메뉴 건너뛰기




Volumn 6, Issue DEC, 2015, Pages

Cancer metabolism: A modeling perspective

Author keywords

Cancer metabolism; Genome scale metabolic reconstruction; Metabolic modeling; Metabolic networks and pathways; Systems biology; Systems medicine; Tumor metabolism

Indexed keywords

GLUCOSE; GLUTAMINE; GLYCINE; SERINE;

EID: 84953258162     PISSN: None     EISSN: 1664042X     Source Type: Journal    
DOI: 10.3389/fphys.2015.00382     Document Type: Review
Times cited : (58)

References (86)
  • 1
    • 80051914543 scopus 로고    scopus 로고
    • The lipogenesis pathway as a cancer target
    • Abramson, H. N. (2011). The lipogenesis pathway as a cancer target. J. Med. Chem. 54, 5615-5638. doi: 10.1021/jm2005805
    • (2011) J. Med. Chem , vol.54 , pp. 5615-5638
    • Abramson, H.N.1
  • 2
    • 84863662483 scopus 로고    scopus 로고
    • Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
    • Agren, R., Bordel, S., Mardinoglu, A., Pornputtapong, N., Nookaew, I., and Nielsen, J. (2012). Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8:e1002518. doi: 10.1371/journal.pcbi.1002518
    • (2012) PLoS Comput. Biol , vol.8 , pp. e1002518
    • Agren, R.1    Bordel, S.2    Mardinoglu, A.3    Pornputtapong, N.4    Nookaew, I.5    Nielsen, J.6
  • 3
    • 84898663879 scopus 로고    scopus 로고
    • Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
    • Agren, R., Mardinoglu, A., Asplund, A., Kampf, C., Uhlen, M., and Nielsen, J. (2014). Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 721. doi: 10.1002/msb.145122
    • (2014) Mol. Syst. Biol , vol.10 , pp. 721
    • Agren, R.1    Mardinoglu, A.2    Asplund, A.3    Kampf, C.4    Uhlen, M.5    Nielsen, J.6
  • 4
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker, S. A., and Palsson, B. O. (2008). Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4:e1000082. doi: 10.1371/journal.pcbi.1000082
    • (2008) PLoS Comput. Biol , vol.4 , pp. e1000082
    • Becker, S.A.1    Palsson, B.O.2
  • 5
    • 84947562163 scopus 로고    scopus 로고
    • Stratification of hepatocellular carcinoma patients based on acetate utilization
    • Björnson, E., Mukhopadhyay, B., Asplund, A., Pristovsek, N., Cinar, R., Romeo, S., et al. (2015). Stratification of hepatocellular carcinoma patients based on acetate utilization. Cell Rep. 13, 2014-2026. doi: 10.1016/j.celrep.2015.10.045
    • (2015) Cell Rep , vol.13 , pp. 2014-2026
    • Björnson, E.1    Mukhopadhyay, B.2    Asplund, A.3    Pristovsek, N.4    Cinar, R.5    Romeo, S.6
  • 6
    • 84925969707 scopus 로고    scopus 로고
    • Metabolic pathways promoting cancer cell survival and growth
    • Boroughs, L. K., and DeBerardinis, R. J. (2015). Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351-359. doi: 10.1038/ncb3124
    • (2015) Nat. Cell Biol , vol.17 , pp. 351-359
    • Boroughs, L.K.1    DeBerardinis, R.J.2
  • 7
    • 79251517382 scopus 로고    scopus 로고
    • Regulation of cancer cell metabolism
    • Cairns, R. A., Harris, I. S., and Mak, T. W. (2011). Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95. doi: 10.1038/nrc2981
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 85-95
    • Cairns, R.A.1    Harris, I.S.2    Mak, T.W.3
  • 8
    • 11144242211 scopus 로고    scopus 로고
    • Timeline: chemotherapy and the war on cancer
    • Chabner, B. A., and Roberts, T. G. Jr. (2005). Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65-72. doi: 10.1038/nrc1529
    • (2005) Nat. Rev. Cancer , vol.5 , pp. 65-72
    • Chabner, B.A.1    Roberts, T.G.2
  • 10
    • 51749113592 scopus 로고    scopus 로고
    • Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli
    • Covert, M. W., Xiao, N., Chen, T. J., and Karr, J. R. (2008). Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24, 2044-2050. doi: 10.1093/bioinformatics/btn352
    • (2008) Bioinformatics , vol.24 , pp. 2044-2050
    • Covert, M.W.1    Xiao, N.2    Chen, T.J.3    Karr, J.R.4
  • 11
    • 84860512005 scopus 로고    scopus 로고
    • Links between metabolism and cancer
    • Dang, C. V. (2012). Links between metabolism and cancer. Genes Dev. 26, 877-890. doi: 10.1101/gad.189365.112
    • (2012) Genes Dev , vol.26 , pp. 877-890
    • Dang, C.V.1
  • 12
    • 77953702324 scopus 로고    scopus 로고
    • Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
    • Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger, M. A., Driggers, E. M., et al. (2010). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966. doi: 10.1038/nature09132
    • (2010) Nature , vol.465 , pp. 966
    • Dang, L.1    White, D.W.2    Gross, S.3    Bennett, B.D.4    Bittinger, M.A.5    Driggers, E.M.6
  • 13
    • 37449034854 scopus 로고    scopus 로고
    • Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    • DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350. doi: 10.1073/pnas.0709747104
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 19345-19350
    • DeBerardinis, R.J.1    Mancuso, A.2    Daikhin, E.3    Nissim, I.4    Yudkoff, M.5    Wehrli, S.6
  • 14
    • 84897420143 scopus 로고    scopus 로고
    • The metabolic demands of cancer cells are coupled to their size and protein synthesis rates
    • Dolfi, S. C., Chan, L. L., Qiu, J., Tedeschi, P. M., Bertino, J. R., Hirshfield, K. M., et al. (2013). The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer Metab. 1:20. doi: 10.1186/2049-3002-1-20
    • (2013) Cancer Metab , vol.1 , pp. 20
    • Dolfi, S.C.1    Chan, L.L.2    Qiu, J.3    Tedeschi, P.M.4    Bertino, J.R.5    Hirshfield, K.M.6
  • 15
    • 33846910173 scopus 로고    scopus 로고
    • Global reconstruction of the human metabolic network based on genomic and bibliomic data
    • Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., et al. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A. 104, 1777-1782. doi: 10.1073/pnas.0610772104
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 1777-1782
    • Duarte, N.C.1    Becker, S.A.2    Jamshidi, N.3    Thiele, I.4    Mo, M.L.5    Vo, T.D.6
  • 16
    • 0000045991 scopus 로고
    • The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid
    • Eagle, H., Oyama, V. I., Levy, M., Horton, C. L., and Fleischman, R. (1956). The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid. J. Biol. Chem. 218, 607-616.
    • (1956) J. Biol. Chem , vol.218 , pp. 607-616
    • Eagle, H.1    Oyama, V.I.2    Levy, M.3    Horton, C.L.4    Fleischman, R.5
  • 17
    • 84943187816 scopus 로고    scopus 로고
    • HCSD: the human cancer secretome database.
    • (Oxford) 2015:bav051.
    • Feizi, A., Banaei-Esfahani, A., and Nielsen, J. (2015). HCSD: the human cancer secretome database. Database (Oxford) 2015:bav051. doi: 10.1093/database/bav051
    • (2015) Database
    • Feizi, A.1    Banaei-Esfahani, A.2    Nielsen, J.3
  • 18
    • 84901925098 scopus 로고    scopus 로고
    • Metabolic and protein interaction sub-networks controlling the proliferation rate of cancer cells and their impact on patient survival
    • Feizi, A., and Bordel, S. (2013). Metabolic and protein interaction sub-networks controlling the proliferation rate of cancer cells and their impact on patient survival. Sci. Rep. 3:3041. doi: 10.1038/srep03041
    • (2013) Sci. Rep , vol.3 , pp. 3041
    • Feizi, A.1    Bordel, S.2
  • 19
    • 84898877069 scopus 로고    scopus 로고
    • Predicting selective drug targets in cancer through metabolic networks
    • Folger, O., Jerby, L., Frezza, C., Gottlieb, E., Ruppin, E., and Shlomi, T. (2011). Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7, 501. doi: 10.1038/msb.2011.35
    • (2011) Mol. Syst. Biol , vol.7 , pp. 501
    • Folger, O.1    Jerby, L.2    Frezza, C.3    Gottlieb, E.4    Ruppin, E.5    Shlomi, T.6
  • 21
    • 84936890106 scopus 로고    scopus 로고
    • Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling
    • Ghaffari, P., Mardinoglu, A., Asplund, A., Shoaie, S., Kampf, C., Uhlen, M., et al. (2015). Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci. Rep. 5:8183. doi: 10.1038/srep08183
    • (2015) Sci. Rep , vol.5 , pp. 8183
    • Ghaffari, P.1    Mardinoglu, A.2    Asplund, A.3    Shoaie, S.4    Kampf, C.5    Uhlen, M.6
  • 22
    • 84884560637 scopus 로고    scopus 로고
    • p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production
    • Goldstein, I., Yizhak, K., Madar, S., Goldfinger, N., Ruppin, E., and Rotter, V. (2013). p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab. 1:9. doi: 10.1186/2049-3002-1-9
    • (2013) Cancer Metab , vol.1 , pp. 9
    • Goldstein, I.1    Yizhak, K.2    Madar, S.3    Goldfinger, N.4    Ruppin, E.5    Rotter, V.6
  • 23
    • 84856013431 scopus 로고    scopus 로고
    • Clonal evolution in cancer
    • Greaves, M., and Maley, C. C. (2012). Clonal evolution in cancer. Nature 481, 306-313. doi: 10.1038/nature10762
    • (2012) Nature , vol.481 , pp. 306-313
    • Greaves, M.1    Maley, C.C.2
  • 24
    • 84874614138 scopus 로고    scopus 로고
    • Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma
    • Guillaumond, F., Leca, J., Olivares, O., Lavaut, M. N., Vidal, N., Berthezène, P., et al. (2013). Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. U.S.A. 110, 3919-3924. doi: 10.1073/pnas.1219555110
    • (2013) Proc. Natl. Acad. Sci. U.S.A , vol.110 , pp. 3919-3924
    • Guillaumond, F.1    Leca, J.2    Olivares, O.3    Lavaut, M.N.4    Vidal, N.5    Berthezène, P.6
  • 25
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70. doi: 10.1016/S0092-8674(00)81683-9
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 26
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674. doi: 10.1016/j.cell.2011.02.013
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 27
    • 84880321156 scopus 로고    scopus 로고
    • Heterogeneity of tumor-induced gene expression changes in the human metabolic network
    • Hu, J., Locasale, J. W., Bielas, J. H., O'sullivan, J., Sheahan, K., Cantley, L. C., et al. (2013). Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31, 522-529. doi: 10.1038/nbt.2530
    • (2013) Nat. Biotechnol , vol.31 , pp. 522-529
    • Hu, J.1    Locasale, J.W.2    Bielas, J.H.3    O'sullivan, J.4    Sheahan, K.5    Cantley, L.C.6
  • 28
    • 84872093417 scopus 로고    scopus 로고
    • Analysis of omics data with genome-scale models of metabolism
    • Hyduke, D. R., Lewis, N. E., and Palsson, B. O. (2013). Analysis of omics data with genome-scale models of metabolism. Mol. Biosyst. 9, 167-174. doi: 10.1039/C2MB25453K
    • (2013) Mol. Biosyst , vol.9 , pp. 167-174
    • Hyduke, D.R.1    Lewis, N.E.2    Palsson, B.O.3
  • 29
    • 84905097406 scopus 로고    scopus 로고
    • Pyruvate kinase M2 and cancer: an updated assessment
    • Iqbal, M. A., Gupta, V., Gopinath, P., Mazurek, S., and Bamezai, R. N. (2014). Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett. 588, 2685-2692. doi: 10.1016/j.febslet.2014.04.011
    • (2014) FEBS Lett , vol.588 , pp. 2685-2692
    • Iqbal, M.A.1    Gupta, V.2    Gopinath, P.3    Mazurek, S.4    Bamezai, R.N.5
  • 30
    • 23644448721 scopus 로고    scopus 로고
    • HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability
    • Isaacs, J. S., Jung, Y. J., Mole, D. R., Lee, S., Torres-Cabala, C., Chung, Y. L., et al. (2005). HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143-153. doi: 10.1016/j.ccr.2005.06.017
    • (2005) Cancer Cell , vol.8 , pp. 143-153
    • Isaacs, J.S.1    Jung, Y.J.2    Mole, D.R.3    Lee, S.4    Torres-Cabala, C.5    Chung, Y.L.6
  • 31
    • 84885589840 scopus 로고    scopus 로고
    • PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells
    • Israelsen, W. J., Dayton, T. L., Davidson, S. M., Fiske, B. P., Hosios, A. M., Bellinger, G., et al. (2013). PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155, 397-409. doi: 10.1016/j.cell.2013.09.025
    • (2013) Cell , vol.155 , pp. 397-409
    • Israelsen, W.J.1    Dayton, T.L.2    Davidson, S.M.3    Fiske, B.P.4    Hosios, A.M.5    Bellinger, G.6
  • 32
    • 84861420588 scopus 로고    scopus 로고
    • Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation
    • Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., et al. (2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040-1044. doi: 10.1126/science.1218595
    • (2012) Science , vol.336 , pp. 1040-1044
    • Jain, M.1    Nilsson, R.2    Sharma, S.3    Madhusudhan, N.4    Kitami, T.5    Souza, A.L.6
  • 33
    • 77956417789 scopus 로고    scopus 로고
    • Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism
    • Jerby, L., Shlomi, T., and Ruppin, E. (2010). Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6, 401. doi: 10.1038/msb.2010.56
    • (2010) Mol. Syst. Biol , vol.6 , pp. 401
    • Jerby, L.1    Shlomi, T.2    Ruppin, E.3
  • 34
    • 84867527044 scopus 로고    scopus 로고
    • Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer
    • Jerby, L., Wolf, L., Denkert, C., Stein, G. Y., Hilvo, M., Oresic, M., et al. (2012). Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res. 72, 5712-5720. doi: 10.1158/0008-5472.CAN-12-2215
    • (2012) Cancer Res , vol.72 , pp. 5712-5720
    • Jerby, L.1    Wolf, L.2    Denkert, C.3    Stein, G.Y.4    Hilvo, M.5    Oresic, M.6
  • 35
    • 84878464291 scopus 로고    scopus 로고
    • Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
    • Kamphorst, J. J., Cross, J. R., Fan, J., de Stanchina, E., Mathew, R., White, E. P., et al. (2013). Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl. Acad. Sci. U.S.A. 110, 8882-8887. doi: 10.1073/pnas.1307237110
    • (2013) Proc. Natl. Acad. Sci. U.S.A , vol.110 , pp. 8882-8887
    • Kamphorst, J.J.1    Cross, J.R.2    Fan, J.3    de Stanchina, E.4    Mathew, R.5    White, E.P.6
  • 36
    • 20244376908 scopus 로고    scopus 로고
    • Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development
    • Kelloff, G. J., Hoffman, J. M., Johnson, B., Scher, H. I., Siegel, B. A., Cheng, E. Y., et al. (2005). Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11, 2785-2808. doi: 10.1158/1078-0432.CCR-04-2626
    • (2005) Clin. Cancer Res , vol.11 , pp. 2785-2808
    • Kelloff, G.J.1    Hoffman, J.M.2    Johnson, B.3    Scher, H.I.4    Siegel, B.A.5    Cheng, E.Y.6
  • 37
    • 84901263663 scopus 로고    scopus 로고
    • Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells
    • Labuschagne, C. F., van den Broek, N. J., Mackay, G. M., Vousden, K. H., and Maddocks, O. D. (2014). Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7, 1248-1258. doi: 10.1016/j.celrep.2014.04.045
    • (2014) Cell Rep , vol.7 , pp. 1248-1258
    • Labuschagne, C.F.1    van den Broek, N.J.2    Mackay, G.M.3    Vousden, K.H.4    Maddocks, O.D.5
  • 38
    • 44949247269 scopus 로고    scopus 로고
    • Dynamic analysis of integrated signaling, metabolic, and regulatory networks
    • Lee, J. M., Gianchandani, E. P., Eddy, J. A., and Papin, J. A. (2008). Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 4:e1000086. doi: 10.1371/journal.pcbi.1000086
    • (2008) PLoS Comput. Biol , vol.4 , pp. e1000086
    • Lee, J.M.1    Gianchandani, E.P.2    Eddy, J.A.3    Papin, J.A.4
  • 39
    • 78649711427 scopus 로고    scopus 로고
    • The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
    • Levine, A. J., and Puzio-Kuter, A. M. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340-1344. doi: 10.1126/science.1193494
    • (2010) Science , vol.330 , pp. 1340-1344
    • Levine, A.J.1    Puzio-Kuter, A.M.2
  • 40
    • 80052258995 scopus 로고    scopus 로고
    • Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
    • Locasale, J. W., Grassian, A. R., Melman, T., Lyssiotis, C. A., Mattaini, K. R., Bass, A. J., et al. (2011). Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869-874. doi: 10.1038/ng.890
    • (2011) Nat. Genet , vol.43 , pp. 869-874
    • Locasale, J.W.1    Grassian, A.R.2    Melman, T.3    Lyssiotis, C.A.4    Mattaini, K.R.5    Bass, A.J.6
  • 41
    • 84920447418 scopus 로고    scopus 로고
    • Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation
    • Lunt, S. Y., Muralidhar, V., Hosios, A. M., Israelsen, W. J., Gui, D. Y., Newhouse, L., et al. (2015). Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57, 95-107. doi: 10.1016/j.molcel.2014.10.027
    • (2015) Mol. Cell , vol.57 , pp. 95-107
    • Lunt, S.Y.1    Muralidhar, V.2    Hosios, A.M.3    Israelsen, W.J.4    Gui, D.Y.5    Newhouse, L.6
  • 42
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Lunt, S. Y., and Vander Heiden, M. G. (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441-464. doi: 10.1146/annurev-cellbio-092910-154237
    • (2011) Annu. Rev. Cell Dev. Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 43
    • 84872905650 scopus 로고    scopus 로고
    • Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells
    • Maddocks, O. D., Berkers, C. R., Mason, S. M., Zheng, L., Blyth, K., Gottlieb, E., et al. (2012). Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542-546. doi: 10.1038/nature11743
    • (2012) Nature , vol.493 , pp. 542-546
    • Maddocks, O.D.1    Berkers, C.R.2    Mason, S.M.3    Zheng, L.4    Blyth, K.5    Gottlieb, E.6
  • 44
    • 84883787394 scopus 로고    scopus 로고
    • Integration of clinical data with a genome-scale metabolic model of the human adipocyte
    • Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Nookaew, I., Jacobson, P., et al. (2013a). Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9, 649. doi: 10.1038/msb.2013.5
    • (2013) Mol. Syst. Biol , vol.9 , pp. 649
    • Mardinoglu, A.1    Agren, R.2    Kampf, C.3    Asplund, A.4    Nookaew, I.5    Jacobson, P.6
  • 45
    • 84898011025 scopus 로고    scopus 로고
    • Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease
    • Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., and Nielsen, J. (2014). Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083. doi: 10.1038/ncomms4083
    • (2014) Nat. Commun , vol.5 , pp. 3083
    • Mardinoglu, A.1    Agren, R.2    Kampf, C.3    Asplund, A.4    Uhlen, M.5    Nielsen, J.6
  • 46
    • 84883384697 scopus 로고    scopus 로고
    • Genome-scale modeling of human metabolism - a systems biology approach
    • Mardinoglu, A., Gatto, F., and Nielsen, J. (2013b). Genome-scale modeling of human metabolism - a systems biology approach. Biotechnol. J. 8, 985-996. doi: 10.1002/biot.201200275
    • (2013) Biotechnol. J. , vol.8 , pp. 985-996
    • Mardinoglu, A.1    Gatto, F.2    Nielsen, J.3
  • 47
    • 84855955467 scopus 로고    scopus 로고
    • Systems medicine and metabolic modelling
    • Mardinoglu, A., and Nielsen, J. (2012). Systems medicine and metabolic modelling. J. Intern. Med. 271, 142-154. doi: 10.1111/j.1365-2796.2011.02493.x
    • (2012) J. Intern. Med , vol.271 , pp. 142-154
    • Mardinoglu, A.1    Nielsen, J.2
  • 48
    • 84920286423 scopus 로고    scopus 로고
    • New paradigms for metabolic modeling of human cells
    • Mardinoglu, A., and Nielsen, J. (2015). New paradigms for metabolic modeling of human cells. Curr. Opin. Biotech. 34, 91-97. doi: 10.1016/j.copbio.2014.12.013
    • (2015) Curr. Opin. Biotech , vol.34 , pp. 91-97
    • Mardinoglu, A.1    Nielsen, J.2
  • 49
    • 84945903211 scopus 로고    scopus 로고
    • The gut microbiota modulates host amino acid and glutathione metabolism in mice Mol
    • Mardinoglu, A., Shoaie, S., Bergentall, M., Ghaffari, P., Zhang, C., Larsson, E., et al. (2015). The gut microbiota modulates host amino acid and glutathione metabolism in mice Mol. Syst. Biol. 11, 834. doi: 10.15252/msb.20156487
    • (2015) Syst. Biol , vol.11 , pp. 834
    • Mardinoglu, A.1    Shoaie, S.2    Bergentall, M.3    Ghaffari, P.4    Zhang, C.5    Larsson, E.6
  • 50
    • 84884377472 scopus 로고    scopus 로고
    • Tumour heterogeneity and cancer cell plasticity
    • Meacham, C. E., and Morrison, S. J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature 501, 328-337. doi: 10.1038/nature12624
    • (2013) Nature , vol.501 , pp. 328-337
    • Meacham, C.E.1    Morrison, S.J.2
  • 51
    • 0004261290 scopus 로고
    • Biochemistry of the Amino Acids
    • 2nd Edn. New York, NY: Academic Press.
    • Meister, A. (1965). Biochemistry of the Amino Acids, 2nd Edn. New York, NY: Academic Press.
    • (1965)
    • Meister, A.1
  • 52
    • 34748912615 scopus 로고    scopus 로고
    • Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
    • Menendez, J. A., and Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763-777. doi: 10.1038/nrc2222
    • (2007) Nat. Rev. Cancer , vol.7 , pp. 763-777
    • Menendez, J.A.1    Lupu, R.2
  • 53
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., et al. (2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384. doi: 10.1038/nature10602
    • (2012) Nature , vol.481 , pp. 380-384
    • Metallo, C.M.1    Gameiro, P.A.2    Bell, E.L.3    Mattaini, K.R.4    Yang, J.5    Hiller, K.6
  • 54
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • Mullen, A. R., Wheaton, W. W., Jin, E. S., Chen, P. H., Sullivan, L. B., Cheng, T., et al. (2012). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385-388. doi: 10.1038/nature10642
    • (2012) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1    Wheaton, W.W.2    Jin, E.S.3    Chen, P.H.4    Sullivan, L.B.5    Cheng, T.6
  • 55
    • 77950628238 scopus 로고    scopus 로고
    • Metabolic flux analysis in eukaryotes
    • Niklas, J., Schneider, K., and Heinzle, E. (2010). Metabolic flux analysis in eukaryotes. Curr. Opin. Biotech. 21, 63-69. doi: 10.1016/j.copbio.2010.01.011
    • (2010) Curr. Opin. Biotech , vol.21 , pp. 63-69
    • Niklas, J.1    Schneider, K.2    Heinzle, E.3
  • 56
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • Oberhardt, M. A., Palsson, B. O., and Papin, J. A. (2009). Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320. doi: 10.1038/msb.2009.77
    • (2009) Mol. Syst. Biol , vol.5 , pp. 320
    • Oberhardt, M.A.1    Palsson, B.O.2    Papin, J.A.3
  • 57
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., et al. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401. doi: 10.1126/science.1254257
    • (2014) Science , vol.344 , pp. 1396-1401
    • Patel, A.P.1    Tirosh, I.2    Trombetta, J.J.3    Shalek, A.K.4    Gillespie, S.M.5    Wakimoto, H.6
  • 58
    • 80051923932 scopus 로고    scopus 로고
    • Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
    • Possemato, R., Marks, K. M., Shaul, Y. D., Pacold, M. E., Kim, D., Birsoy, K., et al. (2011). Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346-350. doi: 10.1038/nature10350
    • (2011) Nature , vol.476 , pp. 346-350
    • Possemato, R.1    Marks, K.M.2    Shaul, Y.D.3    Pacold, M.E.4    Kim, D.5    Birsoy, K.6
  • 59
    • 84893845686 scopus 로고    scopus 로고
    • Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth
    • Prabhu, A., Sarcar, B., Kahali, S., Yuan, Z., Johnson, J. J., Adam, K. P., et al. (2014). Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth. Cancer Res. 74, 787-796. doi: 10.1158/0008-5472.CAN-13-1423
    • (2014) Cancer Res , vol.74 , pp. 787-796
    • Prabhu, A.1    Sarcar, B.2    Kahali, S.3    Yuan, Z.4    Johnson, J.J.5    Adam, K.P.6
  • 60
    • 0033392917 scopus 로고    scopus 로고
    • Zonation of acetate labeling across the liver: implications for studies of lipogenesis by MIDA
    • Puchowicz, M. A., Bederman, I. R., Comte, B., Yang, D., David, F., Stone, E., et al. (1999). Zonation of acetate labeling across the liver: implications for studies of lipogenesis by MIDA. Am. J. Physiol. 277, E1022-E1027.
    • (1999) Am. J. Physiol , vol.277 , pp. E1022-E1027
    • Puchowicz, M.A.1    Bederman, I.R.2    Comte, B.3    Yang, D.4    David, F.5    Stone, E.6
  • 62
    • 84947648620 scopus 로고    scopus 로고
    • Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress
    • Schug, Z. T., Peck, B., Jones, D. T., Zhang, Q., Grosskurth, S., Alam, I. S., et al. (2015). Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57-71. doi: 10.1016/j.ccell.2014.12.002
    • (2015) Cancer Cell , vol.27 , pp. 57-71
    • Schug, Z.T.1    Peck, B.2    Jones, D.T.3    Zhang, Q.4    Grosskurth, S.5    Alam, I.S.6
  • 63
    • 84869009687 scopus 로고    scopus 로고
    • How cancer metabolism is tuned for proliferation and vulnerable to disruption
    • Schulze, A., and Harris, A. L. (2012). How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364-373. doi: 10.1038/nature11706
    • (2012) Nature , vol.491 , pp. 364-373
    • Schulze, A.1    Harris, A.L.2
  • 64
    • 19944433653 scopus 로고    scopus 로고
    • Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
    • Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77-85. doi: 10.1016/j.ccr.2004.11.022
    • (2005) Cancer Cell , vol.7 , pp. 77-85
    • Selak, M.A.1    Armour, S.M.2    MacKenzie, E.D.3    Boulahbel, H.4    Watson, D.G.5    Mansfield, K.D.6
  • 66
    • 51349092391 scopus 로고    scopus 로고
    • Network-based prediction of human tissue-specific metabolism
    • Shlomi, T., Cabili, M. N., Herrgård, M. J., Palsson, B. O., and Ruppin, E. (2008). Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003-1010. doi: 10.1038/nbt.1487
    • (2008) Nat. Biotechnol , vol.26 , pp. 1003-1010
    • Shlomi, T.1    Cabili, M.N.2    Herrgård, M.J.3    Palsson, B.O.4    Ruppin, E.5
  • 68
    • 84923207192 scopus 로고    scopus 로고
    • Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia
    • Shukla, S. K., Gebregiworgis, T., Purohit, V., Chaika, N. V., Gunda, V., Radhakrishnan, P., et al. (2014). Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab. 2:18. doi: 10.1186/2049-3002-2-18
    • (2014) Cancer Metab , vol.2 , pp. 18
    • Shukla, S.K.1    Gebregiworgis, T.2    Purohit, V.3    Chaika, N.V.4    Gunda, V.5    Radhakrishnan, P.6
  • 69
    • 84922432383 scopus 로고    scopus 로고
    • Genome-scale modeling for metabolic engineering
    • Simeonidis, E., and Price, N. D. (2015). Genome-scale modeling for metabolic engineering. J. Ind. Microbiol. Biotechnol. 42, 327-338. doi: 10.1007/s10295-014-1576-3
    • (2015) J. Ind. Microbiol. Biotechnol , vol.42 , pp. 327-338
    • Simeonidis, E.1    Price, N.D.2
  • 70
    • 0018938136 scopus 로고
    • A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection
    • Som, P., Atkins, H. L., Bandoypadhyay, D., Fowler, J. S., MacGregor, R. R., Matsui, K., et al. (1980). A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J. Nucl. Med. 21, 670-675. doi: 10.1097/00004728-198012000-00045
    • (1980) J. Nucl. Med , vol.21 , pp. 670-675
    • Som, P.1    Atkins, H.L.2    Bandoypadhyay, D.3    Fowler, J.S.4    MacGregor, R.R.5    Matsui, K.6
  • 71
    • 57449097020 scopus 로고    scopus 로고
    • Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
    • Sonveaux, P., Végran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., et al. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-3942. doi: 10.1172/jci36843
    • (2008) J. Clin. Invest , vol.118 , pp. 3930-3942
    • Sonveaux, P.1    Végran, F.2    Schroeder, T.3    Wergin, M.C.4    Verrax, J.5    Rabbani, Z.N.6
  • 72
    • 0000851342 scopus 로고
    • The free amino acids of human blood plasma
    • Stein, W. H., and Moore, S. (1954). The free amino acids of human blood plasma. J. Biol. Chem. 211, 915-926.
    • (1954) J. Biol. Chem , vol.211 , pp. 915-926
    • Stein, W.H.1    Moore, S.2
  • 73
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele, I., and Palsson, B. O. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93-121. doi: 10.1038/nprot.2009.203
    • (2010) Nat. Protoc , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, B.O.2
  • 75
    • 84880291912 scopus 로고    scopus 로고
    • BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1
    • Tönjes, M., Barbus, S., Park, Y. J., Wang, W., Schlotter, M., Lindroth, A. M., et al. (2013). BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med. 19, 901-908. doi: 10.1038/nm.3217
    • (2013) Nat. Med , vol.19 , pp. 901-908
    • Tönjes, M.1    Barbus, S.2    Park, Y.J.3    Wang, W.4    Schlotter, M.5    Lindroth, A.M.6
  • 76
    • 80052242132 scopus 로고    scopus 로고
    • Targeting cancer metabolism: a therapeutic window opens
    • Vander Heiden, M. G. (2011). Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671-684. doi: 10.1038/nrd3504
    • (2011) Nat. Rev. Drug Discov , vol.10 , pp. 671-684
    • Vander Heiden, M.G.1
  • 77
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. doi: 10.1126/science.1160809
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 78
    • 84870933131 scopus 로고    scopus 로고
    • Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE
    • Wang, Y. L., Eddy, J. A., and Price, N. D. (2012). Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6:153. doi: 10.1186/1752-0509-6-153
    • (2012) BMC Syst. Biol , vol.6 , pp. 153
    • Wang, Y.L.1    Eddy, J.A.2    Price, N.D.3
  • 79
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg, O. (1956). On the origin of cancer cells. Science 123, 309-314. doi: 10.1126/science.123.3191.309
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 80
    • 84920201918 scopus 로고    scopus 로고
    • PKM2 contributes to cancer metabolism
    • Wong, N., Ojo, D., Yan, J., and Tang, D. (2015). PKM2 contributes to cancer metabolism. Cancer Lett. 356, 184-191. doi: 10.1016/j.canlet.2014.01.031
    • (2015) Cancer Lett , vol.356 , pp. 184-191
    • Wong, N.1    Ojo, D.2    Yan, J.3    Tang, D.4
  • 82
    • 84934288620 scopus 로고    scopus 로고
    • Modeling cancer metabolism on a genome scale
    • Yizhak, K., Chaneton, B., Gottlieb, E., and Ruppin, E. (2015). Modeling cancer metabolism on a genome scale. Mol. Syst. Biol. 11, 817. doi: 10.15252/msb.20145307
    • (2015) Mol. Syst. Biol , vol.11 , pp. 817
    • Yizhak, K.1    Chaneton, B.2    Gottlieb, E.3    Ruppin, E.4
  • 83
    • 84907379295 scopus 로고    scopus 로고
    • A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration
    • Yizhak, K., Le Devedec, S. E., Rogkoti, V. M., Baenke, F., de Boer, V. C., Frezza, C., et al. (2014). A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol. Syst. Biol. 10, 744. doi: 10.15252/msb.20145746
    • (2014) Mol. Syst. Biol , vol.10 , pp. 744
    • Yizhak, K.1    Le Devedec, S.E.2    Rogkoti, V.M.3    Baenke, F.4    de Boer, V.C.5    Frezza, C.6
  • 84
    • 84863011452 scopus 로고    scopus 로고
    • The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
    • Yuneva, M. O., Fan, T. W., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T., et al. (2012). The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170. doi: 10.1016/j.cmet.2011.12.015
    • (2012) Cell Metab , vol.15 , pp. 157-170
    • Yuneva, M.O.1    Fan, T.W.2    Allen, T.D.3    Higashi, R.M.4    Ferraris, D.V.5    Tsukamoto, T.6
  • 85
    • 84941656865 scopus 로고    scopus 로고
    • Logical transformation of genome-scale metabolic models for gene level applications and analysis
    • Zhang, C., Ji, B., Mardinoglu, A., Nielsen, J., and Hua, Q. (2015). Logical transformation of genome-scale metabolic models for gene level applications and analysis. Bioinformatics 31, 2324-2331. doi: 10.1093/bioinformatics/btv134
    • (2015) Bioinformatics , vol.31 , pp. 2324-2331
    • Zhang, C.1    Ji, B.2    Mardinoglu, A.3    Nielsen, J.4    Hua, Q.5
  • 86
    • 84922270824 scopus 로고    scopus 로고
    • Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion
    • Zhang, J., Fan, J., Venneti, S., Cross, J. R., Takagi, T., Bhinder, B., et al. (2014). Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56, 205-218. doi: 10.1016/j.molcel.2014.08.018
    • (2014) Mol. Cell , vol.56 , pp. 205-218
    • Zhang, J.1    Fan, J.2    Venneti, S.3    Cross, J.R.4    Takagi, T.5    Bhinder, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.