
Spittle, C.6
Weed, S.7
Lessin, S.R.8
Wu, H.9
-
11
-
-
73949101319
-
Localization of cortactin is associated with colorectal cancer development
-
H. Hirakawa, K. Shibata, T. Nakayama, Localization of cortactin is associated with colorectal cancer development. Int. J. Oncol. 35, 1271-1276 (2009).
-
(2009)
Int. J. Oncol.
, vol.35
, pp. 1271-1276
-
-
Hirakawa, H.1
Shibata, K.2
Nakayama, T.3
-
12
-
-
0034597092
-
Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex
-
S. A. Weed, A. V. Karginov, D. A. Schafer, A. M. Weaver, A. W. Kinley, J. A. Cooper, J. T. Parsons, Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J. Cell Biol. 151, 29-40 (2000).
-
(2000)
J. Cell Biol.
, vol.151
, pp. 29-40
-
-
Weed, S.A.1
Karginov, A.V.2
Schafer, D.A.3
Weaver, A.M.4
Kinley, A.W.5
Cooper, J.A.6
Parsons, J.T.7
-
13
-
-
0027419589
-
Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex
-
H. Wu, J. T. Parsons, Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol. 120, 1417-1426 (1993).
-
(1993)
J. Cell Biol.
, vol.120
, pp. 1417-1426
-
-
Wu, H.1
Parsons, J.T.2
-
14
-
-
79952328998
-
Cortactin: A multifunctional regulator of cellular invasiveness
-
K. C. Kirkbride, B. H. Sung, S. Sinha, A. M. Weaver, Cortactin: A multifunctional regulator of cellular invasiveness. Cell Adh. Migr. 5, 187-198 (2011).
-
(2011)
Cell Adh. Migr.
, vol.5
, pp. 187-198
-
-
Kirkbride, K.C.1
Sung, B.H.2
Sinha, S.3
Weaver, A.M.4
-
15
-
-
34447315270
-
HDAC6 modulates cell motility by altering the acetylation level of cortactin
-
X. Zhang, Z. Yuan, Y. Zhang, S. Yong, A. Salas-Burgos, J. Koomen, N. Olashaw, J. T. Parsons, X.-J. Yang, S. R. Dent, T.-P. Yao, W. S. Lan, E. Seto, HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 27, 197-213 (2007).
-
(2007)
Mol. Cell
, vol.27
, pp. 197-213
-
-
Zhang, X.1
Yuan, Z.2
Zhang, Y.3
Yong, S.4
Salas-Burgos, A.5
Koomen, J.6
Olashaw, N.7
Parsons, J.T.8
Yang, X.-J.9
Dent, S.R.10
Yao, T.-P.11
Lan, W.S.12
Seto, E.13
-
16
-
-
0344640906
-
Domainselective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation
-
S. J. Haggarty, K. M. Koeller, J. C. Wong, C. M. Grozinger, S. L. Schreiber, Domainselective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. U.S.A. 100, 4389-4394 (2003).
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 4389-4394
-
-
Haggarty, S.J.1
Koeller, K.M.2
Wong, J.C.3
Grozinger, C.M.4
Schreiber, S.L.5
-
17
-
-
59649126261
-
Deacetylation of cortactin by SIRT1 promotes cell migration
-
Y. Zhang, M. Zhang, H. Dong, S. Yong, X. Li, N. Olashaw, P. A. Kruk, J. Q. Cheng, W. Bai, J. Chen, S. V. Nicosia, X. Zhang, Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 28, 445-460 (2009).
-
(2009)
Oncogene
, vol.28
, pp. 445-460
-
-
Zhang, Y.1
Zhang, M.2
Dong, H.3
Yong, S.4
Li, X.5
Olashaw, N.6
Kruk, P.A.7
Cheng, J.Q.8
Bai, W.9
Chen, J.10
Nicosia, S.V.11
Zhang, X.12
-
18
-
-
84855187981
-
Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells
-
K. Nakane, Y. Fujita, R. Terazawa, Y. Atsumi, T. Kato, Y. Nozawa, T. Deguchi, M. Ito, Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells. Int. J. Urol. 19, 71-79 (2012).
-
(2012)
Int. J. Urol.
, vol.19
, pp. 71-79
-
-
Nakane, K.1
Fujita, Y.2
Terazawa, R.3
Atsumi, Y.4
Kato, T.5
Nozawa, Y.6
Deguchi, T.7
Ito, M.8
-
19
-
-
84863033018
-
HDAC6 and SIRT2 promote bladder cancer cell migration and invasion by targeting cortactin
-
Q. Zuo, W. Wu, X. Li, L. Zhao, W. Chen, HDAC6 and SIRT2 promote bladder cancer cell migration and invasion by targeting cortactin. Oncol. Rep. 27, 819-824 (2012).
-
(2012)
Oncol. Rep.
, vol.27
, pp. 819-824
-
-
Zuo, Q.1
Wu, W.2
Li, X.3
Zhao, L.4
Chen, W.5
-
20
-
-
80054881600
-
Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin
-
D. Kaluza, J. Kroll, S. Gesierich, T.-P. Yao, R. A. Boon, E. Hergenreider, M. Tjwa, L. Rössig, E. Seto, H. G. Augustin, A. M. Zeiher, S. Dimmele, C. Urbich, Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J. 30, 4142-4156 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 4142-4156
-
-
Kaluza, D.1
Kroll, J.2
Gesierich, S.3
Yao, T.-P.4
Boon, R.A.5
Hergenreider, E.6
Tjwa, M.7
Rössig, L.8
Seto, E.9
Augustin, H.G.10
Zeiher, A.M.11
Dimmele, S.12
Urbich, C.13
-
21
-
-
84884593127
-
Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains
-
R. Hao, P. Nanduri, Y. Rao, R. S. Panichelli, A. Ito, M. Yoshida, T.-P. Yao, Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains. Mol. Cell 51, 819-828 (2013).
-
(2013)
Mol. Cell
, vol.51
, pp. 819-828
-
-
Hao, R.1
Nanduri, P.2
Rao, Y.3
Panichelli, R.S.4
Ito, A.5
Yoshida, M.6
Yao, T.-P.7
-
22
-
-
0024996768
-
Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A
-
M. Yoshida, M. Kijima, M. Akita, T. Beppu, Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174-17179 (1990).
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 17174-17179
-
-
Yoshida, M.1
Kijima, M.2
Akita, M.3
Beppu, T.4
-
23
-
-
0035868964
-
P300/CBPmediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2
-
A. Ito, C.-H. Lai, X. Zhao, S. Saito, M. H. Hamilton, E. Appella, T.-P. Yao, p300/CBPmediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331-1340 (2001).
-
(2001)
EMBO J.
, vol.20
, pp. 1331-1340
-
-
Ito, A.1
Lai, C.-H.2
Zhao, X.3
Saito, S.4
Hamilton, M.H.5
Appella, E.6
Yao, T.-P.7
-
24
-
-
0030924190
-
CRM1 is an export receptor for leucinerich nuclear export signals
-
M. Fornerod, M. Ohno, M. Yoshida, I. W. Mattaj, CRM1 is an export receptor for leucinerich nuclear export signals. Cell 90, 1051-1060 (1997).
-
(1997)
Cell
, vol.90
, pp. 1051-1060
-
-
Fornerod, M.1
Ohno, M.2
Yoshida, M.3
Mattaj, I.W.4
-
25
-
-
0032146749
-
Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1
-
N. Kudo, B. Wolff, T. Sekimoto, E. P. Schreiner, Y. Yoneda, M. Yanagida, S. Horinouchi, M. Yoshida, Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540-547 (1998).
-
(1998)
Exp. Cell Res.
, vol.242
, pp. 540-547
-
-
Kudo, N.1
Wolff, B.2
Sekimoto, T.3
Schreiner, E.P.4
Yoneda, Y.5
Yanagida, M.6
Horinouchi, S.7
Yoshida, M.8
-
26
-
-
77958125017
-
Discovery of the negative regulator of Nrf2,Keap1: A historical overview
-
K. Itoh, J. Mimura, M. Yamamoto, Discovery of the negative regulator of Nrf2, Keap1: A historical overview. Antioxid. Redox Signal. 13, 1665-1678 (2010).
-
(2010)
Antioxid. Redox Signal.
, vol.13
, pp. 1665-1678
-
-
Itoh, K.1
Mimura, J.2
Yamamoto, M.3
-
27
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
M. Komatsu, H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y.-S. Sou, I. Ueno, A. Sakamoto, K. I. Tong, M. Kim, Y. Nishito, S.-i. Iemura, T. Natsume, T. Ueno, E. Kominami, H. Motohashi, K. Tanaka, M. Yamamoto, The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223 (2010).
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
Sou, Y.-S.7
Ueno, I.8
Sakamoto, A.9
Tong, K.I.10
Kim, M.11
Nishito, Y.12
Iemura, S.-I.13
Natsume, T.14
Ueno, T.15
Kominami, E.16
Motohashi, H.17
Tanaka, K.18
Yamamoto, M.19
-
28
-
-
1242274394
-
Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes
-
M.-I. Kang, A. Kobayashi, N. Wakabayashi, S.-G. Kim, M. Yamamoto, Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc. Natl. Acad. Sci. U.S.A. 101, 2046-2051 (2004).
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 2046-2051
-
-
Kang, M.-I.1
Kobayashi, A.2
Wakabayashi, N.3
Kim, S.-G.4
Yamamoto, M.5
-
29
-
-
33344468962
-
Purification, crystallization and preliminary X-ray diffraction analysis of the Kelch-like motif region of mouse Keap1
-
B. Padmanabhan, M. Scharlock, K. I. Tong, Y. Nakamura, M.-I. Kang, A. Kobayashi, T. Matsumoto, A. Tanaka, M. Yamamoto, S. Yokoyama, Purification, crystallization and preliminary X-ray diffraction analysis of the Kelch-like motif region of mouse Keap1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61, 153-155 (2005).
-
(2005)
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
, vol.61
, pp. 153-155
-
-
Padmanabhan, B.1
Scharlock, M.2
Tong, K.I.3
Nakamura, Y.4
Kang, M.-I.5
Kobayashi, A.6
Matsumoto, T.7
Tanaka, A.8
Yamamoto, M.9
Yokoyama, S.10
-
30
-
-
33646156176
-
Cortactin affects cell migration by regulating intercellular adhesion and cell spreading
-
A. G. S. H. van Rossum, W. H. Moolenaar, E. Schuuring, Cortactin affects cell migration by regulating intercellular adhesion and cell spreading. Exp. Cell Res. 312, 1658-1670 (2006).
-
(2006)
Exp. Cell Res.
, vol.312
, pp. 1658-1670
-
-
Van Rossum, A.G.S.H.1
Moolenaar, W.H.2
Schuuring, E.3
-
31
-
-
84869217085
-
Oncostatin M modulates the mesenchymal-epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect
-
M.-L. Wang, C.-M. Pan, S.-H. Chiou, W.-H. Chen, H.-Y. Chang, O. K.-S. Lee, H.-S. Hsu, C.-W. Wu, Oncostatin M modulates the mesenchymal-epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect. Cancer Res. 72, 6051-6064 (2012).
-
(2012)
Cancer Res.
, vol.72
, pp. 6051-6064
-
-
Wang, M.-L.1
Pan, C.-M.2
Chiou, S.-H.3
Chen, W.-H.4
Chang, H.-Y.5
Lee, O.K.-S.6
Hsu, H.-S.7
Wu, C.-W.8
-
32
-
-
0031696485
-
Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1
-
S. A. Weed, Y. Du, J. T. Parsons, Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J. Cell Sci. 111, 2433-2443 (1998).
-
(1998)
J. Cell Sci.
, vol.111
, pp. 2433-2443
-
-
Weed, S.A.1
Du, Y.2
Parsons, J.T.3
-
33
-
-
0037343053
-
A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells
-
E. W. Krueger, J. D. Orth, H. Cao, M. A. McNiven, A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell 14, 1085-1096 (2003).
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1085-1096
-
-
Krueger, E.W.1
Orth, J.D.2
Cao, H.3
McNiven, M.A.4
-
34
-
-
77954087127
-
Increased cell migration and plasticity in Nrf2-deficient cancer cell lines
-
G. Rachakonda, K. R. Sekhar, D. Jowhar, P. C. Samson, J. P. Wikswo, R. D. Beauchamp, P. K. Datta, M. L. Freeman, Increased cell migration and plasticity in Nrf2-deficient cancer cell lines. Oncogene 29, 3703-3714 (2010).
-
(2010)
Oncogene
, vol.29
, pp. 3703-3714
-
-
Rachakonda, G.1
Sekhar, K.R.2
Jowhar, D.3
Samson, P.C.4
Wikswo, J.P.5
Beauchamp, R.D.6
Datta, P.K.7
Freeman, M.L.8
-
35
-
-
84875364553
-
Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia
-
T. Ashino, M. Yamamoto, T. Yoshida, S. Numazawa, Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia. Arterioscler. Thromb. Vasc. Biol. 33, 760-768 (2013).
-
(2013)
Arterioscler. Thromb. Vasc. Biol.
, vol.33
, pp. 760-768
-
-
Ashino, T.1
Yamamoto, M.2
Yoshida, T.3
Numazawa, S.4
-
36
-
-
40449107193
-
Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth
-
T. Ohta, K. Iijima, M. Miyamoto, I. Nakahara, H. Tanaka, M. Ohtsuji, T. Suzuki, A. Kobayashi, J. Yokota, T. Sakiyama, T. Shibata, M. Yamamoto, S. Hirohashi, Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 68, 1303-1309 (2008).
-
(2008)
Cancer Res.
, vol.68
, pp. 1303-1309
-
-
Ohta, T.1
Iijima, K.2
Miyamoto, M.3
Nakahara, I.4
Tanaka, H.5
Ohtsuji, M.6
Suzuki, T.7
Kobayashi, A.8
Yokota, J.9
Sakiyama, T.10
Shibata, T.11
Yamamoto, M.12
Hirohashi, S.13
-
37
-
-
33750885385
-
Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer
-
A. Singh, V. Misra, R. K. Thimmulappa, H. Lee, S. Ames, M. O. Hoque, J. G. Herman, S. B. Baylin, D. Sidransky, E. Gabrielson, M. V. Brock, S. Biswal, Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLOS Med. 3, e420 (2006).
-
(2006)
PLOS Med.
, vol.3
, pp. e420
-
-
Singh, A.1
Misra, V.2
Thimmulappa, R.K.3
Lee, H.4
Ames, S.5
Hoque, M.O.6
Herman, J.G.7
Baylin, S.B.8
Sidransky, D.9
Gabrielson, E.10
Brock, M.V.11
Biswal, S.12
-
38
-
-
33344456501
-
Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer
-
B. Padmanabhan, K. I. Tong, T. Ohta, Y. Nakamura, M. Scharlock, M. Ohtsuji, M.-I. Kang, A. Kobayashi, S. Yokoyama, M. Yamamoto, Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell 21, 689-700 (2006).
-
(2006)
Mol. Cell
, vol.21
, pp. 689-700
-
-
Padmanabhan, B.1
Tong, K.I.2
Ohta, T.3
Nakamura, Y.4
Scharlock, M.5
Ohtsuji, M.6
Kang, M.-I.7
Kobayashi, A.8
Yokoyama, S.9
Yamamoto, M.10
-
39
-
-
84929938618
-
Molecular effects of cancer-associated somatic mutations on the structural and target recognition properties of Keap1
-
H. Khan, R. C. Killoran, A. Brickenden, J. Fan, D. Yang, W.-Y. Choy, Molecular effects of cancer-associated somatic mutations on the structural and target recognition properties of Keap1. Biochem. J. 467, 141-151 (2015).
-
(2015)
Biochem. J.
, vol.467
, pp. 141-151
-
-
Khan, H.1
Killoran, R.C.2
Brickenden, A.3
Fan, J.4
Yang, D.5
Choy, W.-Y.6
-
40
-
-
67349089075
-
Multidrugresistant protein-3 gene regulation by the transcription factor Nrf2 in human bronchial epithelial and non-small-cell lung carcinoma
-
C. M. Mahaffey, H. Zhang, A. Rinna, W. Holland, P. C. Mack, H. J. Forman, Multidrugresistant protein-3 gene regulation by the transcription factor Nrf2 in human bronchial epithelial and non-small-cell lung carcinoma. Free Radic. Biol. Med. 46, 1650-1657 (2009).
-
(2009)
Free Radic. Biol. Med.
, vol.46
, pp. 1650-1657
-
-
Mahaffey, C.M.1
Zhang, H.2
Rinna, A.3
Holland, W.4
Mack, P.C.5
Forman, H.J.6
-
41
-
-
79952221884
-
Select heterozygous Keap1 mutations have a dominant-negative effect on wild-type Keap1 in vivo
-
T. Suzuki, J. Maher, M. Yamamoto, Select heterozygous Keap1 mutations have a dominant-negative effect on wild-type Keap1 in vivo. Cancer Res. 71, 1700-1709 (2011).
-
(2011)
Cancer Res.
, vol.71
, pp. 1700-1709
-
-
Suzuki, T.1
Maher, J.2
Yamamoto, M.3
-
42
-
-
0027403024
-
Kelch encodes a component of intercellular bridges in Drosophila egg chambers
-
F. Xue, L. Cooley, kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72, 681-693 (1993).
-
(1993)
Cell
, vol.72
, pp. 681-693
-
-
Xue, F.1
Cooley, L.2
-
44
-
-
0037183998
-
The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm
-
L. M. Zipper, R. T. Mulcahy, The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J. Biol. Chem. 277, 36544-36552 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 36544-36552
-
-
Zipper, L.M.1
Mulcahy, R.T.2
-
45
-
-
59949084582
-
The actin-binding domain of cortactin is dynamic and unstructured and affects lateral and longitudinal contacts in F-actin
-
A. Shvetsov, E. Berkane, D. Chereau, R. Dominguez, E. Reisler, The actin-binding domain of cortactin is dynamic and unstructured and affects lateral and longitudinal contacts in F-actin. Cell Motil. Cytoskeleton 66, 90-98 (2009).
-
(2009)
Cell Motil. Cytoskeleton
, vol.66
, pp. 90-98
-
-
Shvetsov, A.1
Berkane, E.2
Chereau, D.3
Dominguez, R.4
Reisler, E.5
-
46
-
-
0026594609
-
A leptomycin B resistance gene of Schizosaccharomyces pombe encodes a protein similar to the mammalian P-glycoproteins
-
K. Nishi, M. Yoshida, M. Nishimura, M. Nishikaw, M. Nishiyama, S. Horinouchi, T. Beppu, A leptomycin B resistance gene of Schizosaccharomyces pombe encodes a protein similar to the mammalian P-glycoproteins. Mol. Microbiol. 6, 761-769 (1992).
-
(1992)
Mol. Microbiol.
, vol.6
, pp. 761-769
-
-
Nishi, K.1
Yoshida, M.2
Nishimura, M.3
Nishikaw, M.4
Nishiyama, M.5
Horinouchi, S.6
Beppu, T.7
-
47
-
-
0242329881
-
Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation
-
N. Wakabayashi, K. Itoh, J. Wakabayashi, H. Motohashi, S. Noda, S. Takahashi, S. Imakado, T. Kotsuji, F. Otsuka, D. R. Roop, T. Harada, J. D. Engel, M. Yamamoto, Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 35, 238-245 (2003).
-
(2003)
Nat. Genet.
, vol.35
, pp. 238-245
-
-
Wakabayashi, N.1
Itoh, K.2
Wakabayashi, J.3
Motohashi, H.4
Noda, S.5
Takahashi, S.6
Imakado, S.7
Kotsuji, T.8
Otsuka, F.9
Roop, D.R.10
Harada, T.11
Engel, J.D.12
Yamamoto, M.13
-
48
-
-
12244295468
-
In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation
-
A. Matsuyama, T. Shimazu, Y. Sumida, A. Saito, Y. Yoshimatsu, D. Seigneurin-Berny, H. Osada, Y. Komatsu, N. Nishino, S. Khochbin, S. Horinouchi, M. Yoshida, In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 21, 6820-6831 (2002).
-
(2002)
EMBO J.
, vol.21
, pp. 6820-6831
-
-
Matsuyama, A.1
Shimazu, T.2
Sumida, Y.3
Saito, A.4
Yoshimatsu, Y.5
Seigneurin-Berny, D.6
Osada, H.7
Komatsu, Y.8
Nishino, N.9
Khochbin, S.10
Horinouchi, S.11
Yoshida, M.12
-
49
-
-
33845187822
-
Regulation of SV40 large T-antigen stability by reversible acetylation
-
T. Shimazu, Y. Komatsu, K. I. Nakayama, H. Fukazawa, S. Horinouchi, M. Yoshida, Regulation of SV40 large T-antigen stability by reversible acetylation. Oncogene 25, 7391-7400 (2006).
-
(2006)
Oncogene
, vol.25
, pp. 7391-7400
-
-
Shimazu, T.1
Komatsu, Y.2
Nakayama, K.I.3
Fukazawa, H.4
Horinouchi, S.5
Yoshida, M.6
|