메뉴 건너뛰기




Volumn 21, Issue 11, 2015, Pages 687-701

Emerging Approaches to GPCR Ligand Screening for Drug Discovery

Author keywords

[No Author keywords available]

Indexed keywords

G PROTEIN COUPLED RECEPTOR; LIGAND; MOLECULAR LIBRARY;

EID: 84947581439     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2015.09.002     Document Type: Review
Times cited : (70)

References (100)
  • 1
    • 0036729484 scopus 로고    scopus 로고
    • Seven-transmembrane receptors
    • Pierce K.L., et al. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 2002, 3:639-650.
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , pp. 639-650
    • Pierce, K.L.1
  • 2
    • 0033118334 scopus 로고    scopus 로고
    • Molecular tinkering of G protein-coupled receptors: an evolutionary success
    • Bockaert J., Pin J.P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999, 18:1723-1729.
    • (1999) EMBO J. , vol.18 , pp. 1723-1729
    • Bockaert, J.1    Pin, J.P.2
  • 3
    • 84887999195 scopus 로고    scopus 로고
    • An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases
    • Heng B.C., et al. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol. Adv. 2013, 31:1676-1694.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 1676-1694
    • Heng, B.C.1
  • 4
    • 0035487327 scopus 로고    scopus 로고
    • Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors
    • Pierce K.L., Lefkowitz R.J. Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat. Rev. Neurosci. 2001, 2:727-733.
    • (2001) Nat. Rev. Neurosci. , vol.2 , pp. 727-733
    • Pierce, K.L.1    Lefkowitz, R.J.2
  • 5
    • 84890157678 scopus 로고    scopus 로고
    • Role of beta-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking
    • Kang D.S., et al. Role of beta-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Curr. Opin. Cell Biol. 2014, 27:63-71.
    • (2014) Curr. Opin. Cell Biol. , vol.27 , pp. 63-71
    • Kang, D.S.1
  • 6
    • 33947401068 scopus 로고    scopus 로고
    • Beta-arrestins and cell signaling
    • DeWire S.M., et al. Beta-arrestins and cell signaling. Annu. Rev. Physiol. 2007, 69:483-510.
    • (2007) Annu. Rev. Physiol. , vol.69 , pp. 483-510
    • DeWire, S.M.1
  • 8
    • 33751547539 scopus 로고    scopus 로고
    • How many drug targets are there?
    • Overington J.P., et al. How many drug targets are there?. Nat. Rev. Drug Discov. 2006, 5:993-996.
    • (2006) Nat. Rev. Drug Discov. , vol.5 , pp. 993-996
    • Overington, J.P.1
  • 9
    • 34447649922 scopus 로고    scopus 로고
    • Beta-arrestin-biased ligands at seven-transmembrane receptors
    • Violin J.D., Lefkowitz R.J. Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 2007, 28:416-422.
    • (2007) Trends Pharmacol. Sci. , vol.28 , pp. 416-422
    • Violin, J.D.1    Lefkowitz, R.J.2
  • 10
    • 79952488185 scopus 로고    scopus 로고
    • Therapeutic potential of beta-arrestin- and G protein-biased agonists
    • Whalen E.J., et al. Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol. Med. 2011, 17:126-139.
    • (2011) Trends Mol. Med. , vol.17 , pp. 126-139
    • Whalen, E.J.1
  • 11
    • 84921758536 scopus 로고    scopus 로고
    • Cell-based assays and animal models for GPCR drug screening
    • Takakura H., et al. Cell-based assays and animal models for GPCR drug screening. Methods Mol. Biol. 2015, 1272:257-270.
    • (2015) Methods Mol. Biol. , vol.1272 , pp. 257-270
    • Takakura, H.1
  • 12
    • 33744457959 scopus 로고    scopus 로고
    • Discovery and development of VX-950, a novel, covalent, and reversible inhibitor of hepatitis C virus NS3.4A serine protease
    • Lin C., et al. Discovery and development of VX-950, a novel, covalent, and reversible inhibitor of hepatitis C virus NS3.4A serine protease. Infect. Disord. Drug Targets 2006, 6:3-16.
    • (2006) Infect. Disord. Drug Targets , vol.6 , pp. 3-16
    • Lin, C.1
  • 13
    • 0033941893 scopus 로고    scopus 로고
    • Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin
    • Rahuel J., et al. Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin. Chem. Biol. 2000, 7:493-504.
    • (2000) Chem. Biol. , vol.7 , pp. 493-504
    • Rahuel, J.1
  • 14
    • 0034604451 scopus 로고    scopus 로고
    • Crystal structure of rhodopsin: a G protein-coupled receptor
    • Palczewski K., et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000, 289:739-745.
    • (2000) Science , vol.289 , pp. 739-745
    • Palczewski, K.1
  • 15
    • 6044260116 scopus 로고    scopus 로고
    • Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model
    • Evers A., Klebe G. Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J. Med. Chem. 2004, 47:5381-5392.
    • (2004) J. Med. Chem. , vol.47 , pp. 5381-5392
    • Evers, A.1    Klebe, G.2
  • 16
    • 13944255377 scopus 로고    scopus 로고
    • Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor
    • Evers A., Klabunde T. Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. J. Med. Chem. 2005, 48:1088-1097.
    • (2005) J. Med. Chem. , vol.48 , pp. 1088-1097
    • Evers, A.1    Klabunde, T.2
  • 17
    • 0347123444 scopus 로고    scopus 로고
    • Ligand-supported homology modeling of G-protein-coupled receptor sites: models sufficient for successful virtual screening
    • Evers A., Klebe G. Ligand-supported homology modeling of G-protein-coupled receptor sites: models sufficient for successful virtual screening. Angew. Chem. Int. Ed. Engl. 2004, 43:248-251.
    • (2004) Angew. Chem. Int. Ed. Engl. , vol.43 , pp. 248-251
    • Evers, A.1    Klebe, G.2
  • 18
    • 36448995359 scopus 로고    scopus 로고
    • High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor
    • Cherezov V., et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007, 318:1258-1265.
    • (2007) Science , vol.318 , pp. 1258-1265
    • Cherezov, V.1
  • 19
    • 84939180100 scopus 로고    scopus 로고
    • From G protein-coupled receptor structure resolution to rational drug design
    • Jazayeri A., et al. From G protein-coupled receptor structure resolution to rational drug design. J. Biol. Chem. 2015, 290:19489-19495.
    • (2015) J. Biol. Chem. , vol.290 , pp. 19489-19495
    • Jazayeri, A.1
  • 20
    • 84939818422 scopus 로고    scopus 로고
    • A molecular pharmacologist's guide to GPCR crystallography
    • Piscitelli C.L., et al. A molecular pharmacologist's guide to GPCR crystallography. Mol. Pharmacol. 2015, 88:536-551.
    • (2015) Mol. Pharmacol. , vol.88 , pp. 536-551
    • Piscitelli, C.L.1
  • 21
    • 84923141629 scopus 로고    scopus 로고
    • Methodological advances: the unsung heroes of the GPCR structural revolution
    • Ghosh E., et al. Methodological advances: the unsung heroes of the GPCR structural revolution. Nat. Rev. Mol. Cell Biol. 2015, 16:69-81.
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 69-81
    • Ghosh, E.1
  • 22
    • 84942363811 scopus 로고    scopus 로고
    • Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs
    • Published online May 14, 2105
    • Lee S.M., et al. Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. Eur. J. Pharmacol. 2015, Published online May 14, 2105. 10.1016/j.ejphar.2015.05.013.
    • (2015) Eur. J. Pharmacol.
    • Lee, S.M.1
  • 23
    • 84872221774 scopus 로고    scopus 로고
    • Structure-function of the G protein-coupled receptor superfamily
    • Katritch V., et al. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 2013, 53:531-556.
    • (2013) Annu. Rev. Pharmacol. Toxicol. , vol.53 , pp. 531-556
    • Katritch, V.1
  • 24
    • 84891633786 scopus 로고    scopus 로고
    • Insights into the structure of class B GPCRs
    • Hollenstein K., et al. Insights into the structure of class B GPCRs. Trends Pharmacol. Sci. 2014, 35:12-22.
    • (2014) Trends Pharmacol. Sci. , vol.35 , pp. 12-22
    • Hollenstein, K.1
  • 25
    • 84908159410 scopus 로고    scopus 로고
    • Structures of mGluRs shed light on the challenges of drug development of allosteric modulators
    • Bennett K.A., et al. Structures of mGluRs shed light on the challenges of drug development of allosteric modulators. Curr. Opin. Pharmacol. 2015, 20:1-7.
    • (2015) Curr. Opin. Pharmacol. , vol.20 , pp. 1-7
    • Bennett, K.A.1
  • 26
    • 84919936302 scopus 로고    scopus 로고
    • SnapShot: GPCR-ligand interactions
    • Ghosh E., et al. SnapShot: GPCR-ligand interactions. Cell 2014, 159:1712.
    • (2014) Cell , vol.159 , pp. 1712
    • Ghosh, E.1
  • 27
    • 79954782236 scopus 로고    scopus 로고
    • Structure of an agonist-bound human A2A adenosine receptor
    • Xu F., et al. Structure of an agonist-bound human A2A adenosine receptor. Science 2011, 332:322-327.
    • (2011) Science , vol.332 , pp. 322-327
    • Xu, F.1
  • 28
    • 56749103466 scopus 로고    scopus 로고
    • The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist
    • Jaakola V.P., et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008, 322:1211-1217.
    • (2008) Science , vol.322 , pp. 1211-1217
    • Jaakola, V.P.1
  • 29
    • 78651411166 scopus 로고    scopus 로고
    • Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor
    • Rasmussen S.G., et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 2011, 469:175-180.
    • (2011) Nature , vol.469 , pp. 175-180
    • Rasmussen, S.G.1
  • 30
    • 84889564886 scopus 로고    scopus 로고
    • Activation and allosteric modulation of a muscarinic acetylcholine receptor
    • Kruse A.C., et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 2013, 504:101-106.
    • (2013) Nature , vol.504 , pp. 101-106
    • Kruse, A.C.1
  • 31
    • 84862777405 scopus 로고    scopus 로고
    • Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist
    • Haga K., et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 2012, 482:547-551.
    • (2012) Nature , vol.482 , pp. 547-551
    • Haga, K.1
  • 32
    • 84939795137 scopus 로고    scopus 로고
    • Structural insights into micro-opioid receptor activation
    • Huang W., et al. Structural insights into micro-opioid receptor activation. Nature 2015, 524:315-321.
    • (2015) Nature , vol.524 , pp. 315-321
    • Huang, W.1
  • 33
    • 84861096654 scopus 로고    scopus 로고
    • Crystal structure of the micro-opioid receptor bound to a morphinan antagonist
    • Manglik A., et al. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 2012, 485:321-326.
    • (2012) Nature , vol.485 , pp. 321-326
    • Manglik, A.1
  • 34
    • 84860513814 scopus 로고    scopus 로고
    • Structure-based drug screening for G-protein-coupled receptors
    • Shoichet B.K., Kobilka B.K. Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol. Sci. 2012, 33:268-272.
    • (2012) Trends Pharmacol. Sci. , vol.33 , pp. 268-272
    • Shoichet, B.K.1    Kobilka, B.K.2
  • 35
    • 84892401045 scopus 로고    scopus 로고
    • Structure-based drug design for G protein-coupled receptors
    • Congreve M., et al. Structure-based drug design for G protein-coupled receptors. Prog. Med. Chem. 2014, 53:1-63.
    • (2014) Prog. Med. Chem. , vol.53 , pp. 1-63
    • Congreve, M.1
  • 36
    • 66149149851 scopus 로고    scopus 로고
    • Structure-based discovery of beta2-adrenergic receptor ligands
    • Kolb P., et al. Structure-based discovery of beta2-adrenergic receptor ligands. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:6843-6848.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 6843-6848
    • Kolb, P.1
  • 37
    • 77955779227 scopus 로고    scopus 로고
    • Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography
    • Wacker D., et al. Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J. Am. Chem. Soc. 2010, 132:11443-11445.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 11443-11445
    • Wacker, D.1
  • 38
    • 84925392495 scopus 로고    scopus 로고
    • Molecular docking screening using agonist-bound GPCR structures: probing the A2A adenosine receptor
    • Rodriguez D., et al. Molecular docking screening using agonist-bound GPCR structures: probing the A2A adenosine receptor. J. Chem. Inf. Model. 2015, 55:550-563.
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 550-563
    • Rodriguez, D.1
  • 39
    • 77649204282 scopus 로고    scopus 로고
    • Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists
    • Katritch V., et al. Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. J. Med. Chem. 2010, 53:1799-1809.
    • (2010) J. Med. Chem. , vol.53 , pp. 1799-1809
    • Katritch, V.1
  • 40
    • 84858049591 scopus 로고    scopus 로고
    • Identification of novel adenosine A(2A) receptor antagonists by virtual screening
    • Langmead C.J., et al. Identification of novel adenosine A(2A) receptor antagonists by virtual screening. J. Med. Chem. 2012, 55:1904-1909.
    • (2012) J. Med. Chem. , vol.55 , pp. 1904-1909
    • Langmead, C.J.1
  • 41
    • 84858034356 scopus 로고    scopus 로고
    • Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure-based drug design
    • Congreve M., et al. Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure-based drug design. J. Med. Chem. 2012, 55:1898-1903.
    • (2012) J. Med. Chem. , vol.55 , pp. 1898-1903
    • Congreve, M.1
  • 42
    • 82555187387 scopus 로고    scopus 로고
    • Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor
    • de Graaf C., et al. Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. J. Med. Chem. 2011, 54:8195-8206.
    • (2011) J. Med. Chem. , vol.54 , pp. 8195-8206
    • de Graaf, C.1
  • 43
    • 84895811180 scopus 로고    scopus 로고
    • Virtual fragment screening on GPCRs: a case study on dopamine D3 and histamine H4 receptors
    • Vass M., et al. Virtual fragment screening on GPCRs: a case study on dopamine D3 and histamine H4 receptors. Eur. J. Med. Chem. 2014, 77:38-46.
    • (2014) Eur. J. Med. Chem. , vol.77 , pp. 38-46
    • Vass, M.1
  • 44
    • 84888883269 scopus 로고    scopus 로고
    • Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors
    • Lane J.R., et al. Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors. Mol. Pharmacol. 2013, 84:794-807.
    • (2013) Mol. Pharmacol. , vol.84 , pp. 794-807
    • Lane, J.R.1
  • 45
    • 80054868459 scopus 로고    scopus 로고
    • Ligand discovery from a dopamine D3 receptor homology model and crystal structure
    • Carlsson J., et al. Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat. Chem. Biol. 2011, 7:769-778.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 769-778
    • Carlsson, J.1
  • 46
    • 84884685355 scopus 로고    scopus 로고
    • Muscarinic receptors as model targets and antitargets for structure-based ligand discovery
    • Kruse A.C., et al. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Mol. Pharmacol. 2013, 84:528-540.
    • (2013) Mol. Pharmacol. , vol.84 , pp. 528-540
    • Kruse, A.C.1
  • 47
    • 84905730759 scopus 로고    scopus 로고
    • Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands
    • Rodriguez D., et al. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands. Structure 2014, 22:1140-1151.
    • (2014) Structure , vol.22 , pp. 1140-1151
    • Rodriguez, D.1
  • 48
    • 84875475404 scopus 로고    scopus 로고
    • Discovery of a novel selective kappa-opioid receptor agonist using crystal structure-based virtual screening
    • Negri A., et al. Discovery of a novel selective kappa-opioid receptor agonist using crystal structure-based virtual screening. J. Chem. Inf. Model. 2013, 53:521-526.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 521-526
    • Negri, A.1
  • 49
    • 84859460667 scopus 로고    scopus 로고
    • Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4
    • Mysinger M.M., et al. Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:5517-5522.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 5517-5522
    • Mysinger, M.M.1
  • 50
    • 80051658642 scopus 로고    scopus 로고
    • Crystal structure of the beta2 adrenergic receptor-Gs protein complex
    • Rasmussen S.G., et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 2011, 477:549-555.
    • (2011) Nature , vol.477 , pp. 549-555
    • Rasmussen, S.G.1
  • 51
    • 84875807317 scopus 로고    scopus 로고
    • Conformation guides molecular efficacy in docking screens of activated beta-2 adrenergic G protein coupled receptor
    • Weiss D.R., et al. Conformation guides molecular efficacy in docking screens of activated beta-2 adrenergic G protein coupled receptor. ACS Chem. Biol. 2013, 8:1018-1026.
    • (2013) ACS Chem. Biol. , vol.8 , pp. 1018-1026
    • Weiss, D.R.1
  • 52
    • 65049089399 scopus 로고    scopus 로고
    • Identifying conformational changes of the beta(2) adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators
    • Reynolds K.A., et al. Identifying conformational changes of the beta(2) adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators. J. Comput. Aided Mol. Des. 2009, 23:273-288.
    • (2009) J. Comput. Aided Mol. Des. , vol.23 , pp. 273-288
    • Reynolds, K.A.1
  • 53
    • 84861078289 scopus 로고    scopus 로고
    • Optimization of adenosine 5'-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening
    • Tosh D.K., et al. Optimization of adenosine 5'-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J. Med. Chem. 2012, 55:4297-4308.
    • (2012) J. Med. Chem. , vol.55 , pp. 4297-4308
    • Tosh, D.K.1
  • 54
    • 84863115467 scopus 로고    scopus 로고
    • Structure and dynamics of the M3 muscarinic acetylcholine receptor
    • Kruse A.C., et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 2012, 482:552-556.
    • (2012) Nature , vol.482 , pp. 552-556
    • Kruse, A.C.1
  • 55
    • 84877631485 scopus 로고    scopus 로고
    • Structural features for functional selectivity at serotonin receptors
    • Wacker D., et al. Structural features for functional selectivity at serotonin receptors. Science 2013, 340:615-619.
    • (2013) Science , vol.340 , pp. 615-619
    • Wacker, D.1
  • 56
    • 84877607189 scopus 로고    scopus 로고
    • Structural basis for molecular recognition at serotonin receptors
    • Wang C., et al. Structural basis for molecular recognition at serotonin receptors. Science 2013, 340:610-614.
    • (2013) Science , vol.340 , pp. 610-614
    • Wang, C.1
  • 57
    • 84881173408 scopus 로고    scopus 로고
    • Structure of class B GPCR corticotropin-releasing factor receptor 1
    • Hollenstein K., et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 2013, 499:438-443.
    • (2013) Nature , vol.499 , pp. 438-443
    • Hollenstein, K.1
  • 58
    • 84899751079 scopus 로고    scopus 로고
    • Agonist-bound structure of the human P2Y12 receptor
    • Zhang J., et al. Agonist-bound structure of the human P2Y12 receptor. Nature 2014, 509:119-122.
    • (2014) Nature , vol.509 , pp. 119-122
    • Zhang, J.1
  • 59
    • 84899755031 scopus 로고    scopus 로고
    • Structure of the human P2Y12 receptor in complex with an antithrombotic drug
    • Zhang K., et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 2014, 509:115-118.
    • (2014) Nature , vol.509 , pp. 115-118
    • Zhang, K.1
  • 60
    • 84928469118 scopus 로고    scopus 로고
    • Two disparate ligand-binding sites in the human P2Y1 receptor
    • Zhang D., et al. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 2015, 520:317-321.
    • (2015) Nature , vol.520 , pp. 317-321
    • Zhang, D.1
  • 61
    • 84907221192 scopus 로고    scopus 로고
    • High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875
    • Srivastava A., et al. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 2014, 513:124-127.
    • (2014) Nature , vol.513 , pp. 124-127
    • Srivastava, A.1
  • 62
    • 84857254248 scopus 로고    scopus 로고
    • Crystal structure of a lipid G protein-coupled receptor
    • Hanson M.A., et al. Crystal structure of a lipid G protein-coupled receptor. Science 2012, 335:851-855.
    • (2012) Science , vol.335 , pp. 851-855
    • Hanson, M.A.1
  • 63
    • 79960398015 scopus 로고    scopus 로고
    • Screening for GPCR ligands using surface plasmon resonance
    • Navratilova I., et al. Screening for GPCR ligands using surface plasmon resonance. ACS Med. Chem. Lett. 2011, 2:549-554.
    • (2011) ACS Med. Chem. Lett. , vol.2 , pp. 549-554
    • Navratilova, I.1
  • 64
    • 80054884439 scopus 로고    scopus 로고
    • Emerging role of surface plasmon resonance in fragment-based drug discovery
    • Navratilova I., Hopkins A.L. Emerging role of surface plasmon resonance in fragment-based drug discovery. Future Med. Chem. 2011, 3:1809-1820.
    • (2011) Future Med. Chem. , vol.3 , pp. 1809-1820
    • Navratilova, I.1    Hopkins, A.L.2
  • 65
    • 84939950570 scopus 로고    scopus 로고
    • Surface plasmon resonance analysis of seven-transmembrane receptors
    • Aristotelous T., et al. Surface plasmon resonance analysis of seven-transmembrane receptors. Methods Enzymol. 2015, 556:499-525.
    • (2015) Methods Enzymol. , vol.556 , pp. 499-525
    • Aristotelous, T.1
  • 66
    • 84885440727 scopus 로고    scopus 로고
    • Discovery of beta2 adrenergic receptor ligands using biosensor fragment screening of tagged wild-type receptor
    • Aristotelous T., et al. Discovery of beta2 adrenergic receptor ligands using biosensor fragment screening of tagged wild-type receptor. ACS Med. Chem. Lett. 2013, 4:1005-1010.
    • (2013) ACS Med. Chem. Lett. , vol.4 , pp. 1005-1010
    • Aristotelous, T.1
  • 67
    • 79952382815 scopus 로고    scopus 로고
    • Fragment screening of stabilized G-protein-coupled receptors using biophysical methods
    • Congreve M., et al. Fragment screening of stabilized G-protein-coupled receptors using biophysical methods. Methods Enzymol. 2011, 493:115-136.
    • (2011) Methods Enzymol. , vol.493 , pp. 115-136
    • Congreve, M.1
  • 68
    • 84877716938 scopus 로고    scopus 로고
    • Biophysical fragment screening of the beta1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design
    • Christopher J.A., et al. Biophysical fragment screening of the beta1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. J. Med. Chem. 2013, 56:3446-3455.
    • (2013) J. Med. Chem. , vol.56 , pp. 3446-3455
    • Christopher, J.A.1
  • 69
    • 33846145129 scopus 로고    scopus 로고
    • Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems
    • Lundstrom K., et al. Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J. Struct. Funct. Genomics 2006, 7:77-91.
    • (2006) J. Struct. Funct. Genomics , vol.7 , pp. 77-91
    • Lundstrom, K.1
  • 70
    • 33745807216 scopus 로고    scopus 로고
    • Dimethylsulphoxide as a tool to increase functional expression of heterologously produced GPCRs in mammalian cells
    • Shukla A.K., et al. Dimethylsulphoxide as a tool to increase functional expression of heterologously produced GPCRs in mammalian cells. FEBS Lett. 2006, 580:4261-4265.
    • (2006) FEBS Lett. , vol.580 , pp. 4261-4265
    • Shukla, A.K.1
  • 71
    • 0028809411 scopus 로고
    • Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor
    • Kobilka B.K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal. Biochem. 1995, 231:269-271.
    • (1995) Anal. Biochem. , vol.231 , pp. 269-271
    • Kobilka, B.K.1
  • 72
    • 78649693871 scopus 로고    scopus 로고
    • Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins
    • Chae P.S., et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat. Methods 2010, 7:1003-1008.
    • (2010) Nat. Methods , vol.7 , pp. 1003-1008
    • Chae, P.S.1
  • 73
    • 84940544977 scopus 로고    scopus 로고
    • Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile)
    • Christopher J., et al. Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J. Med. Chem. 2015, 58:6653-6664.
    • (2015) J. Med. Chem. , vol.58 , pp. 6653-6664
    • Christopher, J.1
  • 74
    • 84888056396 scopus 로고    scopus 로고
    • Recent developments in biased agonism
    • Wisler J.W., et al. Recent developments in biased agonism. Curr. Opin. Cell Biol. 2014, 27:18-24.
    • (2014) Curr. Opin. Cell Biol. , vol.27 , pp. 18-24
    • Wisler, J.W.1
  • 75
    • 84896703861 scopus 로고    scopus 로고
    • Minireview: More than just a hammer: ligand 'bias' and pharmaceutical discovery
    • Luttrell L.M., Minireview: More than just a hammer: ligand 'bias' and pharmaceutical discovery. Mol. Endocrinol. 2014, 28:281-294.
    • (2014) Mol. Endocrinol. , vol.28 , pp. 281-294
    • Luttrell, L.M.1
  • 76
    • 84875227396 scopus 로고    scopus 로고
    • Signalling bias in new drug discovery: detection, quantification and therapeutic impact
    • Kenakin T., Christopoulos A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 2013, 12:205-216.
    • (2013) Nat. Rev. Drug Discov. , vol.12 , pp. 205-216
    • Kenakin, T.1    Christopoulos, A.2
  • 77
    • 84919328202 scopus 로고    scopus 로고
    • Emerging structural insights into biased GPCR signaling
    • Shukla A.K., et al. Emerging structural insights into biased GPCR signaling. Trends Biochem. Sci. 2014, 39:594-602.
    • (2014) Trends Biochem. Sci. , vol.39 , pp. 594-602
    • Shukla, A.K.1
  • 78
    • 84861064804 scopus 로고    scopus 로고
    • Crystal structures of a stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and carvedilol
    • Warne T., et al. Crystal structures of a stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 2012, 20:841-849.
    • (2012) Structure , vol.20 , pp. 841-849
    • Warne, T.1
  • 79
    • 84897580006 scopus 로고    scopus 로고
    • Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator
    • Wu H., et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 2014, 344:58-64.
    • (2014) Science , vol.344 , pp. 58-64
    • Wu, H.1
  • 80
    • 84904994581 scopus 로고    scopus 로고
    • Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain
    • Dore A.S., et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 2014, 511:557-562.
    • (2014) Nature , vol.511 , pp. 557-562
    • Dore, A.S.1
  • 81
    • 77949861512 scopus 로고    scopus 로고
    • A common intracellular allosteric binding site for antagonists of the CXCR2 receptor
    • Salchow K., et al. A common intracellular allosteric binding site for antagonists of the CXCR2 receptor. Br. J. Pharmacol. 2010, 159:1429-1439.
    • (2010) Br. J. Pharmacol. , vol.159 , pp. 1429-1439
    • Salchow, K.1
  • 82
    • 69249222632 scopus 로고    scopus 로고
    • SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor
    • Bradley M.E., et al. SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor. Br. J. Pharmacol. 2009, 158:328-338.
    • (2009) Br. J. Pharmacol. , vol.158 , pp. 328-338
    • Bradley, M.E.1
  • 83
    • 80052423497 scopus 로고    scopus 로고
    • Amyloid beta peptide-(1-42) induces internalization and degradation of beta2 adrenergic receptors in prefrontal cortical neurons
    • Wang D., et al. Amyloid beta peptide-(1-42) induces internalization and degradation of beta2 adrenergic receptors in prefrontal cortical neurons. J. Biol. Chem. 2011, 286:31852-31863.
    • (2011) J. Biol. Chem. , vol.286 , pp. 31852-31863
    • Wang, D.1
  • 84
    • 78650476918 scopus 로고    scopus 로고
    • Meningococcus Hijacks a beta2-adrenoceptor/beta-Arrestin pathway to cross brain microvasculature endothelium
    • Coureuil M., et al. Meningococcus Hijacks a beta2-adrenoceptor/beta-Arrestin pathway to cross brain microvasculature endothelium. Cell 2010, 143:1149-1160.
    • (2010) Cell , vol.143 , pp. 1149-1160
    • Coureuil, M.1
  • 85
    • 84880423881 scopus 로고    scopus 로고
    • Pharmacology of AMG 416 (Velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients
    • Walter S., et al. Pharmacology of AMG 416 (Velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J. Pharmacol. Exp. Ther. 2013, 346:229-240.
    • (2013) J. Pharmacol. Exp. Ther. , vol.346 , pp. 229-240
    • Walter, S.1
  • 86
    • 84928175505 scopus 로고    scopus 로고
    • A randomized, double-blind, phase 2 study evaluating the safety and efficacy of AMG 416 for the treatment of secondary hyperparathyroidism in hemodialysis patients
    • Bell G., et al. A randomized, double-blind, phase 2 study evaluating the safety and efficacy of AMG 416 for the treatment of secondary hyperparathyroidism in hemodialysis patients. Curr. Med. Res. Opin. 2015, 31:943-952.
    • (2015) Curr. Med. Res. Opin. , vol.31 , pp. 943-952
    • Bell, G.1
  • 87
    • 84872011023 scopus 로고    scopus 로고
    • Opportunities for functional selectivity in GPCR antibodies
    • Webb D.R., et al. Opportunities for functional selectivity in GPCR antibodies. Biochem. Pharmacol. 2013, 85:147-152.
    • (2013) Biochem. Pharmacol. , vol.85 , pp. 147-152
    • Webb, D.R.1
  • 88
    • 84902366653 scopus 로고    scopus 로고
    • Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases
    • Wallukat G., Schimke I. Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. Semin. Immunopathol. 2014, 36:351-363.
    • (2014) Semin. Immunopathol. , vol.36 , pp. 351-363
    • Wallukat, G.1    Schimke, I.2
  • 89
    • 84920800049 scopus 로고    scopus 로고
    • Phage display and hybridoma generation of antibodies to human CXCR2 yields antibodies with distinct mechanisms and epitopes
    • Rossant C.J., et al. Phage display and hybridoma generation of antibodies to human CXCR2 yields antibodies with distinct mechanisms and epitopes. MAbs 2014, 6:1425-1438.
    • (2014) MAbs , vol.6 , pp. 1425-1438
    • Rossant, C.J.1
  • 90
    • 84862776818 scopus 로고    scopus 로고
    • G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody
    • Hino T., et al. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 2012, 482:237-240.
    • (2012) Nature , vol.482 , pp. 237-240
    • Hino, T.1
  • 91
    • 84939943976 scopus 로고    scopus 로고
    • Antibody fragments for stabilization and crystallization of G protein-coupled receptors and their signaling complexes
    • Shukla A.K., et al. Antibody fragments for stabilization and crystallization of G protein-coupled receptors and their signaling complexes. Methods Enzymol. 2015, 557:247-258.
    • (2015) Methods Enzymol. , vol.557 , pp. 247-258
    • Shukla, A.K.1
  • 92
    • 84938359988 scopus 로고    scopus 로고
    • Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser
    • Kang Y., et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 2015, 523:561-567.
    • (2015) Nature , vol.523 , pp. 561-567
    • Kang, Y.1
  • 93
    • 84930864494 scopus 로고    scopus 로고
    • Cell-based and virtual fragment screening for adrenergic alpha2C receptor agonists
    • Szollosi E., et al. Cell-based and virtual fragment screening for adrenergic alpha2C receptor agonists. Bioorg. Med. Chem. 2015, 23:3991-3999.
    • (2015) Bioorg. Med. Chem. , vol.23 , pp. 3991-3999
    • Szollosi, E.1
  • 94
    • 84934911862 scopus 로고    scopus 로고
    • Three homology models of PAR2 derived from different templates: application to antagonist discovery
    • Perry S.R., et al. Three homology models of PAR2 derived from different templates: application to antagonist discovery. J. Chem. Inf. Model. 2015, 55:1181-1191.
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 1181-1191
    • Perry, S.R.1
  • 95
    • 80052690961 scopus 로고    scopus 로고
    • The use of GPCR structures in drug design
    • Congreve M., et al. The use of GPCR structures in drug design. Adv. Pharmacol. 2011, 62:1-36.
    • (2011) Adv. Pharmacol. , vol.62 , pp. 1-36
    • Congreve, M.1
  • 96
    • 53349102957 scopus 로고    scopus 로고
    • Use of the X-ray structure of the beta2-adrenergic receptor for drug discovery. Part 2: Identification of active compounds
    • Sabio M., et al. Use of the X-ray structure of the beta2-adrenergic receptor for drug discovery. Part 2: Identification of active compounds. Bioorg. Med. Chem. Lett. 2008, 18:5391-5395.
    • (2008) Bioorg. Med. Chem. Lett. , vol.18 , pp. 5391-5395
    • Sabio, M.1
  • 97
    • 84862291381 scopus 로고    scopus 로고
    • A prospective cross-screening study on G-protein-coupled receptors: lessons learned in virtual compound library design
    • Sanders M.P., et al. A prospective cross-screening study on G-protein-coupled receptors: lessons learned in virtual compound library design. J. Med. Chem. 2012, 55:5311-5325.
    • (2012) J. Med. Chem. , vol.55 , pp. 5311-5325
    • Sanders, M.P.1
  • 98
    • 77952050479 scopus 로고    scopus 로고
    • Structure-based discovery of A2A adenosine receptor ligands
    • Carlsson J., et al. Structure-based discovery of A2A adenosine receptor ligands. J. Med. Chem. 2010, 53:3748-3755.
    • (2010) J. Med. Chem. , vol.53 , pp. 3748-3755
    • Carlsson, J.1
  • 99
    • 84866889254 scopus 로고    scopus 로고
    • Identifying novel adenosine receptor ligands by simultaneous proteochemometric modeling of rat and human bioactivity data
    • van Westen G.J., et al. Identifying novel adenosine receptor ligands by simultaneous proteochemometric modeling of rat and human bioactivity data. J. Med. Chem. 2012, 55:7010-7020.
    • (2012) J. Med. Chem. , vol.55 , pp. 7010-7020
    • van Westen, G.J.1
  • 100
    • 84871572340 scopus 로고    scopus 로고
    • Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A(2A) receptor with novel biological activity
    • Chen D., et al. Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A(2A) receptor with novel biological activity. ACS Chem. Biol. 2012, 7:2064-2073.
    • (2012) ACS Chem. Biol. , vol.7 , pp. 2064-2073
    • Chen, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.