메뉴 건너뛰기




Volumn 88, Issue 6, 2015, Pages 1345-1355

Inducible glomerular erythropoietin production in the adult kidney

Author keywords

Cell transformation; Erythropoietin; Glomerular cells; Renin; Von Hippel Lindau

Indexed keywords

CONNEXIN 40; ERYTHROPOIETIN; HYPOXIA INDUCIBLE FACTOR; HYPOXIA INDUCIBLE FACTOR 2; MESSENGER RNA; RENIN; UNCLASSIFIED DRUG; VON HIPPEL LINDAU PROTEIN;

EID: 84951567699     PISSN: 00852538     EISSN: 15231755     Source Type: Journal    
DOI: 10.1038/ki.2015.274     Document Type: Article
Times cited : (54)

References (70)
  • 1
    • 34147124264 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo
    • Rankin EB, Biju MP, Liu Q et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 2007; 117: 1068-1077
    • (2007) J Clin Invest , vol.117 , pp. 1068-1077
    • Rankin, E.B.1    Biju, M.P.2    Liu, Q.3
  • 2
    • 70449412497 scopus 로고    scopus 로고
    • The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice
    • Weidemann A, Kerdiles YM, Knaup KX et al. The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. J Clin Invest 2009; 119: 3373-3383
    • (2009) J Clin Invest , vol.119 , pp. 3373-3383
    • Weidemann, A.1    Kerdiles, Y.M.2    Knaup, K.X.3
  • 3
    • 84859207905 scopus 로고    scopus 로고
    • The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO
    • Rankin EB, Wu C, Khatri R et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 2012; 149: 63-74
    • (2012) Cell , vol.149 , pp. 63-74
    • Rankin, E.B.1    Wu, C.2    Khatri, R.3
  • 4
    • 78649902510 scopus 로고    scopus 로고
    • Erythropoietin production by distal nephron in normal and familial amyloidotic adult human kidneys
    • Beirao I, Moreira L, Barandela T et al. Erythropoietin production by distal nephron in normal and familial amyloidotic adult human kidneys. Clin Nephrol 2010; 74: 327-335
    • (2010) Clin Nephrol , vol.74 , pp. 327-335
    • Beirao, I.1    Moreira, L.2    Barandela, T.3
  • 5
    • 0032617607 scopus 로고    scopus 로고
    • Erythropoietin is produced by tubular cells of the rat kidney
    • Mujais SK, Beru N, Pullman TN et al. Erythropoietin is produced by tubular cells of the rat kidney. Cell Biochem Biophys 1999; 30: 153-166
    • (1999) Cell Biochem Biophys , vol.30 , pp. 153-166
    • Mujais, S.K.1    Beru, N.2    Pullman, T.N.3
  • 6
    • 84902121130 scopus 로고    scopus 로고
    • Reevaluation of erythropoietin production by the nephron
    • Nagai T, Yasuoka Y, Izumi Y et al. Reevaluation of erythropoietin production by the nephron. Biochem Biophys Res Commun 2014; 449: 222-228
    • (2014) Biochem Biophys Res Commun , vol.449 , pp. 222-228
    • Nagai, T.1    Yasuoka, Y.2    Izumi, Y.3
  • 7
    • 0023868741 scopus 로고
    • Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization
    • Koury ST, Bondurant MC, Koury MJ. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 1988; 71: 524-527
    • (1988) Blood , vol.71 , pp. 524-527
    • Koury, S.T.1    Bondurant, M.C.2    Koury, M.J.3
  • 8
    • 0027410945 scopus 로고
    • Co-localization of erythropoietin mRNA and ecto-5'-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin
    • Bachmann S, Le Hir M, Eckardt KU. Co-localization of erythropoietin mRNA and ecto-5'-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 1993; 41: 335-341
    • (1993) J Histochem Cytochem , vol.41 , pp. 335-341
    • Bachmann, S.1    Le Hir, M.2    Eckardt, K.U.3
  • 9
    • 0027367661 scopus 로고
    • Identification of the renal erythropoietin-producing cells using transgenic mice
    • Maxwell PH, Osmond MK, Pugh CW et al. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 1993; 44: 1149-1162
    • (1993) Kidney Int , vol.44 , pp. 1149-1162
    • Maxwell, P.H.1    Osmond, M.K.2    Pugh, C.W.3
  • 10
    • 80053936422 scopus 로고    scopus 로고
    • Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice
    • Pan X, Suzuki N, Hirano I et al. Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PLoS One 2011; 6: e25839
    • (2011) PLoS One , vol.6 , pp. e25839
    • Pan, X.1    Suzuki, N.2    Hirano, I.3
  • 11
    • 80053394522 scopus 로고    scopus 로고
    • Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice
    • Asada N, Takase M, Nakamura J et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Invest 2011; 121: 3981-3990
    • (2011) J Clin Invest , vol.121 , pp. 3981-3990
    • Asada, N.1    Takase, M.2    Nakamura, J.3
  • 12
    • 46749127450 scopus 로고    scopus 로고
    • Repression via the GATA box is essential for tissue-specific erythropoietin gene expression
    • Obara N, Suzuki N, Kim K et al. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood 2008; 111: 5223-5232
    • (2008) Blood , vol.111 , pp. 5223-5232
    • Obara, N.1    Suzuki, N.2    Kim, K.3
  • 13
    • 75749150800 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-2alpha-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization
    • Paliege A, Rosenberger C, Bondke A et al. Hypoxia-inducible factor-2alpha-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int 2010; 77: 312-318
    • (2010) Kidney Int , vol.77 , pp. 312-318
    • Paliege, A.1    Rosenberger, C.2    Bondke, A.3
  • 14
    • 84885060233 scopus 로고    scopus 로고
    • Plasticity of renal erythropoietinproducing cells governs fibrosis
    • Souma T, Yamazaki S, Moriguchi T et al. Plasticity of renal erythropoietinproducing cells governs fibrosis. J Am Soc Nephrol 2013; 24: 1599-1616
    • (2013) J Am Soc Nephrol , vol.24 , pp. 1599-1616
    • Souma, T.1    Yamazaki, S.2    Moriguchi, T.3
  • 15
    • 25444441069 scopus 로고    scopus 로고
    • Progression in chronic kidney disease
    • Eddy AA. Progression in chronic kidney disease. Adv Chronic Kidney Dis 2005; 12: 353-365
    • (2005) Adv Chronic Kidney Dis , vol.12 , pp. 353-365
    • Eddy, A.A.1
  • 16
    • 33644638349 scopus 로고    scopus 로고
    • Renal fibrosis: New insights into the pathogenesis and therapeutics
    • Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 2006; 69: 213-217
    • (2006) Kidney Int , vol.69 , pp. 213-217
    • Liu, Y.1
  • 17
    • 77958177671 scopus 로고    scopus 로고
    • Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia
    • Kapitsinou PP, Liu Q, Unger TL et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 2010; 116: 3039-3048
    • (2010) Blood , vol.116 , pp. 3039-3048
    • Kapitsinou, P.P.1    Liu, Q.2    Unger, T.L.3
  • 18
    • 0041440036 scopus 로고    scopus 로고
    • The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice
    • Scortegagna M, Morris MA, Oktay Y et al. The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood 2003; 102: 1634-1640
    • (2003) Blood , vol.102 , pp. 1634-1640
    • Scortegagna, M.1    Morris, M.A.2    Oktay, Y.3
  • 19
    • 33847796951 scopus 로고    scopus 로고
    • Acute postnatal ablation of Hif-2alpha results in anemia
    • Gruber M, Hu CJ, Johnson RS et al. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci USA 2007; 104: 2301-2306
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 2301-2306
    • Gruber, M.1    Hu, C.J.2    Johnson, R.S.3
  • 20
    • 0035917808 scopus 로고    scopus 로고
    • Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
    • Jaakkola P, Mole DR, Tian YM et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468-472
    • (2001) Science , vol.292 , pp. 468-472
    • Jaakkola, P.1    Mole, D.R.2    Tian, Y.M.3
  • 21
    • 0035917313 scopus 로고    scopus 로고
    • HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing
    • Ivan M, Kondo K, Yang H et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464-468
    • (2001) Science , vol.292 , pp. 464-468
    • Ivan, M.1    Kondo, K.2    Yang, H.3
  • 22
    • 78649876180 scopus 로고    scopus 로고
    • Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD
    • Bernhardt WM, Wiesener MS, Scigalla P et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol 2010; 21: 2151-2156
    • (2010) J Am Soc Nephrol , vol.21 , pp. 2151-2156
    • Bernhardt, W.M.1    Wiesener, M.S.2    Scigalla, P.3
  • 23
    • 0025990752 scopus 로고
    • Unutilized reserves: The production capacity for erythropoietin appears to be conserved in chronic renal disease
    • discussion 32-14
    • Eckardt KU, Drueke T, Leski M et al. Unutilized reserves: the production capacity for erythropoietin appears to be conserved in chronic renal disease. Contrib Nephrol 1991; 88: 18-31 discussion 32-14
    • (1991) Contrib Nephrol , vol.88 , pp. 18-31
    • Eckardt, K.U.1    Drueke, T.2    Leski, M.3
  • 24
    • 84874583754 scopus 로고    scopus 로고
    • Deletion of von Hippel-Lindau protein converts renin-producing cells into erythropoietin-producing cells
    • Kurt B, Paliege A, Willam C et al. Deletion of von Hippel-Lindau protein converts renin-producing cells into erythropoietin-producing cells. J Am Soc Nephrol 2013; 24: 433-444
    • (2013) J Am Soc Nephrol , vol.24 , pp. 433-444
    • Kurt, B.1    Paliege, A.2    Willam, C.3
  • 25
    • 0031000736 scopus 로고    scopus 로고
    • A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development
    • Ema M, Taya S, Yokotani N et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 1997; 94: 4273-4278
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 4273-4278
    • Ema, M.1    Taya, S.2    Yokotani, N.3
  • 26
    • 0343683375 scopus 로고    scopus 로고
    • HRF, a putative basic helix-loophelix-PAS-domain transcription factor is closely related to hypoxiainducible factor-1 alpha and developmentally expressed in blood vessels
    • Flamme I, Frohlich T, von Reutern M et al. HRF, a putative basic helix-loophelix-PAS-domain transcription factor is closely related to hypoxiainducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 1997; 63: 51-60
    • (1997) Mech Dev , vol.63 , pp. 51-60
    • Flamme, I.1    Frohlich, T.2    Von Reutern, M.3
  • 27
    • 0031971047 scopus 로고    scopus 로고
    • Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse
    • Jain S, Maltepe E, Lu MM et al. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 1998; 73: 117-123
    • (1998) Mech Dev , vol.73 , pp. 117-123
    • Jain, S.1    Maltepe, E.2    Lu, M.M.3
  • 28
    • 0031020884 scopus 로고    scopus 로고
    • Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells
    • Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11: 72-82
    • (1997) Genes Dev , vol.11 , pp. 72-82
    • Tian, H.1    McKnight, S.L.2    Russell, D.W.3
  • 29
    • 0037315337 scopus 로고    scopus 로고
    • Widespread hypoxiainducible expression of HIF-2alpha in distinct cell populations of different organs
    • Wiesener MS, Jurgensen JS, Rosenberger C et al. Widespread hypoxiainducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 2003; 17: 271-273
    • (2003) FASEB J , vol.17 , pp. 271-273
    • Wiesener, M.S.1    Jurgensen, J.S.2    Rosenberger, C.3
  • 30
    • 84924036219 scopus 로고    scopus 로고
    • Chronic hypoxia-inducible transcription factor-2 activation stably transforms juxtaglomerular renin cells into fibroblast-like cells in vivo
    • Kurt B, Gerl K, Karger C et al. Chronic hypoxia-inducible transcription factor-2 activation stably transforms juxtaglomerular renin cells into fibroblast-like cells in vivo. J Am Soc Nephrol 2015; 26: 587-596
    • (2015) J Am Soc Nephrol , vol.26 , pp. 587-596
    • Kurt, B.1    Gerl, K.2    Karger, C.3
  • 31
    • 0033587146 scopus 로고    scopus 로고
    • The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
    • Maxwell PH, Wiesener MS, Chang GW et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271-275
    • (1999) Nature , vol.399 , pp. 271-275
    • Maxwell, P.H.1    Wiesener, M.S.2    Chang, G.W.3
  • 32
    • 68249140395 scopus 로고    scopus 로고
    • Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia
    • Fang HY, Hughes R, Murdoch C et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 2009; 114: 844-859
    • (2009) Blood , vol.114 , pp. 844-859
    • Fang, H.Y.1    Hughes, R.2    Murdoch, C.3
  • 33
    • 84855303456 scopus 로고    scopus 로고
    • Glucose-induced O(2) consumption activates hypoxia inducible factors 1 and 2 in rat insulinsecreting pancreatic beta-cells
    • Bensellam M, Duvillie B, Rybachuk G et al. Glucose-induced O(2) consumption activates hypoxia inducible factors 1 and 2 in rat insulinsecreting pancreatic beta-cells. PLoS One 2012; 7: e29807
    • (2012) PLoS One , vol.7 , pp. e29807
    • Bensellam, M.1    Duvillie, B.2    Rybachuk, G.3
  • 34
    • 84891506888 scopus 로고    scopus 로고
    • Differential roles of prostaglandin E-type receptors in activation of hypoxia-inducible factor 1 by prostaglandin E1 in vascular-derived cells under non-hypoxic conditions
    • Suzuki K, Nishi K, Takabuchi S et al. Differential roles of prostaglandin E-type receptors in activation of hypoxia-inducible factor 1 by prostaglandin E1 in vascular-derived cells under non-hypoxic conditions. PeerJ 2013; 1: e220
    • (2013) PeerJ , vol.1 , pp. e220
    • Suzuki, K.1    Nishi, K.2    Takabuchi, S.3
  • 35
    • 3343013829 scopus 로고    scopus 로고
    • Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1
    • Takeda N, Maemura K, Imai Y et al. Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ Res 2004; 95: 146-153
    • (2004) Circ Res , vol.95 , pp. 146-153
    • Takeda, N.1    Maemura, K.2    Imai, Y.3
  • 36
    • 84872130484 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-2alpha is essential in activating the COX2/mPGES-1/PGE2 signaling axis in colon cancer
    • Xue X, Shah YM. Hypoxia-inducible factor-2alpha is essential in activating the COX2/mPGES-1/PGE2 signaling axis in colon cancer. Carcinogenesis 2013; 34: 163-169
    • (2013) Carcinogenesis , vol.34 , pp. 163-169
    • Xue, X.1    Shah, Y.M.2
  • 37
    • 84866070606 scopus 로고    scopus 로고
    • Hypoxic induction of the regulator of G-protein signalling 4 gene is mediated by the hypoxia-inducible factor pathway
    • Olechnowicz SW, Fedele AO, Peet DJ. Hypoxic induction of the regulator of G-protein signalling 4 gene is mediated by the hypoxia-inducible factor pathway. PLoS One 2012; 7: e44564
    • (2012) PLoS One , vol.7 , pp. e44564
    • Olechnowicz, S.W.1    Fedele, A.O.2    Peet, D.J.3
  • 38
    • 84860864145 scopus 로고    scopus 로고
    • Expression of prolyl hydroxylases (PHDs) is selectively controlled by HIF-1 and HIF-2 proteins in nucleus pulposus cells of the intervertebral disc: Distinct roles of PHD2 and PHD3 proteins in controlling HIF-1alpha activity in hypoxia
    • Fujita N, Markova D, Anderson DG et al. Expression of prolyl hydroxylases (PHDs) is selectively controlled by HIF-1 and HIF-2 proteins in nucleus pulposus cells of the intervertebral disc: distinct roles of PHD2 and PHD3 proteins in controlling HIF-1alpha activity in hypoxia. J Biol Chem 2012; 287: 16975-16986
    • (2012) J Biol Chem , vol.287 , pp. 16975-16986
    • Fujita, N.1    Markova, D.2    Anderson, D.G.3
  • 39
    • 4644237401 scopus 로고    scopus 로고
    • Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors
    • Aprelikova O, Chandramouli GV, Wood M et al. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors. J Cell Biochem 2004; 92: 491-501
    • (2004) J Cell Biochem , vol.92 , pp. 491-501
    • Aprelikova, O.1    Chandramouli, G.V.2    Wood, M.3
  • 40
    • 68949098346 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 2 regulates hepatic lipid metabolism
    • Rankin EB, Rha J, Selak MA et al. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 2009; 29: 4527-4538
    • (2009) Mol Cell Biol , vol.29 , pp. 4527-4538
    • Rankin, E.B.1    Rha, J.2    Selak, M.A.3
  • 41
    • 0032587573 scopus 로고    scopus 로고
    • Alpha8 integrin in glomerular mesangial cells and in experimental glomerulonephritis
    • Hartner A, Schocklmann H, Prols F et al. Alpha8 integrin in glomerular mesangial cells and in experimental glomerulonephritis. Kidney Int 1999; 56: 1468-1480
    • (1999) Kidney Int , vol.56 , pp. 1468-1480
    • Hartner, A.1    Schocklmann, H.2    Prols, F.3
  • 42
    • 84924184378 scopus 로고    scopus 로고
    • Renin Lineage Cells Repopulate the Glomerular Mesangium after Injury
    • Starke C, Betz H, Hickmann L et al. Renin Lineage Cells Repopulate the Glomerular Mesangium after Injury. J Am Soc Nephrol 2014; 26: 48-54
    • (2014) J Am Soc Nephrol , vol.26 , pp. 48-54
    • Starke, C.1    Betz, H.2    Hickmann, L.3
  • 43
    • 0031668536 scopus 로고    scopus 로고
    • Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli
    • Lindahl P, Hellstrom M, Kalen M et al. Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development 1998; 125: 3313-3322
    • (1998) Development , vol.125 , pp. 3313-3322
    • Lindahl, P.1    Hellstrom, M.2    Kalen, M.3
  • 44
    • 77953124681 scopus 로고    scopus 로고
    • High-level connexin expression in the human juxtaglomerular apparatus
    • Kurtz L, Madsen K, Kurt B et al. High-level connexin expression in the human juxtaglomerular apparatus. Nephron Physiol 2010; 116: p1-p8
    • (2010) Nephron Physiol , vol.116 , pp. p1-p8
    • Kurtz, L.1    Madsen, K.2    Kurt, B.3
  • 45
    • 36448952268 scopus 로고    scopus 로고
    • Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model
    • Wong CY, Cheong SK, Mok PL et al. Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model. Pathology 2008; 40: 52-57
    • (2008) Pathology , vol.40 , pp. 52-57
    • Wong, C.Y.1    Cheong, S.K.2    Mok, P.L.3
  • 46
    • 84867382214 scopus 로고    scopus 로고
    • Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy
    • Humphreys BD. Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy. Semin Nephrol 2012; 32: 463-470
    • (2012) Semin Nephrol , vol.32 , pp. 463-470
    • Humphreys, B.D.1
  • 47
    • 79959743981 scopus 로고    scopus 로고
    • Pivotal role of pericytes in kidney fibrosis
    • Kida Y, Duffield JS. Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol 2011; 38: 467-473
    • (2011) Clin Exp Pharmacol Physiol , vol.38 , pp. 467-473
    • Kida, Y.1    Duffield, J.S.2
  • 48
    • 84891410259 scopus 로고    scopus 로고
    • Glomerular expression of connexin 40 and connexin 43 in rat experimental glomerulonephritis
    • Morioka T, Okada S, Nameta M et al. Glomerular expression of connexin 40 and connexin 43 in rat experimental glomerulonephritis. Clin Exp Nephrol 2013; 17: 191-204
    • (2013) Clin Exp Nephrol , vol.17 , pp. 191-204
    • Morioka, T.1    Okada, S.2    Nameta, M.3
  • 50
    • 84924191435 scopus 로고    scopus 로고
    • Recombination signal binding protein for Ig-kappaJ region regulates juxtaglomerular cell phenotype by activating the Myo-endocrine program and suppressing ectopic gene expression
    • Castellanos-Rivera RM, Pentz ES, Lin E et al. Recombination signal binding protein for Ig-kappaJ region regulates juxtaglomerular cell phenotype by activating the Myo-endocrine program and suppressing ectopic gene expression. J Am Soc Nephrol 2014; 26: 67-80
    • (2014) J Am Soc Nephrol , vol.26 , pp. 67-80
    • Castellanos-Rivera, R.M.1    Pentz, E.S.2    Lin, E.3
  • 51
    • 0342948933 scopus 로고    scopus 로고
    • Heterogeneous localization of connexin40 in the renal vasculature
    • Hwan Seul K, Beyer EC. Heterogeneous localization of connexin40 in the renal vasculature. Microvasc Res 2000; 59: 140-148
    • (2000) Microvasc Res , vol.59 , pp. 140-148
    • Hwan Seul, K.1    Beyer, E.C.2
  • 52
    • 80555148901 scopus 로고    scopus 로고
    • Hypoxia-inducible transcription factors stabilization in the thick ascending limb protects against ischemic acute kidney injury
    • Schley G, Klanke B, Schodel J et al. Hypoxia-inducible transcription factors stabilization in the thick ascending limb protects against ischemic acute kidney injury. J Am Soc Nephrol 2011; 22: 2004-2015
    • (2011) J Am Soc Nephrol , vol.22 , pp. 2004-2015
    • Schley, G.1    Klanke, B.2    Schodel, J.3
  • 53
    • 33645070535 scopus 로고    scopus 로고
    • Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor
    • Rankin EB, Tomaszewski JE, Haase VH. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res 2006; 66: 2576-2583
    • (2006) Cancer Res , vol.66 , pp. 2576-2583
    • Rankin, E.B.1    Tomaszewski, J.E.2    Haase, V.H.3
  • 54
    • 84873428572 scopus 로고    scopus 로고
    • Action of hypoxia-inducible factor in liver and kidney from mice with Pax8-rtTA-based deletion of von Hippel-Lindau protein
    • Mathia S, Paliege A, Koesters R et al. Action of hypoxia-inducible factor in liver and kidney from mice with Pax8-rtTA-based deletion of von Hippel-Lindau protein. Acta Physiol (Oxf) 2013; 207: 565-576
    • (2013) Acta Physiol (Oxf) , vol.207 , pp. 565-576
    • Mathia, S.1    Paliege, A.2    Koesters, R.3
  • 55
    • 33748448816 scopus 로고    scopus 로고
    • Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice
    • Ding M, Cui S, Li C et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat Med 2006; 12: 1081-1087
    • (2006) Nat Med , vol.12 , pp. 1081-1087
    • Ding, M.1    Cui, S.2    Li, C.3
  • 56
    • 34347333537 scopus 로고    scopus 로고
    • Adrenomedullin in the kidney-renal physiological and pathophysiological roles
    • Nishikimi T. Adrenomedullin in the kidney-renal physiological and pathophysiological roles. Curr Med Chem 2007; 14: 1689-1699
    • (2007) Curr Med Chem , vol.14 , pp. 1689-1699
    • Nishikimi, T.1
  • 57
    • 22344452198 scopus 로고    scopus 로고
    • Prostacyclin signaling in the kidney: Implications for health and disease
    • Nasrallah R, Hebert RL. Prostacyclin signaling in the kidney: implications for health and disease. Am J Physiol Renal Physiol 2005; 289: F235-F246
    • (2005) Am J Physiol Renal Physiol , vol.289 , pp. F235-F246
    • Nasrallah, R.1    Hebert, R.L.2
  • 58
    • 63449118167 scopus 로고    scopus 로고
    • RGS proteins: Identifying new GAPs in the understanding of blood pressure regulation and cardiovascular function
    • Gu S, Cifelli C, Wang S et al. RGS proteins: identifying new GAPs in the understanding of blood pressure regulation and cardiovascular function. Clin Sci 2009; 116: 391-399
    • (2009) Clin Sci , vol.116 , pp. 391-399
    • Gu, S.1    Cifelli, C.2    Wang, S.3
  • 59
    • 84901395389 scopus 로고    scopus 로고
    • HIF1-alpha-mediated gene expression induced by vitamin B1 deficiency
    • Sweet RL, Zastre JA. HIF1-alpha-mediated gene expression induced by vitamin B1 deficiency. Int J Vitam Nutr Res 2013; 83: 188-197
    • (2013) Int J Vitam Nutr Res , vol.83 , pp. 188-197
    • Sweet, R.L.1    Zastre, J.A.2
  • 60
    • 84876880959 scopus 로고    scopus 로고
    • Oxygen-independent regulation of HIF-1: Novel involvement of PI3K/AKT/mTOR pathway in cancer
    • Agani F, Jiang BH. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets 2013; 13: 245-251
    • (2013) Curr Cancer Drug Targets , vol.13 , pp. 245-251
    • Agani, F.1    Jiang, B.H.2
  • 61
    • 77953520763 scopus 로고    scopus 로고
    • The hypoxia-inducible factor-2alpha is stabilized by oxidative stress involving NOX4
    • Diebold I, Flugel D, Becht S et al. The hypoxia-inducible factor-2alpha is stabilized by oxidative stress involving NOX4. Antioxid Redox Signal 2010; 13: 425-436
    • (2010) Antioxid Redox Signal , vol.13 , pp. 425-436
    • Diebold, I.1    Flugel, D.2    Becht, S.3
  • 62
    • 84911420350 scopus 로고    scopus 로고
    • Celastrol stimulates hypoxia-inducible factor-1 activity in tumor cells by initiating the ROS/Akt/p70S6K signaling pathway and enhancing hypoxia-inducible factor-1alpha protein synthesis
    • Han X, Sun S, Zhao M et al. Celastrol stimulates hypoxia-inducible factor-1 activity in tumor cells by initiating the ROS/Akt/p70S6K signaling pathway and enhancing hypoxia-inducible factor-1alpha protein synthesis. PLoS One 2014; 9: e112470
    • (2014) PLoS One , vol.9 , pp. e112470
    • Han, X.1    Sun, S.2    Zhao, M.3
  • 63
    • 0035012605 scopus 로고    scopus 로고
    • HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: Novel mechanism for HIF-1-mediated vascular endothelial growth factor expression
    • Laughner E, Taghavi P, Chiles K et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21: 3995-4004
    • (2001) Mol Cell Biol , vol.21 , pp. 3995-4004
    • Laughner, E.1    Taghavi, P.2    Chiles, K.3
  • 64
    • 33846630894 scopus 로고    scopus 로고
    • Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro
    • Pan Y, Mansfield KD, Bertozzi CC et al. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 2007; 27: 912-925
    • (2007) Mol Cell Biol , vol.27 , pp. 912-925
    • Pan, Y.1    Mansfield, K.D.2    Bertozzi, C.C.3
  • 65
    • 0035852668 scopus 로고    scopus 로고
    • Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor
    • Haase VH, Glickman JN, Socolovsky M et al. Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc Natl Acad Sci USA 2001; 98: 1583-1588
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 1583-1588
    • Haase, V.H.1    Glickman, J.N.2    Socolovsky, M.3
  • 66
    • 79951849378 scopus 로고    scopus 로고
    • Inducible Cx40-Cre expression in the cardiac conduction system and arterial endothelial cells
    • Beyer S, Kelly RG, Miquerol L. Inducible Cx40-Cre expression in the cardiac conduction system and arterial endothelial cells. Genesis 2011; 49: 83-91
    • (2011) Genesis , vol.49 , pp. 83-91
    • Beyer, S.1    Kelly, R.G.2    Miquerol, L.3
  • 67
    • 0036884523 scopus 로고    scopus 로고
    • Stringent doxycycline dependent control of CRE recombinase in vivo
    • Schonig K, Schwenk F, Rajewsky K et al. Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 2002; 30: e134
    • (2002) Nucleic Acids Res , vol.30 , pp. e134
    • Schonig, K.1    Schwenk, F.2    Rajewsky, K.3
  • 68
    • 33845357881 scopus 로고    scopus 로고
    • VE-cadherin-CreERT2 transgenic mouse: A model for inducible recombination in the endothelium
    • Monvoisin A, Alva JA, Hofmann JJ et al. VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev Dyn 2006; 235: 3413-3422
    • (2006) Dev Dyn , vol.235 , pp. 3413-3422
    • Monvoisin, A.1    Alva, J.A.2    Hofmann, J.J.3
  • 69
    • 35548932872 scopus 로고    scopus 로고
    • A global double-fluorescent cre reporter mouse
    • Muzumdar MD, Tasic B, Miyamichi K et al. A global double-fluorescent cre reporter mouse. Genesis 2007; 45: 593-605
    • (2007) Genesis , vol.45 , pp. 593-605
    • Muzumdar, M.D.1    Tasic, B.2    Miyamichi, K.3
  • 70
    • 0023277545 scopus 로고
    • Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction
    • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-159.
    • (1987) Anal Biochem , vol.162 , pp. 156-159
    • Chomczynski, P.1    Sacchi, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.