-
1
-
-
0037024360
-
-
S. Takeda, S. Kadowaki, T. Haga, H. Takaesu, S. Mitaku, FEBS Lett. 520, 97 (2002).
-
(2002)
FEBS Lett
, vol.520
, pp. 97
-
-
Takeda, S.1
Kadowaki, S.2
Haga, T.3
Takaesu, H.4
Mitaku, S.5
-
2
-
-
0038024615
-
-
R. Fredriksson, M. C. Lagerstrom, L. G. Lundin, H. B. Schioth, Mol. Pharmacol. 63, 1256 (2003).
-
(2003)
Mol. Pharmacol
, vol.63
, pp. 1256
-
-
Fredriksson, R.1
Lagerstrom, M.C.2
Lundin, L.G.3
Schioth, H.B.4
-
5
-
-
33846245114
-
-
Y. Sun et al., EMBO J. 26, 53 (2007).
-
(2007)
EMBO J
, vol.26
, pp. 53
-
-
Sun, Y.1
-
6
-
-
0034677966
-
-
J. Drews, Science 287, 1960 (2000).
-
(2000)
Science
, vol.287
, pp. 1960
-
-
Drews, J.1
-
12
-
-
66749098952
-
-
D. M. Perez, Ed, Humana, Totowa, NJ
-
Y. Xiang, B. Kobilka, in The Adrenergic Receptors in the 21st Century, D. M. Perez, Ed. (Humana, Totowa, NJ, 2006), pp. 267-292.
-
(2006)
The Adrenergic Receptors in the 21st Century
, pp. 267-292
-
-
Xiang, Y.1
Kobilka, B.2
-
15
-
-
0026529253
-
-
T. R. Bai, Lung 170, 125 (1992).
-
(1992)
Lung
, vol.170
, pp. 125
-
-
Bai, T.R.1
-
20
-
-
6344248639
-
-
J. Li, P. C. Edwards, M. Burghammer, C. Villa, G. F. Schertler, J. Mol. Biol. 343, 1409 (2004).
-
(2004)
J. Mol. Biol
, vol.343
, pp. 1409
-
-
Li, J.1
Edwards, P.C.2
Burghammer, M.3
Villa, C.4
Schertler, G.F.5
-
23
-
-
36448938259
-
-
Inverse agonists act to reduce the basal activity of a receptor through interactions that shift the equilibrium to more of an inactive state. In contrast, antagonists bind to and block the active site but do not affect the equilibrium between inactive and active states, and agonists shift the equilibrium to an active receptor state
-
Inverse agonists act to reduce the basal activity of a receptor through interactions that shift the equilibrium to more of an inactive state. In contrast, antagonists bind to and block the active site but do not affect the equilibrium between inactive and active states, and agonists shift the equilibrium to an active receptor state.
-
-
-
-
24
-
-
36448978229
-
-
1266; published online 25 October, 10.1126/science.1150609
-
D. M. Rosenbaum et al., Science 318, 1266; published online 25 October 2007 (10.1126/science.1150609).
-
(2007)
Science
, vol.318
-
-
Rosenbaum, D.M.1
-
25
-
-
36448975936
-
-
187 was eliminated through a Glu substitution. This modified version was created to assist in improved crystal formation.
-
187 was eliminated through a Glu substitution. This modified version was created to assist in improved crystal formation.
-
-
-
-
27
-
-
36448980025
-
-
See supporting material on Science Online.
-
See supporting material on Science Online.
-
-
-
-
32
-
-
9944252602
-
-
V. Cherezov, A. Peddi, L. Muthusubramaniam, Y. F. Zheng, M. Caffrey, Acta Crystallogr. D 60, 1795 (2004).
-
(2004)
Acta Crystallogr. D
, vol.60
, pp. 1795
-
-
Cherezov, V.1
Peddi, A.2
Muthusubramaniam, L.3
Zheng, Y.F.4
Caffrey, M.5
-
33
-
-
36448943338
-
-
The successful diffraction screening and data collection that led to the structure determination of β2AR-T4L required overcoming a number of technological barriers that encompassed the growth and harvest of microcrystals, crystal imaging, and collection of diffraction data. Because of their transparency, crystals were often visually obstructed by the frozen lipidic mesophase material and therefore could not be confidently imaged by traditional beamline cameras; moreover, their extremely small size made them susceptible to rapid radiation damage 27
-
2AR-T4L required overcoming a number of technological barriers that encompassed the growth and harvest of microcrystals, crystal imaging, and collection of diffraction data. Because of their transparency, crystals were often visually obstructed by the frozen lipidic mesophase material and therefore could not be confidently imaged by traditional beamline cameras; moreover, their extremely small size made them susceptible to rapid radiation damage (27).
-
-
-
-
34
-
-
36448936831
-
-
GPCRs are frequently posttranslationally modified with palmitoylate on cysteine residues at the C-terminal tail. Furthermore, β2AR-T4L was treated with iodoacetamide during purification to eliminate free thiols
-
2AR-T4L was treated with iodoacetamide during purification to eliminate free thiols.
-
-
-
-
35
-
-
36448929202
-
-
In Ballesteros-Weinstein numbering, a single most conserved residue among the class A GPCRs is designated x.50, where x is the transmembrane helix number. All other residues on that helix are numbered relative to this conserved position.
-
In Ballesteros-Weinstein numbering, a single most conserved residue among the class A GPCRs is designated x.50, where x is the transmembrane helix number. All other residues on that helix are numbered relative to this conserved position.
-
-
-
-
36
-
-
0742288411
-
-
S. Yohannan, S. Faham, D. Yang, J. P. Whitelegge, J. U. Bowie, Proc. Natl. Acad. Sci. U.S.A. 101, 959 (2004).
-
(2004)
Proc. Natl. Acad. Sci. U.S.A
, vol.101
, pp. 959
-
-
Yohannan, S.1
Faham, S.2
Yang, D.3
Whitelegge, J.P.4
Bowie, J.U.5
-
39
-
-
36448995887
-
-
Membrane proteins generally can form two types of crystal packing. Type I represents stacks of two-dimensional crystals ordered in the third dimension via interactions of hydrophilic parts of membrane proteins. Type II crystals are composed of membrane proteins whose hydrophobic part is shielded by a detergent micelle, and all crystal contacts are formed through hydrophilic, solvent-exposed parts of protein molecules
-
Membrane proteins generally can form two types of crystal packing. Type I represents stacks of two-dimensional crystals ordered in the third dimension via interactions of hydrophilic parts of membrane proteins. Type II crystals are composed of membrane proteins whose hydrophobic part is shielded by a detergent micelle, and all crystal contacts are formed through hydrophilic, solvent-exposed parts of protein molecules.
-
-
-
-
40
-
-
0035979794
-
-
P. Nollert, H. Qiu, M. Caffrey, J. P. Rosenbusch, E. M. Landau, FEBS Lett. 504, 179 (2001).
-
(2001)
FEBS Lett
, vol.504
, pp. 179
-
-
Nollert, P.1
Qiu, H.2
Caffrey, M.3
Rosenbusch, J.P.4
Landau, E.M.5
-
41
-
-
0024544232
-
-
B. F. O'Dowd, M. Hnatowich, M. G. Caron, R. J. Lefkowitz, M. Bouvier, J. Biol. Chem. 264, 7564 (1989).
-
(1989)
J. Biol. Chem
, vol.264
, pp. 7564
-
-
O'Dowd, B.F.1
Hnatowich, M.2
Caron, M.G.3
Lefkowitz, R.J.4
Bouvier, M.5
-
45
-
-
0037160105
-
-
J. F. Mercier, A. Salahpour, S. Angers, A. Breit, M. Bouvier, J. Biol. Chem. 277, 44925 (2002).
-
(2002)
J. Biol. Chem
, vol.277
, pp. 44925
-
-
Mercier, J.F.1
Salahpour, A.2
Angers, S.3
Breit, A.4
Bouvier, M.5
-
49
-
-
0037072884
-
-
Y. Xiang, V. O. Rybin, S. F. Steinberg, B. Kobilka, J. Biol. Chem. 277, 34280 (2002).
-
(2002)
J. Biol. Chem
, vol.277
, pp. 34280
-
-
Xiang, Y.1
Rybin, V.O.2
Steinberg, S.F.3
Kobilka, B.4
-
52
-
-
0035964342
-
-
N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCammon, Proc. Natl. Acad. Sci. U.S.A. 98, 10037 (2001).
-
(2001)
Proc. Natl. Acad. Sci. U.S.A
, vol.98
, pp. 10037
-
-
Baker, N.A.1
Sept, D.2
Joseph, S.3
Holst, M.J.4
McCammon, J.A.5
-
55
-
-
0028318173
-
-
K. Noda, Y. Saad, R. M. Graham, S. S. Karnik, J. Biol. Chem. 269, 6743 (1994).
-
(1994)
J. Biol. Chem
, vol.269
, pp. 6743
-
-
Noda, K.1
Saad, Y.2
Graham, R.M.3
Karnik, S.S.4
-
56
-
-
4644252143
-
-
J. Mialet-Perez, S. A. Green, W. E. Miller, S. B. Liggett, J. Biol. Chem. 279, 38603 (2004).
-
(2004)
J. Biol. Chem
, vol.279
, pp. 38603
-
-
Mialet-Perez, J.1
Green, S.A.2
Miller, W.E.3
Liggett, S.B.4
-
57
-
-
36248970132
-
-
S. G. F. Rasmussen et al., Nature, published online 21 October 2007 (10.1038/nature06325).
-
S. G. F. Rasmussen et al., Nature, published online 21 October 2007 (10.1038/nature06325).
-
-
-
-
59
-
-
33144459843
-
-
T. W. Schwartz, T. M. Frimurer, B. Holst, M. M. Rosenkilde, C. E. Elling, Annu. Rev. Pharmacol. Toxicol. 46, 481 (2006).
-
(2006)
Annu. Rev. Pharmacol. Toxicol
, vol.46
, pp. 481
-
-
Schwartz, T.W.1
Frimurer, T.M.2
Holst, B.3
Rosenkilde, M.M.4
Elling, C.E.5
-
60
-
-
0037174606
-
-
L. Shi et al., J. Biol. Chem. 277, 40989 (2002).
-
(2002)
J. Biol. Chem
, vol.277
, pp. 40989
-
-
Shi, L.1
-
62
-
-
36448946278
-
-
2AR were aligned to equivalent residues on rhodopsin: Residues 43 to 59 were aligned to residues 47 to 63; residues 67 to 95 were aligned to residues 71 to 99; residues 122 to 135 were aligned to residues 126 to 139; and residues 285 to 296 were aligned to residues 264 to 275.
-
2AR were aligned to equivalent residues on rhodopsin: Residues 43 to 59 were aligned to residues 47 to 63; residues 67 to 95 were aligned to residues 71 to 99; residues 122 to 135 were aligned to residues 126 to 139; and residues 285 to 296 were aligned to residues 264 to 275.
-
-
-
-
64
-
-
0024344941
-
-
C. D. Strader, M. R. Candelore, W. S. Hill, I. S. Sigal, R. A. Dixon, J. Biol. Chem. 264, 13572 (1989).
-
(1989)
J. Biol. Chem
, vol.264
, pp. 13572
-
-
Strader, C.D.1
Candelore, M.R.2
Hill, W.S.3
Sigal, I.S.4
Dixon, R.A.5
-
66
-
-
0037235663
-
-
C. Bissantz, P. Bernard, M. Hibert, D. Rognan, Proteins 50, 5 (2003).
-
(2003)
Proteins
, vol.50
, pp. 5
-
-
Bissantz, C.1
Bernard, P.2
Hibert, M.3
Rognan, D.4
-
69
-
-
30444455296
-
-
M. Nowak, M. Kolaczkowski, M. Pawlowski, A. J. Bojarski, J. Med. Chem. 49, 205 (2006).
-
(2006)
J. Med. Chem
, vol.49
, pp. 205
-
-
Nowak, M.1
Kolaczkowski, M.2
Pawlowski, M.3
Bojarski, A.J.4
-
74
-
-
33644861214
-
-
M. A. Lomize, A. L. Lomize, I. D. Pogozheva, H. I. Mosberg, Bioinformatics 22, 623 (2006).
-
(2006)
Bioinformatics
, vol.22
, pp. 623
-
-
Lomize, M.A.1
Lomize, A.L.2
Pogozheva, I.D.3
Mosberg, H.I.4
-
75
-
-
36448959520
-
-
W. L. DeLano, The PyMOL Molecular Graphics System (2002) (www.pymol.org).
-
(2002)
-
-
DeLano, W.L.1
-
76
-
-
36448983307
-
-
Author contributions: R.C.S. and B.K.K. independently pushed the GPCR structural biology projects for more than 15 years. B.K.K. managed the protein design, production, and purification. R.C.S. managed novel crystallization and data collection methods development and experiments. V.C. developed novel methods for and performed LCP crystallization, LCP crystal mounting, LCP data collection, and model refinement, analyzed the results, and was involved in manuscript preparation. D.M.R. supplied protein materials for all crystallization trials, grew and collected data from the bicelle crystals, collected, processed and refined the 3.5 Å LCP structure, refined the 2.4 Å structure, analyzed the results, and was involved in manuscript preparation. M.A.H. designed the blind crystal screening protocol and collected the 2.4 Å data set, processed the 2.4 Å data, solved the structure by molecular replacement at 3.5 Å and 2.4 Å resolution, wrote the initial draft
-
2AR-T4L crystallization, 2.4 Å data collection, structure solution, refinement, structure analysis, and manuscript preparation. Supported by NIH Roadmap Initiative grant P50 GM073197 and Protein Structure Initiative grants U54 GM074961 and P50 GM062411 (R.C.S.), NIH Roadmap Initiative grant R21 GM075811 and National Institute of Neurological Disorders and Stroke grant NS028471 (B.K.K.), NIH grant F32 GM082028 (D.M.R.), the Lundbeck Foundation (S.G.F.R.), and NIH grant R01 GM056169 (H.-J.C. and W.I.W.). The GM/CA-CAT beamline (23-ID) at the Advanced Photon Source is supported by National Cancer Institute grant Y1-CO-1020 and National Institute of General Medical Sciences grant Y1-GM-1104. We thank J. Smith, R. Fischetti, and N. Sanishvili at the GM/CA-CAT beamline for assistance in development and use of the minibeam and beam time; G. Schertler for help with the initial diffraction experiments on LCP crystals, performed at ID-13 at the European Synchrotron Radiation Facility; K. Wüthrich and R. Horst for initial NMR analysis of samples; C. Roth, V.-P. Jaakola, A. Alexandrov, E. Chien, M. Bracey, V. Katritch, I. Wilson, and M. Yeager for careful review of the manuscript; Y. Zheng (Ohio State University) and M. Caffrey (University of Limerick) for use of the in meso robot [built with support from NIH (GM075915), NSF (IIS0308078), and SFI (02-IN1-B266)]; and A. Walker for assistance with manuscript preparation. Coordinates and structure factors have been deposited in the Protein Data Bank with identification code 2RH1.
-
-
-
|