-
1
-
-
84905825645
-
Activated STING in a vascular and pulmonary syndrome
-
Liu Y, Jesus AA, Marrero B et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–18. doi:10.1056/NEJMoa1312625
-
(2014)
N Engl J Med
, vol.371
, pp. 507-518
-
-
Liu, Y.1
Jesus, A.A.2
Marrero, B.3
-
2
-
-
84886800734
-
Monogenic autoinflammatory diseases: Disorders of amplified danger sensing and cytokine dysregulation
-
Sanchez GAM, de Jesus AA, Goldbach-Mansky R (2013) Monogenic autoinflammatory diseases: disorders of amplified danger sensing and cytokine dysregulation. Rheum Dis Clin North Am 39:701–34. doi:10.1016/j.rdc.2013.08.001
-
(2013)
Rheum Dis Clin North Am
, vol.39
, pp. 701-734
-
-
Sanchez, G.1
De Jesus, A.A.2
Goldbach-Mansky, R.3
-
3
-
-
84855206731
-
Recent advances in p97/VCP/Cdc48 cellular functions
-
Yamanaka K, Sasagawa Y, Ogura T (2012) Recent advances in p97/VCP/Cdc48 cellular functions. Biochim BiophysActa 1823:130–7. doi:10.1016/j.bbamcr.2011.07.001
-
(2012)
Biochim Biophysacta
, vol.1823
, pp. 130-137
-
-
Yamanaka, K.1
Sasagawa, Y.2
Ogura, T.3
-
4
-
-
33644869497
-
Inclusion-body myositis: A myodegenerative conformational disorder associated with Abeta, protein misfolding, and proteasome inhibition
-
Askanas V, Engel WK (2006) Inclusion-body myositis: a myodegenerative conformational disorder associated with Abeta, protein misfolding, and proteasome inhibition. Neurology 66: S39–48. doi:10.1212/01.wnl.0000192128.13875.1e
-
(2006)
Neurology
, vol.66
-
-
Askanas, V.1
Engel, W.K.2
-
5
-
-
84863232739
-
Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity
-
Liu Y, Ramot Y, Torrelo A et al (2012) Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 64:895–907. doi:10.1002/art.33368
-
(2012)
Arthritis Rheum
, vol.64
, pp. 895-907
-
-
Liu, Y.1
Ramot, Y.2
Torrelo, A.3
-
6
-
-
77955979357
-
Pathways linking Abeta and tau pathologies
-
LaFerla FM (2010) Pathways linking Abeta and tau pathologies. Biochem Soc Trans 38:993–5. doi:10.1042/BST0380993
-
(2010)
Biochem Soc Trans
, vol.38
, pp. 993-995
-
-
Laferla, F.M.1
-
7
-
-
84958124070
-
The ubiquitin-proteasome system and molecular chaperone deregulation in Alzheimer’s disease
-
Sulistio YA, Heese K (2015) The ubiquitin-proteasome system and molecular chaperone deregulation in Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-014-9063-4
-
(2015)
Mol Neurobiol
-
-
Sulistio, Y.A.1
Heese, K.2
-
8
-
-
34250819839
-
Intracellular amyloid-beta in Alzheimer’s disease
-
LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509. doi:10.1038/nrn2168
-
(2007)
Nat Rev Neurosci
, vol.8
, pp. 499-509
-
-
Laferla, F.M.1
Green, K.N.2
Oddo, S.3
-
9
-
-
84893472608
-
De novo prion aggregates trigger autophagy in skeletal muscle
-
Joshi-Barr S, Bett C, Chiang W-C et al (2014) De novo prion aggregates trigger autophagy in skeletal muscle. J Virol 88:2071–82. doi:10.1128/JVI.02279-13
-
(2014)
J Virol
, vol.88
, pp. 2071-2082
-
-
Joshi-Barr, S.1
Bett, C.2
Chiang, W.-C.3
-
10
-
-
79961027127
-
Misfolded PrP impairs the UPS by interactionwith the 20S proteasome and inhibition of substrate entry
-
Deriziotis P, André R, Smith DM et al (2011) Misfolded PrP impairs the UPS by interactionwith the 20S proteasome and inhibition of substrate entry. EMBO J 30:3065–77. doi:10.1038/emboj.2011.224
-
(2011)
EMBO J
, vol.30
, pp. 3065-3077
-
-
Deriziotis, P.1
Ré, R.2
Smith, D.M.3
-
11
-
-
84864357735
-
Emerging roles of immunoproteasomes beyond MHC class I antigen processing
-
Ebstein F, Kloetzel P-M, Krüger E, Seifert U (2012) Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci 69:2543–58. doi:10.1007/s00018-012-0938-0
-
(2012)
Cell Mol Life Sci
, vol.69
, pp. 2543-2558
-
-
Ebstein, F.1
Kloetzel, P.-M.2
Krüger, E.3
Seifert, U.4
-
12
-
-
84857056178
-
Immunoproteasomes at the interface of innate and adaptive immune responses: Two faces of one enzyme
-
Krüger E, Kloetzel P-M (2012) Immunoproteasomes at the interface of innate and adaptive immune responses: two faces of one enzyme. Curr Opin Immunol 24:77–83. doi:10.1016/j.coi.2012.01.005
-
(2012)
Curr Opin Immunol
, vol.24
, pp. 77-83
-
-
Krüger, E.1
Kloetzel, P.-M.2
-
13
-
-
84878231850
-
Intracellular protein degradation: From a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting
-
Ciechanover A (2013) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorg Med Chem 21:3400–10. doi:10.1016/j.bmc.2013.01.056
-
(2013)
Bioorg Med Chem
, vol.21
, pp. 3400-3410
-
-
Ciechanover, A.1
-
14
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 A resolution
-
Groll M, Ditzel L, Löwe J et al (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–71. doi:10.1038/386463a0
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Löwe, J.3
-
15
-
-
84965094505
-
Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex
-
Vigneron N, Van den Eynde BJ (2014) Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 4:994–1025. doi:10.3390/biom4040994
-
(2014)
Biomolecules
, vol.4
, pp. 994-1025
-
-
Vigneron, N.1
Van Den Eynde, B.J.2
-
16
-
-
84922479853
-
Proteasome assembly
-
Gu ZC, Enenkel C (2014) Proteasome assembly. Cell Mol Life Sci 71:4729–45. doi:10.1007/s00018-014-1699-8
-
(2014)
Cell Mol Life Sci
, vol.71
, pp. 4729-4745
-
-
Gu, Z.C.1
Enenkel, C.2
-
17
-
-
84893364786
-
The mechanism for molecular assembly of the proteasome
-
Sahara K, Kogleck L, Yashiroda H, Murata S (2014) The mechanism for molecular assembly of the proteasome. Adv Biol Regul 54:51–8. doi:10.1016/j.jbior.2013.09.010
-
(2014)
Adv Biol Regul
, vol.54
, pp. 51-58
-
-
Sahara, K.1
Kogleck, L.2
Yashiroda, H.3
Murata, S.4
-
18
-
-
84890859839
-
The unique functions of tissuespecific proteasomes
-
Kniepert A, Groettrup M (2014) The unique functions of tissuespecific proteasomes. Trends Biochem Sci 39:17–24. doi:10.1016/j.tibs.2013.10.004
-
(2014)
Trends Biochem Sci
, vol.39
, pp. 17-24
-
-
Kniepert, A.1
Groettrup, M.2
-
19
-
-
84922933771
-
Deciphering preferential interactions within supramolecular protein complexes: The proteasome case
-
Fabre B, Lambour T, Garrigues L et al (2015) Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Mol Syst Biol 11:771, doi: 10.15252/msb.20145497
-
(2015)
Mol Syst Biol
, vol.11
-
-
Fabre, B.1
Lambour, T.2
Garrigues, L.3
-
20
-
-
79954511326
-
Redox control of the ubiquitin-proteasome system: From molecular mechanisms to functional significance
-
Kriegenburg F, Poulsen EG, Koch A et al (2011) Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Antioxid Redox Signal 15:2265–99. doi: 10.1089/ars.2010.3590
-
(2011)
Antioxid Redox Signal
, vol.15
, pp. 2265-2299
-
-
Kriegenburg, F.1
Poulsen, E.G.2
Koch, A.3
-
21
-
-
77955596988
-
Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress
-
Seifert U, Bialy LP, Ebstein F et al (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142:613–24. doi:10.1016/j.cell.2010.07.036
-
(2010)
Cell
, vol.142
, pp. 613-624
-
-
Seifert, U.1
Bialy, L.P.2
Ebstein, F.3
-
22
-
-
84874771412
-
Immunoproteasomes are important for proteostasis in immune responses
-
Ebstein F, Voigt A, Lange N et al (2013) Immunoproteasomes are important for proteostasis in immune responses. Cell 152:935–7. doi:10.1016/j.cell.2013.02.018
-
(2013)
Cell
, vol.152
, pp. 935-937
-
-
Ebstein, F.1
Voigt, A.2
Lange, N.3
-
23
-
-
78649848069
-
The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes
-
Pickering AM, Koop AL, Teoh CY et al (2010) The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J 432:585–94. doi:10.1042/BJ20100878
-
(2010)
Biochem J
, vol.432
, pp. 585-594
-
-
Pickering, A.M.1
Koop, A.L.2
Teoh, C.Y.3
-
24
-
-
0027991677
-
MHC class I expression in mice lacking the proteasome subunit LMP-7
-
Fehling H, Swat W, Laplace C et al (1994) MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 265(80): 1234–1237. doi:10.1126/science.8066463
-
(1994)
Science
, vol.265
, Issue.80
, pp. 1234-1237
-
-
Fehling, H.1
Swat, W.2
Laplace, C.3
-
25
-
-
80053457072
-
Impairment of immunoproteasome function by β5i/LMP7 subunit deficiency results in severe enterovirus myocarditis
-
Opitz E, Koch A, Klingel K et al (2011) Impairment of immunoproteasome function by β5i/LMP7 subunit deficiency results in severe enterovirus myocarditis. PLoS Pathog 7:e1002233. doi:10.1371/journal.ppat.1002233
-
(2011)
Plos Pathog
, vol.7
-
-
Opitz, E.1
Koch, A.2
Klingel, K.3
-
26
-
-
33750385670
-
Immunoproteasomes are essential for clearance of Listeria monocytogenes in nonlymphoid tissues but not for induction of bacteria-specific CD8+ T cells
-
Strehl B, Joeris T, Rieger M et al (2006) Immunoproteasomes are essential for clearance of Listeria monocytogenes in nonlymphoid tissues but not for induction of bacteria-specific CD8+ T cells. J Immunol 177:6238–6244. doi:10.4049/jimmunol.177.9.6238
-
(2006)
J Immunol
, vol.177
, pp. 6238-6244
-
-
Strehl, B.1
Joeris, T.2
Rieger, M.3
-
27
-
-
33646138465
-
The involvement of immunoproteasomes in induction of MHC class I-restricted immunity targeting Toxoplasma SAG1
-
Ishii K, Hisaeda H, Duan X et al (2006) The involvement of immunoproteasomes in induction of MHC class I-restricted immunity targeting Toxoplasma SAG1. Microbes Infect 8:1045–53. doi: 10.1016/j.micinf.2005.10.023
-
(2006)
Microbes Infect
, vol.8
, pp. 1045-1053
-
-
Ishii, K.1
Hisaeda, H.2
Duan, X.3
-
28
-
-
77953101405
-
Immunoproteasome deficiency alters retinal proteasome’s response to stress
-
Hussong SA, Kapphahn RJ, Phillips SL et al (2010) Immunoproteasome deficiency alters retinal proteasome’s response to stress. J Neurochem 113:1481–90. doi:10.1111/j.1471-4159.2010.06688.x
-
(2010)
J Neurochem
, vol.113
, pp. 1481-1490
-
-
Hussong, S.A.1
Kapphahn, R.J.2
Phillips, S.L.3
-
29
-
-
40949159337
-
Critical contribution of immunoproteasomes in the induction of protective immunity against Trypanosoma cruzi in mice vaccinated with a plasmid encoding a CTL epitope fused to green fluorescence protein
-
Chou B, Hisaeda H, Shen J et al (2008) Critical contribution of immunoproteasomes in the induction of protective immunity against Trypanosoma cruzi in mice vaccinated with a plasmid encoding a CTL epitope fused to green fluorescence protein. Microbes Infect 10:241–50. doi:10.1016/j.micinf.2007.11.010
-
(2008)
Microbes Infect
, vol.10
, pp. 241-250
-
-
Chou, B.1
Hisaeda, H.2
Shen, J.3
-
30
-
-
80052679971
-
Proteasome immunosubunits protect against the development of CD8 T cellmediated autoimmune diseases
-
Zaiss DMW, Bekker CPJ, Gröne A et al (2011) Proteasome immunosubunits protect against the development of CD8 T cellmediated autoimmune diseases. J Immunol 187:2302–9. doi:10.4049/jimmunol.1101003
-
(2011)
J Immunol
, vol.187
, pp. 2302-2309
-
-
Zaiss, D.1
Bekker, C.2
Gröne, A.3
-
31
-
-
84885462934
-
CD8+ T-cell auto-reactivity is dependent on the expression of the immunoproteasome subunit LMP7 in exposed to lipopolysaccharide antigen presenting cells and epithelial target cells
-
Eleftheriadis T, Pissas G, Antoniadi G et al (2013) CD8+ T-cell auto-reactivity is dependent on the expression of the immunoproteasome subunit LMP7 in exposed to lipopolysaccharide antigen presenting cells and epithelial target cells. Autoimmunity 46:439–45. doi:10.3109/08916934.2013.801460
-
(2013)
Autoimmunity
, vol.46
, pp. 439-445
-
-
Eleftheriadis, T.1
Pissas, G.2
Antoniadi, G.3
-
32
-
-
33646471043
-
Immunoproteasome subunit LMP2 expression is deregulated in Sjogren’s syndrome but not in other autoimmune disorders
-
Krause S, Kuckelkorn U, Dörner T et al (2006) Immunoproteasome subunit LMP2 expression is deregulated in Sjogren’s syndrome but not in other autoimmune disorders. Ann Rheum Dis 65:1021–7. doi:10.1136/ard.2005.045930
-
(2006)
Ann Rheum Dis
, vol.65
, pp. 1021-1027
-
-
Krause, S.1
Kuckelkorn, U.2
Dörner, T.3
-
33
-
-
0033768698
-
Defective function of the proteasome in autoimmunity: Involvement of impaired NF-kappaB activation
-
Hayashi T, Faustman D (2000) Defective function of the proteasome in autoimmunity: involvement of impaired NF-kappaB activation. Diabetes Technol Ther 2:415–28
-
(2000)
Diabetes Technol Ther
, vol.2
, pp. 415-428
-
-
Hayashi, T.1
Faustman, D.2
-
34
-
-
80052565561
-
Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome
-
Arima K, Kinoshita A, Mishima H et al (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci U S A 108:14914–9. doi:10.1073/pnas.1106015108
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 14914-14919
-
-
Arima, K.1
Kinoshita, A.2
Mishima, H.3
-
35
-
-
78649775528
-
PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome
-
Agarwal AK, Xing C, DeMartino GN et al (2010) PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 87:866–72. doi:10.1016/j.ajhg.2010.10.031
-
(2010)
Am J Hum Genet
, vol.87
, pp. 866-872
-
-
Agarwal, A.K.1
Xing, C.2
Demartino, G.N.3
-
36
-
-
80053397654
-
A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans
-
Kitamura A, Maekawa Y, Uehara H et al (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121:4150–60. doi:10.1172/JCI58414DS1
-
(2011)
J Clin Invest
, vol.121
, pp. 4150-4160
-
-
Kitamura, A.1
Maekawa, Y.2
Uehara, H.3
-
37
-
-
84879074171
-
A case of proteasomeassociated auto-inflammatory syndrome with compound heterozygous mutations
-
McDermott A, Jesus AA, Liu Yet al (2013) A case of proteasomeassociated auto-inflammatory syndrome with compound heterozygous mutations. J Am Acad Dermatol 69:e29–e32
-
(2013)
J am Acad Dermatol
, vol.69
-
-
McDermott, A.1
Jesus, A.A.2
Al, L.Y.3
-
38
-
-
0036257139
-
An unknown autoinflammatory syndrome associated with short stature and dysmorphic features in a young boy
-
Mégarbané A, Sanders A, Chouery E et al (2002) An unknown autoinflammatory syndrome associated with short stature and dysmorphic features in a young boy. J Rheumatol 29:1084–7
-
(2002)
J Rheumatol
, vol.29
, pp. 1084-1087
-
-
Mégarbané, A.1
Sanders, A.2
Chouery, E.3
-
39
-
-
76249121423
-
Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome
-
Torrelo A, Patel S, Colmenero I et al (2010) Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. J Am Acad Dermatol 62:489–95. doi:10.1016/j.jaad.2009.04.046
-
(2010)
J am Acad Dermatol
, vol.62
, pp. 489-495
-
-
Torrelo, A.1
Patel, S.2
Colmenero, I.3
-
40
-
-
84921548263
-
Proteasomeassociated autoinflammatory syndromes: Advances in pathogeneses, clinical presentations, diagnosis, and management
-
McDermott A, Jacks J, Kessler M et al (2014) Proteasomeassociated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int J Dermatol. doi:10.1111/ijd.12695
-
(2014)
Int J Dermatol
-
-
McDermott, A.1
Jacks, J.2
Kessler, M.3
-
41
-
-
84900560940
-
CANDLE syndrome: A report of a novel mutation and review of the literature
-
Kluk J, Rustin M, Brogan PA et al (2013) CANDLE syndrome: a report of a novel mutation and review of the literature. Br J Dermatol. doi:10.1111/bjd.12600
-
(2013)
Br J Dermatol
-
-
Kluk, J.1
Rustin, M.2
Brogan, P.A.3
-
42
-
-
0023266155
-
An autopsy case of a syndrome with muscular atrophy, decreased subcutaneous fat, skin eruption and hyper gamma-globulinemia: Peculiar vascular changes and muscle fiber degeneration
-
Oyanagi K, Sasaki K, Ohama E et al (1987) An autopsy case of a syndrome with muscular atrophy, decreased subcutaneous fat, skin eruption and hyper gamma-globulinemia: peculiar vascular changes and muscle fiber degeneration. Acta Neuropathol 73:313–9
-
(1987)
Acta Neuropathol
, vol.73
, pp. 313-319
-
-
Oyanagi, K.1
Sasaki, K.2
Ohama, E.3
-
43
-
-
0042847104
-
The proteasome as a lipopolysaccharide-binding protein in macrophages: Differential effects of proteasome inhibition on lipopolysaccharide-induced signaling events
-
Qureshi N, Perera P-Y, Shen J et al (2003) The proteasome as a lipopolysaccharide-binding protein in macrophages: differential effects of proteasome inhibition on lipopolysaccharide-induced signaling events. J Immunol 171:1515–1525. doi:10.4049/jimmunol.171.3.1515
-
(2003)
J Immunol
, vol.171
, pp. 1515-1525
-
-
Qureshi, N.1
Perera, P.-Y.2
Shen, J.3
-
44
-
-
77951260924
-
The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors
-
Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11: 373–84. doi:10.1038/ni.1863
-
(2010)
Nat Immunol
, vol.11
, pp. 373-384
-
-
Kawai, T.1
Akira, S.2
-
45
-
-
78349268323
-
NOX/NADPH oxidase, the superoxidegenerating enzyme: Its transcriptional regulation and physiological roles
-
Katsuyama M (2010) NOX/NADPH oxidase, the superoxidegenerating enzyme: its transcriptional regulation and physiological roles. J Pharmacol Sci 114:134–46
-
(2010)
J Pharmacol Sci
, vol.114
, pp. 134-146
-
-
Katsuyama, M.1
-
46
-
-
82455192402
-
DRiPs solidify: Progress in understanding endogenous MHC class I antigen processing
-
Yewdell JW (2011) DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 32: 548–58. doi:10.1016/j.it.2011.08.001
-
(2011)
Trends Immunol
, vol.32
, pp. 548-558
-
-
Yewdell, J.W.1
-
47
-
-
84875629266
-
Oxidation matters: The ubiquitin proteasome system connects innate immune mechanisms with MHC class I antigen presentation
-
Warnatsch A, Bergann T, Krüger E (2013) Oxidation matters: the ubiquitin proteasome system connects innate immune mechanisms with MHC class I antigen presentation. Mol Immunol 55:106–9. doi:10.1016/j.molimm.2012.10.007
-
(2013)
Mol Immunol
, vol.55
, pp. 106-109
-
-
Warnatsch, A.1
Bergann, T.2
Krüger, E.3
-
48
-
-
33745824614
-
ALIS are stressinduced protein storage compartments for substrates of the proteasome and autophagy
-
Szeto J, Kaniuk NA, Canadien V et al (2014) ALIS are stressinduced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2:189–199. doi:10.4161/auto.2731
-
(2014)
Autophagy
, vol.2
, pp. 189-199
-
-
Szeto, J.1
Kaniuk, N.A.2
Canadien, V.3
-
49
-
-
84923195554
-
UPR, autophagy, and mitochondria crosstalk underlies the ER stress response
-
Senft D, Ronai ZA (2015) UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. doi:10.1016/j.tibs.2015.01.002
-
(2015)
Trends Biochem Sci
-
-
Senft, D.1
Ronai, Z.A.2
-
50
-
-
0034723235
-
Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
-
Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–6
-
(2000)
Science
, vol.287
, pp. 664-666
-
-
Urano, F.1
Wang, X.2
Bertolotti, A.3
-
51
-
-
84856857478
-
ER stress activates the NLRP3 inflammasome via an UPR-independent pathway
-
Menu P, Mayor A, Zhou R et al (2012) ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis 3:e261. doi:10.1038/cddis.2011.132
-
(2012)
Cell Death Dis
, vol.3
-
-
Menu, P.1
Mayor, A.2
Zhou, R.3
-
52
-
-
84864682160
-
IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress
-
Lerner AG, Upton J-P, Praveen PVK et al (2012) IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 16:250–64. doi:10.1016/j.cmet.2012.07.007
-
(2012)
Cell Metab
, vol.16
, pp. 250-264
-
-
Lerner, A.G.1
Upton, J.-P.2
Praveen, P.3
-
53
-
-
84862677492
-
Nakajo-Nishimura syndrome: An autoinflammatory disorder showing pernio-like rashes and progressive partial lipodystrophy
-
Kanazawa N (2012) Nakajo-Nishimura syndrome: an autoinflammatory disorder showing pernio-like rashes and progressive partial lipodystrophy. Allergol Int 61:197–206. doi:10.2332/allergolint.11-RAI-0416
-
(2012)
Allergol Int
, vol.61
, pp. 197-206
-
-
Kanazawa, N.1
-
54
-
-
84922880395
-
Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation
-
Zhang X, Bogunovic D, Payelle-Brogard B et al (2014) Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517:89–93. doi:10.1038/nature13801
-
(2014)
Nature
, vol.517
, pp. 89-93
-
-
Zhang, X.1
Bogunovic, D.2
Payelle-Brogard, B.3
-
55
-
-
0344492212
-
Interferoninducible gene expression signature in peripheral blood cells of patients with severe lupus
-
Baechler EC, Batliwalla FM, Karypis G et al (2003) Interferoninducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100:2610–5. doi:10.1073/pnas.0337679100
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 2610-2615
-
-
Baechler, E.C.1
Batliwalla, F.M.2
Karypis, G.3
-
56
-
-
84876844698
-
Aicardi-Goutières syndrome
-
Crow YJ (2013) Aicardi-Goutières syndrome. Handb Clin Neurol 113:1629–35. doi:10.1016/B978-0-444-59565-2.00031-9
-
(2013)
Handb Clin Neurol
, vol.113
, pp. 1629-1635
-
-
Crow, Y.J.1
-
57
-
-
79251551861
-
Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature
-
Briggs TA, Rice GI, Daly S et al (2011) Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 43:127–31. doi:10.1038/ng.748
-
(2011)
Nat Genet
, vol.43
, pp. 127-131
-
-
Briggs, T.A.1
Rice, G.I.2
Daly, S.3
-
58
-
-
84878314537
-
Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis
-
Qian M-X, Pang Y, Liu CH et al (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153:1012–24. doi:10.1016/j.cell.2013.04.032
-
(2013)
Cell
, vol.153
, pp. 1012-1024
-
-
Qian, M.-X.1
Pang, Y.2
Liu, C.H.3
-
59
-
-
84868238774
-
Structure of a proteasome Pba1-Pba2 complex: Implications for proteasome assembly, activation, and biological function
-
Stadtmueller BM, Kish-Trier E, Ferrell K et al (2012) Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function. J Biol Chem 287: 37371–82. doi:10.1074/jbc.M112.367003
-
(2012)
J Biol Chem
, vol.287
, pp. 37371-37382
-
-
Stadtmueller, B.M.1
Kish-Trier, E.2
Ferrell, K.3
-
60
-
-
36749025650
-
The proteasomematuration protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum
-
Fricke B, Heink S, Steffen J et al (2007) The proteasomematuration protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep 8:1170–5. doi:10.1038/sj.embor.7401091
-
(2007)
EMBO Rep
, vol.8
, pp. 1170-1175
-
-
Fricke, B.1
Heink, S.2
Steffen, J.3
-
61
-
-
27644554700
-
A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes
-
Hirano Y, Hendil KB, Yashiroda H et al (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437:1381–5. doi:10.1038/nature04106
-
(2005)
Nature
, vol.437
, pp. 1381-1385
-
-
Hirano, Y.1
Hendil, K.B.2
Yashiroda, H.3
-
62
-
-
84922539969
-
Dss1 is a 26S proteasome ubiquitin receptor
-
Paraskevopoulos K, Kriegenburg F, Tatham MH et al (2014) Dss1 is a 26S proteasome ubiquitin receptor. Mol Cell 56:453–61. doi: 10.1016/j.molcel.2014.09.008
-
(2014)
Mol Cell
, vol.56
, pp. 453-461
-
-
Paraskevopoulos, K.1
Kriegenburg, F.2
Tatham, M.H.3
-
63
-
-
79960658440
-
C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26S proteasome
-
Kim Y-C, DeMartino GN (2011) C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26S proteasome. J Biol Chem 286:26652–66. doi:10.1074/jbc.M111.246793
-
(2011)
J Biol Chem
, vol.286
, pp. 26652-26666
-
-
Kim, Y.-C.1
Demartino, G.N.2
-
64
-
-
84922220547
-
PA28αβ: The enigmatic magic ring of the proteasome?
-
Cascio P (2014) PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 4:566–84. doi:10.3390/biom4020566
-
(2014)
Biomolecules
, vol.4
, pp. 566-584
-
-
Cascio, P.1
-
65
-
-
79953035505
-
PA28 and the proteasome immunosubunits play a central and independent role in the production ofMHC class I-binding peptides in vivo
-
De Graaf N, van Helden MJG, Textoris-Taube K et al (2011) PA28 and the proteasome immunosubunits play a central and independent role in the production ofMHC class I-binding peptides in vivo. Eur J Immunol 41:926–35. doi:10.1002/eji.201041040
-
(2011)
Eur J Immunol
, vol.41
, pp. 926-935
-
-
De Graaf, N.1
Van Helden, M.2
Textoris-Taube, K.3
-
66
-
-
58149115206
-
REGgamma, a proteasome activator and beyond?
-
Mao I, Liu J, Li X, Luo H (2008) REGgamma, a proteasome activator and beyond? Cell Mol Life Sci 65:3971–80. doi:10.1007/s00018-008-8291-z
-
(2008)
Cell Mol Life Sci
, vol.65
, pp. 3971-3980
-
-
Mao, I.1
Liu, J.2
Li, X.3
Luo, H.4
-
67
-
-
77955503621
-
Ecm29 fulfils quality control functions in proteasome assembly
-
Lehmann A, Niewienda A, Jechow K et al (2010) Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell 38: 879–88. doi:10.1016/j.molcel.2010.06.016
-
(2010)
Mol Cell
, vol.38
, pp. 879-888
-
-
Lehmann, A.1
Niewienda, A.2
Jechow, K.3
-
68
-
-
11144225834
-
Characterization of mammalian Ecm29, a 26S proteasome-associated protein that localizes to the nucleus and membrane vesicles
-
Gorbea C, Goellner GM, Teter K et al (2004) Characterization of mammalian Ecm29, a 26S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 279: 54849–61. doi:10.1074/jbc.M410444200
-
(2004)
J Biol Chem
, vol.279
, pp. 54849-54861
-
-
Gorbea, C.1
Goellner, G.M.2
Teter, K.3
-
69
-
-
84878942836
-
Molecular architecture and assembly of the eukaryotic proteasome
-
Tomko RJ Jr, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem. doi: 10.1146/annurev-biochem-060410-150257
-
(2013)
Annu Rev Biochem
-
-
Tomko, R.J.1
Hochstrasser, M.2
|