-
1
-
-
84938723258
-
Developing electronic skin with the sense of touch
-
DahiyaR, NavarajWT, Khan S, et al. Developing electronic skin with the sense of touch. Inf. Display. 2015:2-6.
-
(2015)
Inf. Display
, pp. 2-6
-
-
Dahiya, R.1
Navaraj, W.T.2
Khan, S.3
-
2
-
-
84884166128
-
Directions toward effective utilization of tactile skin: A review
-
Dahiya RS, Mittendorfer P, Valle M, et al. Directions toward effective utilization of tactile skin: a review. IEEE Sens. J. 2013;13:4121-4138.
-
(2013)
IEEE Sens. J.
, vol.13
, pp. 4121-4138
-
-
Dahiya, R.S.1
Mittendorfer, P.2
Valle, M.3
-
3
-
-
0038353936
-
Development of polyimide flexible tactile sensor skin
-
Jonathan E, Jack C, Chang L. Development of polyimide flexible tactile sensor skin. J. Micromech. Microeng. 2003;13:359-366.
-
(2003)
J. Micromech. Microeng
, vol.13
, pp. 359-366
-
-
Jonathan, E.1
Jack, C.2
Chang, L.3
-
4
-
-
4344612069
-
Amicromachined active tactile sensor for hardness detection
-
HasegawaY, ShikidaM, Shimizu T, et al.Amicromachined active tactile sensor for hardness detection. Sens. Actuators A: Phys. 2004;114:141-146.
-
(2004)
Sens. Actuators A: Phys
, vol.114
, pp. 141-146
-
-
Hasegawa, Y.1
Shikida, M.2
Shimizu, T.3
-
5
-
-
0002575093
-
Review article tactile sensing for mechatronics'a state of the art survey
-
Lee MH, Nicholls HR. Review article tactile sensing for mechatronics'a state of the art survey. Mechatronics. 1999;9:1-31.
-
(1999)
Mechatronics
, vol.9
, pp. 1-31
-
-
Lee, M.H.1
Nicholls, H.R.2
-
6
-
-
84874659562
-
An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications
-
Tee BCK, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012;7:825-832.
-
(2012)
Nat. Nanotechnol
, vol.7
, pp. 825-832
-
-
Tee, B.C.K.1
Wang, C.2
Allen, R.3
-
7
-
-
77950214388
-
Materials and mechanics for stretchable electronics
-
Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327:1603-1607.
-
(2010)
Science
, vol.327
, pp. 1603-1607
-
-
Rogers, J.A.1
Someya, T.2
Huang, Y.3
-
8
-
-
84878731954
-
Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring
-
Schwartz G, Tee BCK, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013;4:1859.
-
(2013)
Nat. Commun
, vol.4
, pp. 1859
-
-
Schwartz, G.1
Tee, B.C.K.2
Mei, J.3
-
9
-
-
84893862009
-
A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
-
Gong S, SchwalbW, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014;5:3132.
-
(2014)
Nat. Commun
, vol.5
, pp. 3132
-
-
Gong, S.1
Schwalbw Wang, Y.2
-
10
-
-
80051622442
-
An electronic second skin
-
Ma Z. An electronic second skin. Science. 2011;333:830-831.
-
(2011)
Science
, vol.333
, pp. 830-831
-
-
Ma, Z.1
-
11
-
-
77049120711
-
Tactile sensing-from humans to humanoids
-
Dahiya RS, Metta G, Valle M, et al. Tactile sensing-from humans to humanoids. IEEE Trans. Rob. 2010;26:1-20.
-
(2010)
IEEE Trans. Rob
, vol.26
, pp. 1-20
-
-
Dahiya, R.S.1
Metta, G.2
Valle, M.3
-
12
-
-
84946747820
-
Tactile sensing technologies
-
Netherlands: Springer;
-
Dahiya R, Valle M. Tactile sensing technologies. In: Robotic tactile sensing. Netherlands: Springer; 2013. p. 79-136.
-
(2013)
Robotic Tactile Sensing
, pp. 79-136
-
-
Dahiya, R.1
Valle, M.2
-
13
-
-
84946708744
-
Humanoids learn touch modalities identification via multi-modal robotic skin and robust tactile descriptors
-
Kaboli M, Long A, Cheng G. Humanoids learn touch modalities identification via multi-modal robotic skin and robust tactile descriptors. Adv. Rob. Forthcoming 2015.
-
(2015)
Adv. Rob
-
-
Kaboli, M.1
Long, A.2
Cheng, G.3
-
15
-
-
77956181094
-
A survey of tactile human robot interactions
-
Argall BD, Billard AG. A survey of tactile human robot interactions. Rob. Auton. Syst. 2010;58:1159-1176.
-
(2010)
Rob. Auton. Syst
, vol.58
, pp. 1159-1176
-
-
Argall, B.D.1
Billard, A.G.2
-
16
-
-
79958772671
-
Methods and technologies for the implementation of large-scale robot tactile sensors
-
Schmitz A, Maiolino P, Maggiali M, et al. Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Trans. Rob. 2011;27:389-400.
-
(2011)
IEEE Trans. Rob
, vol.27
, pp. 389-400
-
-
Schmitz, A.1
Maiolino, P.2
Maggiali, M.3
-
17
-
-
79958768264
-
Humanoid multimodal tactilesensing modules
-
Mittendorfer P, Cheng G. Humanoid multimodal tactilesensing modules. IEEE Trans. Rob. 2011;27:401-410.
-
(2011)
IEEE Trans. Rob
, vol.27
, pp. 401-410
-
-
Mittendorfer, P.1
Cheng, G.2
-
18
-
-
33744529016
-
A silicon-based flexible tactile sensor for ubiquitous robot companion applications
-
Kim K, Lee KR, Lee DS, et al. A silicon-based flexible tactile sensor for ubiquitous robot companion applications. J. Phys.: Conf. Ser. 2006;34:399-403.
-
(2006)
J. Phys.: Conf. Ser
, vol.34
, pp. 399-403
-
-
Kim, K.1
Lee, K.R.2
Lee, D.S.3
-
21
-
-
84864474713
-
A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor
-
Saint Paul, MN;
-
Liu H, Song X, Nanayakkara T, et al. A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor. In: IEEE International Conference on Robotics and Automation (ICRA). Saint Paul, MN; 2012. p. 1410-1415.
-
(2012)
IEEE International Conference on Robotics and Automation (ICRA)
, pp. 1410-1415
-
-
Liu, H.1
Song, X.2
Nanayakkara, T.3
-
22
-
-
77950866030
-
Surface patch reconstruction from 'One- Dimensional' tactile data
-
Jia Y, Tian J. Surface patch reconstruction from 'One- Dimensional' tactile data. IEEE Trans. Autom. Sci. Eng. 2010;7:400-407.
-
(2010)
IEEE Trans. Autom. Sci. Eng
, vol.7
, pp. 400-407
-
-
Jia, Y.1
Tian, J.2
-
23
-
-
84902369522
-
A Novel Texture Sensor for Fabric Texture Measurement and Classification
-
Song A, Han Y, Hu H, et al. A Novel Texture Sensor for Fabric Texture Measurement and Classification. Instrum. Meas. 2014;63:1739-1747.
-
(2014)
Instrum. Meas
, vol.63
, pp. 1739-1747
-
-
Song, A.1
Han, Y.2
Hu, H.3
-
24
-
-
79958765632
-
Roughness encoding for discrimination of surfaces in artificial activetouch
-
Oddo CM, Controzzi M, Beccai L, et al. Roughness encoding for discrimination of surfaces in artificial activetouch. IEEE Trans. Rob. 2011;27:522-533.
-
(2011)
IEEE Trans. Rob
, vol.27
, pp. 522-533
-
-
Oddo, C.M.1
Controzzi, M.2
Beccai, L.3
-
26
-
-
18044384992
-
New approaches to nanofabrication: Molding, printing, and other techniques
-
Gates BD, Xu Q, Stewart M, et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 2005;105:1171-1196.
-
(2005)
Chem. Rev
, vol.105
, pp. 1171-1196
-
-
Gates, B.D.1
Xu, Q.2
Stewart, M.3
-
27
-
-
33745644707
-
Micromolding of PDMS scaffolds and microwells for tissue culture and cell patterning: A new method of microfabrication by the selfassembled micropatterns of diblock copolymer micelles
-
Mi Y, Chan Y, Trau D, et al. Micromolding of PDMS scaffolds and microwells for tissue culture and cell patterning: a new method of microfabrication by the selfassembled micropatterns of diblock copolymer micelles. Polymer. 2006;47:5124-5130.
-
(2006)
Polymer
, vol.47
, pp. 5124-5130
-
-
Mi, Y.1
Chan, Y.2
Trau, D.3
-
28
-
-
84927634681
-
PDMS residues-free micro/ macrostructures on flexible substrates
-
Dahiya R, Gottardi G, Laidani N. PDMS residues-free micro/ macrostructures on flexible substrates. Microelectron. Eng. 2015;136:57-62.
-
(2015)
Microelectron. Eng
, vol.136
, pp. 57-62
-
-
Dahiya, R.1
Gottardi, G.2
Laidani, N.3
-
29
-
-
84862580439
-
Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: Demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics
-
Lee J, Wu J, Ryu JH, et al. Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. Small. 2012;8:1851-1856.
-
(2012)
Small
, vol.8
, pp. 1851-1856
-
-
Lee, J.1
Wu, J.2
Ryu, J.H.3
-
30
-
-
77957746914
-
Environmentally sustainable organic field effect transistors
-
Irimia-Vladu M, Troshin PA, Reisinger M, et al. Environmentally sustainable organic field effect transistors. Org. Electron. 2010;11:1974-1990.
-
(2010)
Org. Electron
, vol.11
, pp. 1974-1990
-
-
Irimia-Vladu, M.1
Troshin, P.A.2
Reisinger, M.3
-
31
-
-
84862744614
-
Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network
-
Lee P, Lee J, Lee H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012;24:3326-3332.
-
(2012)
Adv. Mater
, vol.24
, pp. 3326-3332
-
-
Lee, P.1
Lee, J.2
Lee, H.3
-
32
-
-
84884587418
-
User-interactive electronic skin for instantaneous pressure visualization
-
Wang C, Hwang D, Yu Z, et al. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013;12:899-904.
-
(2013)
Nat. Mater
, vol.12
, pp. 899-904
-
-
Wang, C.1
Hwang, D.2
Yu, Z.3
-
33
-
-
77957132246
-
Nanowire active-matrix circuitry for low-voltage macroscale artificial skin
-
Takei K, Takahashi T, Ho JC, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010;9:821-826.
-
(2010)
Nat. Mater
, vol.9
, pp. 821-826
-
-
Takei, K.1
Takahashi, T.2
Ho, J.C.3
-
34
-
-
3042831924
-
A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications
-
Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Nat. Acad. Sci. U.S.A. 2004;101:9966-9970.
-
(2004)
Proc. Nat. Acad. Sci. U.S.A.
, vol.101
, pp. 9966-9970
-
-
Someya, T.1
Sekitani, T.2
Iba, S.3
-
35
-
-
77957125682
-
Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
-
Mannsfeld SCB, Tee BCK, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010;9:859-864.
-
(2010)
Nat. Mater
, vol.9
, pp. 859-864
-
-
Mannsfeld, S.C.B.1
Tee, B.C.K.2
Stoltenberg, R.M.3
-
36
-
-
84856504168
-
Transparent and flexible organic field-effect transistor for multi-modal sensing
-
Trung TQ, Tien NT, SeolYG, et al. Transparent and flexible organic field-effect transistor for multi-modal sensing. Org. Electron. 2012;13:533-540.
-
(2012)
Org. Electron
, vol.13
, pp. 533-540
-
-
Trung, T.Q.1
Seolyg T.Nt2
-
37
-
-
84946770068
-
Flexible pressure sensors based on screen printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs
-
Khan S, Dang W, Lorenzelli L, et al. Flexible pressure sensors based on screen printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs. IEEE Trans. Semicond. Manuf. Forthcoming 2015.
-
(2015)
IEEE Trans. Semicond. Manuf
-
-
Khan, S.1
Dang, W.2
Lorenzelli, L.3
-
38
-
-
34247475218
-
Ion gel gated polymer thinfilm transistors
-
Lee J, Panzer MJ, He Y, et al. Ion gel gated polymer thinfilm transistors. J. Am. Chem. Soc. 2007;129:4532-4533.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 4532-4533
-
-
Lee, J.1
Panzer, M.J.2
He, Y.3
-
39
-
-
27144492264
-
Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications
-
Maliakal A, Katz H, Cotts PM, et al. Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J. Am. Chem. Soc. 2005;127:14655-14662.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 14655-14662
-
-
Maliakal, A.1
Katz, H.2
Cotts, P.M.3
-
40
-
-
20644441006
-
High-performance organic transistors using solution-processed nanoparticlefilled high-k polymer gate insulators
-
Schroeder R, Majewski LA, Grell M. High-performance organic transistors using solution-processed nanoparticlefilled high-k polymer gate insulators. Adv. Mater. 2005;17:1535-1539.
-
(2005)
Adv. Mater
, vol.17
, pp. 1535-1539
-
-
Schroeder, R.1
Majewski, L.A.2
Grell, M.3
-
41
-
-
77956070963
-
All-amorphousoxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics
-
Liu J, Buchholz DB, Hennek JW, et al. All-amorphousoxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. J. Am. Chem. Soc. 2010;132:11934-11942.
-
(2010)
J. Am. Chem. Soc
, vol.132
, pp. 11934-11942
-
-
Liu, J.1
Buchholz, D.B.2
Hennek, J.W.3
-
42
-
-
84988044894
-
Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic
-
Cho JH, Lee J, XiaY, et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 2008;7:900-906.
-
(2008)
Nat. Mater
, vol.7
, pp. 900-906
-
-
Cho, J.H.1
XiaY, L.J.2
-
43
-
-
84904458739
-
Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors
-
Sun Q, Kim DH, Park SS, et al. Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv. Mater. 2014;26:4735-4740.
-
(2014)
Adv. Mater
, vol.26
, pp. 4735-4740
-
-
Sun, Q.1
Kim, D.H.2
Park, S.S.3
-
45
-
-
84865611611
-
Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates
-
Dahiya RS, AdamiA, Collini C, et al. Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates. Microelectron. Eng. 2012;98:502-507.
-
(2012)
Microelectron. Eng
, vol.98
, pp. 502-507
-
-
Dahiya, R.S.1
Adamia Collini, C.2
-
46
-
-
84859153476
-
Large-scale integration of semiconductor nanowires for high-performance flexible electronics
-
Liu X, Long Y-Z, Liao L, et al. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano. 2012;6:1888-1900.
-
(2012)
ACS Nano
, vol.6
, pp. 1888-1900
-
-
Liu, X.1
Long, Y.-Z.2
Liao, L.3
-
48
-
-
78049332884
-
Parallel array in as nanowire transistors for mechanically bendable, ultrahigh frequency electronics
-
Takahashi T, Takei K, Adabi E, et al. Parallel array in as nanowire transistors for mechanically bendable, ultrahigh frequency electronics. ACS Nano. 2010;4:5855-5860.
-
(2010)
ACS Nano
, vol.4
, pp. 5855-5860
-
-
Takahashi, T.1
Takei, K.2
Adabi, E.3
-
49
-
-
20844455924
-
Nanotechnology High-speed integrated nanowire circuits
-
Friedman RS, McAlpine MC, Ricketts DS, et al. Nanotechnology High-speed integrated nanowire circuits. Nature. 2005;434:1085-1085.
-
(2005)
Nature
, vol.434
, pp. 1085-1085
-
-
Friedman, R.S.1
McAlpine, M.C.2
Ricketts, D.S.3
-
50
-
-
0348112526
-
Highperformance nanowire electronics and photonics on glass and plastic substrates
-
McAlpine MC, Friedman RS, Jin S, et al. Highperformance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 2003;3:1531-1535.
-
(2003)
Nano Lett
, vol.3
, pp. 1531-1535
-
-
McAlpine, M.C.1
Friedman, R.S.2
Jin, S.3
-
51
-
-
84893917783
-
POSFETtactile sensing chips using CMOS technology
-
Baltimore, MD;
-
Dahiya RS, Adami A, Collini C, et al. POSFETtactile sensing chips using CMOS technology. In 2013 IEEE Sensors; Baltimore, MD; 2013. p. 1-4.
-
(2013)
2013 IEEE Sensors
, pp. 1-4
-
-
Dahiya, R.S.1
Adami, A.2
Collini, C.3
-
52
-
-
67651245426
-
Piezoelectric oxide semiconductor field effect transistor touch sensing devices
-
Dahiya RS, Metta G, Valle M, et al. Piezoelectric oxide semiconductor field effect transistor touch sensing devices. Appl. Phys. Lett. 2009;95:034105.
-
(2009)
Appl. Phys. Lett
, vol.95
, pp. 034105
-
-
Dahiya, R.S.1
Metta, G.2
Valle, M.3
-
53
-
-
84878020774
-
Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging
-
Wu W, Wen X, Wang ZL. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science. 2013;340:952-957.
-
(2013)
Science
, vol.340
, pp. 952-957
-
-
Wu, W.1
Wen, X.2
Wang, Z.L.3
-
54
-
-
84946770069
-
-
Bendable Electronics & Sensing Technologies Group. [10 August
-
Bendable Electronics & Sensing Technologies Group. [10 August 2015]. Available from: http://www.gla. ac.uk/schools/engineering/research/divisions/ene/ researchthemes/micronanotechnology/best/projects/.
-
(2015)
-
-
-
55
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666-669.
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
-
56
-
-
2342629497
-
Extraordinary mobility in semiconducting carbon nanotubes
-
Dürkop T, Getty SA, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004;4:35-39.
-
(2004)
Nano Lett
, vol.4
, pp. 35-39
-
-
Dürkop, T.1
Getty, S.A.2
Cobas, E.3
-
58
-
-
0001291569
-
Young's modulus of single-walled nanotubes
-
Krishnan A, Dujardin E, Ebbesen TW, et al. Young's modulus of single-walled nanotubes. Phys. Rev. B. 1998;58:14013-14019.
-
(1998)
Phys. Rev. B.
, vol.58
, pp. 14013-14019
-
-
Krishnan, A.1
Dujardin, E.2
Ebbesen, T.W.3
-
59
-
-
77957303895
-
Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating
-
Jo JW, Jung JW, Lee JU, et al. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano. 2010;4:5382-5388.
-
(2010)
ACS Nano
, vol.4
, pp. 5382-5388
-
-
Jo, J.W.1
Jung, J.W.2
Lee, J.U.3
-
61
-
-
33747160745
-
Inkjet printing of electrically conductive patterns of carbon nanotubes
-
Kordás K, Mustonen T, Tóth G, et al. Inkjet printing of electrically conductive patterns of carbon nanotubes. Small. 2006;2:1021-1025.
-
(2006)
Small
, vol.2
, pp. 1021-1025
-
-
Kordás, K.1
Mustonen, T.2
Tóth, G.3
-
62
-
-
77957552593
-
Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing
-
Okimoto H, Takenobu T, Yanagi K, et al. Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv. Mater. 2010;22:3981-3986.
-
(2010)
Adv. Mater
, vol.22
, pp. 3981-3986
-
-
Okimoto, H.1
Takenobu, T.2
Yanagi, K.3
-
63
-
-
84927583144
-
Technologies for printing sensors and electronics over large flexible substrates: A review
-
Khan S, Lorenzelli L, DahiyaRS.Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 2015;15:3164-3185.
-
(2015)
IEEE Sens. J.
, vol.15
, pp. 3164-3185
-
-
Khan, S.1
Lorenzelli, L.2
Dahiya, R.S.3
-
64
-
-
83555165175
-
Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
-
Lipomi DJ, Vosgueritchian M, Tee BCK, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011;6:788-792.
-
(2011)
Nat. Nanotechnol
, vol.6
, pp. 788-792
-
-
Lipomi, D.J.1
Vosgueritchian, M.2
Tee, B.C.K.3
-
65
-
-
79955848609
-
A stretchable carbon nanotube strain sensor for human-motion detection
-
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011;6:296-301.
-
(2011)
Nat. Nanotechnol
, vol.6
, pp. 296-301
-
-
Yamada, T.1
Hayamizu, Y.2
Yamamoto, Y.3
-
66
-
-
18144425545
-
Transparent and flexible carbon nanotube transistors
-
Artukovic E, Kaempgen M, Hecht DS, et al. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005;5:757-760.
-
(2005)
Nano Lett
, vol.5
, pp. 757-760
-
-
Artukovic, E.1
Kaempgen, M.2
Hecht, D.S.3
-
67
-
-
29244460038
-
Flexible vapour sensors using single walled carbon nanotubes
-
Parikh K, Cattanach K, RaoR, et al. Flexible vapour sensors using single walled carbon nanotubes. Sens. Actuators B: Chem. 2006;113:55-63.
-
(2006)
Sens. Actuators B: Chem
, vol.113
, pp. 55-63
-
-
Parikh, K.1
RaoR, C.K.2
-
68
-
-
27744434868
-
Transparent and flexible carbon nanotube/polyaniline pH sensors
-
Kaempgen M, Roth S. Transparent and flexible carbon nanotube/polyaniline pH sensors. J. Electroanal. Chem. 2006;586:72-76.
-
(2006)
J. Electroanal. Chem
, vol.586
, pp. 72-76
-
-
Kaempgen, M.1
Roth, S.2
-
69
-
-
33751205020
-
Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors
-
Ferrer-Anglada N, Kaempgen M, Roth S. Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors. Phys. Status Solidi (B). 2006;243:3519-3523.
-
(2006)
Phys. Status Solidi (B).
, vol.243
, pp. 3519-3523
-
-
Ferrer-Anglada, N.1
Kaempgen, M.2
Roth, S.3
-
70
-
-
66749119012
-
Large-area synthesis of high-quality and uniform graphene films on copper foils
-
Li X, Cai W, An J. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312-1314.
-
(2009)
Science
, vol.324
, pp. 1312-1314
-
-
Li, X.1
Cai, W.2
An, J.3
-
71
-
-
77956430820
-
Roll-to-roll production of 30-inch graphene films for transparent electrodes
-
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5:574-578.
-
(2010)
Nat Nanotechnol
, vol.5
, pp. 574-578
-
-
Bae, S.1
Kim, H.2
Lee, Y.3
-
73
-
-
60749097071
-
Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide
-
Emtsev KV, BostwickA, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009;8:203-207.
-
(2009)
Nat. Mater
, vol.8
, pp. 203-207
-
-
Emtsev, K.V.1
Bostwicka Horn, K.2
-
74
-
-
70350680954
-
Selling graphene by the ton
-
Segal M. Selling graphene by the ton. Nat. Nanotechnol. 2009;4:612-614.
-
(2009)
Nat. Nanotechnol
, vol.4
, pp. 612-614
-
-
Segal, M.1
-
75
-
-
71949115543
-
Transfer of largearea graphene films for high-performance transparent conductive electrodes
-
Li X, Zhu Y, Cai W, et al. Transfer of largearea graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009;9:4359-4363.
-
(2009)
Nano Lett
, vol.9
, pp. 4359-4363
-
-
Li, X.1
Zhu, Y.2
Cai, W.3
-
76
-
-
59649099717
-
Large-scale pattern growth of graphene films for stretchable transparent electrodes
-
Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706-710.
-
(2009)
Nature
, vol.457
, pp. 706-710
-
-
Kim, K.S.1
Zhao, Y.2
Jang, H.3
-
77
-
-
81855218266
-
Toward clean and crackless transfer of graphene
-
Liang X, Sperling BA, Calizo I, et al. Toward clean and crackless transfer of graphene. ACS Nano. 2011;5:9144-9153.
-
(2011)
ACS Nano
, vol.5
, pp. 9144-9153
-
-
Liang, X.1
Sperling, B.A.2
Calizo, I.3
-
78
-
-
77949344390
-
All-organic vapor sensor using inkjet-printed reduced graphene oxide
-
Dua V, Surwade SP, Ammu S, et al. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 2010;49:2154-2157.
-
(2010)
Angew. Chem. Int. Ed
, vol.49
, pp. 2154-2157
-
-
Dua, V.1
Surwade, S.P.2
Ammu, S.3
-
79
-
-
77949654793
-
Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating
-
Pham VH, Cuong TV, Hur SH, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon. 2010;48:1945-1951.
-
(2010)
Carbon
, vol.48
, pp. 1945-1951
-
-
Pham, V.H.1
Cuong, T.V.2
Hur, S.H.3
-
80
-
-
77956434425
-
High-performance flexible graphene field effect transistors with ion gel gate dielectrics
-
Kim BJ, Jang H, Lee S-K, et al. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 2010;10:3464-3466.
-
(2010)
Nano Lett
, vol.10
, pp. 3464-3466
-
-
Kim, B.J.1
Jang, H.2
Lee, S.-K.3
-
81
-
-
84867810357
-
Coplanar-gate transparent graphene transistors and inverters on plastic
-
Kim BJ, Lee S-K, Kang MS, et al. Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano. 2012;6:8646-8651.
-
(2012)
ACS Nano
, vol.6
, pp. 8646-8651
-
-
Kim, B.J.1
Lee, S.-K.2
Kang, M.S.3
-
82
-
-
80755159163
-
Stretchable graphene transistors with printed dielectrics and gate electrodes
-
Lee S-K, Kim BJ, Jang H, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 2011;11:4642-4646.
-
(2011)
Nano Lett
, vol.11
, pp. 4642-4646
-
-
Lee, S.-K.1
Kim, B.J.2
Jang, H.3
-
83
-
-
84868109917
-
Graphene-based transparent strain sensor
-
Bae SH, Lee Y, Sharma BK, et al. Graphene-based transparent strain sensor. Carbon. 2013;51:236-242.
-
(2013)
Carbon
, vol.51
, pp. 236-242
-
-
Bae, S.H.1
Lee, Y.2
Sharma, B.K.3
-
84
-
-
77951757920
-
Supercapacitors based on flexible graphene/polyaniline nanofiber composite films
-
Wu Q, Xu YX, Yao ZY, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 2010;4:1963-1970.
-
(2010)
ACS Nano
, vol.4
, pp. 1963-1970
-
-
Wu, Q.1
Xu, Y.X.2
Yao, Z.Y.3
-
85
-
-
79956363443
-
Vertically aligned ZnO nanorods and graphene hybrid architectures for highsensitive flexible gas sensors
-
Yi J, Lee JM, Il Park W. Vertically aligned ZnO nanorods and graphene hybrid architectures for highsensitive flexible gas sensors. Sens. Actuators B-Chem. 2011;155:264-269.
-
(2011)
Sens. Actuators B-Chem
, vol.155
, pp. 264-269
-
-
Yi, J.1
Lee, J.M.2
Il Park, W.3
-
86
-
-
77956255932
-
Flexible roomtemperature NO2 gas sensors based on carbon nanotubes/ reduced graphene hybrid films
-
Jeong HY, Lee DS, Choi HK, et al. Flexible roomtemperature NO2 gas sensors based on carbon nanotubes/ reduced graphene hybrid films. Appl. Phys. Lett. 2010;96.
-
(2010)
Appl. Phys. Lett
, pp. 96
-
-
Jeong, H.Y.1
Lee, D.S.2
Choi, H.K.3
-
87
-
-
77956430820
-
Roll-to-roll production of 30-inch graphene films for transparent electrodes
-
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010;5:574-578.
-
(2010)
Nat. Nanotechnol
, vol.5
, pp. 574-578
-
-
Bae, S.1
Kim, H.2
Lee, Y.3
-
88
-
-
84923336271
-
Graphene based flexible electrochromic devices
-
Polat EO, Balci O, Kocabas C. Graphene based flexible electrochromic devices. Sci. Rep. 2014;4:6484.
-
(2014)
Sci. Rep
, vol.4
, pp. 6484
-
-
Polat, E.O.1
Balci, O.2
Kocabas, C.3
-
89
-
-
77956280459
-
Graphene photonics and optoelectronics
-
Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat. Photonics. 2010;4:611-622.
-
(2010)
Nat. Photonics
, vol.4
, pp. 611-622
-
-
Bonaccorso, F.1
Sun, Z.2
Hasan, T.3
-
90
-
-
84867036997
-
Highly sensitive skin-mountable strain Gauges based entirely on elastomers
-
Lu N, Lu C, Yang S, et al. Highly sensitive skin-mountable strain Gauges based entirely on elastomers. Adv. Funct. Mater. 2012;22:4044-4050.
-
(2012)
Adv. Funct. Mater
, vol.22
, pp. 4044-4050
-
-
Lu, N.1
Lu, C.2
Yang, S.3
-
91
-
-
84931957595
-
Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection
-
Cai L, Song L, Luan P, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci. Rep. 2013;3:3048.
-
(2013)
Sci. Rep
, vol.3
, pp. 3048
-
-
Cai, L.1
Song, L.2
Luan, P.3
-
92
-
-
84862825751
-
Field emission properties of carbon nanotubes in a stretchable polydimethylsiloxane matrix
-
Ding H, Feng T, Chen Y, et al. Field emission properties of carbon nanotubes in a stretchable polydimethylsiloxane matrix. Appl. Surf. Sci. 2012;258:5191-5194.
-
(2012)
Appl. Surf. Sci
, vol.258
, pp. 5191-5194
-
-
Ding, H.1
Feng, T.2
Chen, Y.3
-
93
-
-
34748821880
-
Characterizing and patterning of PDMS-based conducting composites
-
Niu X, Peng S, Liu L, et al. Characterizing and patterning of PDMS-based conducting composites. Adv. Mater.- Deerfield BeachWeinheim. 2007;19:2682-2686.
-
(2007)
Adv. Mater.- Deerfield BeachWeinheim
, vol.19
, pp. 2682-2686
-
-
Niu, X.1
Peng, S.2
Liu, L.3
-
94
-
-
63149129780
-
Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer
-
Khosla A, Gray BL. Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer. Mater. Lett. 2009;63:1203-1206.
-
(2009)
Mater. Lett
, vol.63
, pp. 1203-1206
-
-
Khosla, A.1
Gray, B.L.2
-
95
-
-
84861880218
-
Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors
-
Lee J-B, Khang D-Y. Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors. Compos. Sci. Technol. 2012;72:1257-1263.
-
(2012)
Compos. Sci. Technol
, vol.72
, pp. 1257-1263
-
-
Lee, J.-B.1
Khang, D.-Y.2
-
96
-
-
0026156451
-
Electrically conducting powder filled polyimidesiloxane
-
Li L, Chung DDL. Electrically conducting powder filled polyimidesiloxane. Composites. 1991;22:211-218.
-
(1991)
Composites
, vol.22
, pp. 211-218
-
-
Li, L.1
Chung, D.D.L.2
-
97
-
-
78650129309
-
Tailoring the electrical properties of carbon nanotube polymer composites
-
HuangYY, TerentjevEM.Tailoring the electrical properties of carbon nanotube polymer composites. Adv. Funct. Mater. 2010;20:4062-4068.
-
(2010)
Adv. Funct. Mater
, vol.20
, pp. 4062-4068
-
-
Huang, Y.Y.1
Terentjev, E.M.2
-
98
-
-
0028485081
-
Aligned carbon nanotube arrays formed by cutting a polymer resin nanotube composite
-
Ajayan PM, Stephan O, Colliex C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin nanotube composite. Science. 1994;265:1212-1214.
-
(1994)
Science
, vol.265
, pp. 1212-1214
-
-
Ajayan, P.M.1
Stephan, O.2
Colliex, C.3
-
99
-
-
79961027250
-
Dispersion of carbon nanotubes in ethanol by a bead milling process
-
Yoshio S, Tatami J, YamakawaT, et al.Dispersion of carbon nanotubes in ethanol by a bead milling process. Carbon. 2011;49:4131-4137.
-
(2011)
Carbon
, vol.49
, pp. 4131-4137
-
-
Yoshio, S.1
Tatami, J.2
Yamakawa, T.3
-
100
-
-
11144350948
-
Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content
-
Gojny FH, Wichmann MHG, Köpke U, et al. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 2004;64:2363-2371.
-
(2004)
Compos. Sci. Technol
, vol.64
, pp. 2363-2371
-
-
Gojny, F.H.1
Wichmann, M.H.G.2
Köpke, U.3
-
101
-
-
1642443976
-
Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials
-
Knite M, Teteris V, Kiploka A, et al. Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens. Actuators A: Phys. 2004;110:142-149.
-
(2004)
Sens. Actuators A: Phys
, vol.110
, pp. 142-149
-
-
Knite, M.1
Teteris, V.2
Kiploka, A.3
-
102
-
-
78650320111
-
Preparation, micro-patterning and electrical characterization of functionalized carbonnanotube polydimethylsiloxane nanocomposite polymer
-
Khosla A, Gray BL. Preparation, micro-patterning and electrical characterization of functionalized carbonnanotube polydimethylsiloxane nanocomposite polymer. Macromol. Symp. 2010;297:210-218.
-
(2010)
Macromol. Symp
, vol.297
, pp. 210-218
-
-
Khosla, A.1
Gray, B.L.2
-
103
-
-
84878072621
-
Fabrication of micro pillars using multiwall carbon nanotubes/polymer nanocomposites
-
Mohamed I, Kay G. Fabrication of micro pillars using multiwall carbon nanotubes/polymer nanocomposites. J. Micromech. Microeng. 2013;23:055012.
-
(2013)
J. Micromech. Microeng
, vol.23
, pp. 055012
-
-
Mohamed, I.1
Kay, G.2
-
104
-
-
70350637535
-
Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing
-
Chao-Xuan L, Jin-Woo C. Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing. J. Micromech. Microeng. 2009;19:085019.
-
(2009)
J. Micromech. Microeng
, vol.19
, pp. 085019
-
-
Chao-Xuan, L.1
Jin-Woo, C.2
-
105
-
-
84906861470
-
Tactile sensing chips with POSFET array and integrated interface electronics
-
Dahiya RS, Adami A, Pinna L, et al. Tactile sensing chips with POSFET array and integrated interface electronics. IEEE Sens. J. 2014;14:3448-3457.
-
(2014)
IEEE Sens. J.
, vol.14
, pp. 3448-3457
-
-
Dahiya, R.S.1
Adami, A.2
Pinna, L.3
-
106
-
-
23744443567
-
Stretchable interconnects for elastic electronic surfaces
-
Lacour SP, Jones J, Wagner S, et al. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE. 2005;93:1459-1467.
-
(2005)
Proc. IEEE
, vol.93
, pp. 1459-1467
-
-
Lacour, S.P.1
Jones, J.2
Wagner, S.3
-
109
-
-
84884149565
-
Bendable ultra-thin chips on flexible foils
-
Dahiya RS, Gennaro S. Bendable ultra-thin chips on flexible foils. IEEE Sens. J. 2013;13:4030-4037.
-
(2013)
IEEE Sens. J.
, vol.13
, pp. 4030-4037
-
-
Dahiya, R.S.1
Gennaro, S.2
-
110
-
-
84922177375
-
-
Wiley; Weinheim, Germany;
-
Landesberger C, Paschke C, Spöhrle H-P, Bock K. Handbook of 3D integration. Vol. 3. Wiley; Weinheim, Germany; 2014.
-
(2014)
Handbook of 3D Integration
, vol.3
-
-
Landesberger, C.1
Paschke, C.2
Spöhrle, H.-P.3
Bock, K.4
-
111
-
-
17044396435
-
Investigation on material removal rate in rotation grinding for large-scale silicon wafer
-
Tian YB, Kang RK, Guo DM, et al. Investigation on material removal rate in rotation grinding for large-scale silicon wafer. Mater. Sci. Forum. 2004;471:7. p. 362-368.
-
(2004)
Mater. Sci. Forum
, vol.471
, Issue.7
, pp. 362-368
-
-
Tian, Y.B.1
Kang, R.K.2
Guo, D.M.3
-
112
-
-
48549090576
-
Grinding of silicon wafers: A review from historical perspectives
-
Pei ZJ, Fisher GR, Liu J. Grinding of silicon wafers: a review from historical perspectives. Int. J. Mach. Tools Manuf. 2008;48:1297-1307.
-
(2008)
Int. J. Mach. Tools Manuf
, vol.48
, pp. 1297-1307
-
-
Pei, Z.J.1
Fisher, G.R.2
Liu, J.3
-
113
-
-
33645054820
-
Etch characteristics of KOH TMAH and dual doped TMAH for bulk micromachining of silicon
-
Biswas K, Kal S. Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon. Microelectron. J. 2006;37:519-525.
-
(2006)
Microelectron. J.
, vol.37
, pp. 519-525
-
-
Biswas, K.1
Kal, S.2
-
117
-
-
34547271799
-
Biaxially stretchable "wavy" silicon nanomembranes
-
Choi WM, Song J, Khang D-Y, et al. Biaxially stretchable "Wavy" silicon nanomembranes. Nano Lett. 2007;7:1655-1663.
-
(2007)
Nano Lett
, vol.7
, pp. 1655-1663
-
-
Choi, W.M.1
Song, J.2
Khang, D.-Y.3
-
118
-
-
33847239980
-
Controlled buckling of semiconductor nanoribbons for stretchable electronics
-
Sun Y, Choi WM, Jiang H, et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 2006;1:201-207.
-
(2006)
Nat. Nanotechnol
, vol.1
, pp. 201-207
-
-
Sun, Y.1
Choi, W.M.2
Jiang, H.3
-
119
-
-
49649129920
-
A hemispherical electronic eye camera based on compressible silicon optoelectronics
-
Ko HC, Stoykovich MP, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature. 2008;454:748-753.
-
(2008)
Nature
, vol.454
, pp. 748-753
-
-
Ko, H.C.1
Stoykovich, M.P.2
Song, J.3
-
120
-
-
60749085156
-
Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates
-
Graz IM, Cotton DPJ, Lacour SP. Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 2009;94:071902.
-
(2009)
Appl. Phys. Lett
, vol.94
, pp. 071902
-
-
Graz, I.M.1
Cotton, D.P.J.2
Lacour, S.P.3
-
121
-
-
84890380589
-
Broadband Optical Modulators Based on Graphene Supercapacitors
-
Polat EO, Kocabas C. Broadband Optical Modulators Based on Graphene Supercapacitors. Nano Letters. 13:5851-5857.
-
Nano Letters
, vol.13
, pp. 5851-5857
-
-
Polat, E.O.1
Kocabas, C.2
|