메뉴 건너뛰기




Volumn 88, Issue , 2015, Pages 85-96

Application of entropies for automated diagnosis of epilepsy using EEG signals: A review

Author keywords

EEG; Entropy; Epilepsy; Fuzzy; HOS; Interictal

Indexed keywords

AUTOMATION; DIAGNOSIS; ELECTROENCEPHALOGRAPHY; ENTROPY; MEDICAL APPLICATIONS; NEUROLOGY; SIGNAL PROCESSING; WAVELET TRANSFORMS;

EID: 84941599202     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2015.08.004     Document Type: Review
Times cited : (420)

References (110)
  • 1
    • 69549116488 scopus 로고    scopus 로고
    • A fuzzy rule-based system for epileptic seizure detection in intracranial EEG
    • A. Aarabi, R. Fazel-Rezai, and Y. Aghakhani A fuzzy rule-based system for epileptic seizure detection in intracranial EEG Clin. Neurophysiol. 120 2009 1648 1657
    • (2009) Clin. Neurophysiol. , vol.120 , pp. 1648-1657
    • Aarabi, A.1    Fazel-Rezai, R.2    Aghakhani, Y.3
  • 2
    • 77951676472 scopus 로고    scopus 로고
    • Epileptic spike detection using continuous wavelet transforms and artificial neural networks
    • B. Abibullaev, H.D. Seo, and M.S. Kim Epileptic spike detection using continuous wavelet transforms and artificial neural networks Int. J. Wavelets Multiresolution Inf. Process. 8 1 2010 33
    • (2010) Int. J. Wavelets Multiresolution Inf. Process. , vol.8 , Issue.1 , pp. 33
    • Abibullaev, B.1    Seo, H.D.2    Kim, M.S.3
  • 3
    • 76449108621 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using nonlinear parameters
    • U.R. Acharya, K.C. Chua, T.C. Lim, Dorithy, and J.S. Suri Automatic identification of epileptic EEG signals using nonlinear parameters J. Mech. Med. Biol. 9 4 2009 539 553
    • (2009) J. Mech. Med. Biol. , vol.9 , Issue.4 , pp. 539-553
    • Acharya, U.R.1    Chua, K.C.2    Lim, T.C.3    Dorithy4    Suri, J.S.5
  • 4
    • 79960037752 scopus 로고    scopus 로고
    • Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
    • U.R. Acharya, S. VinithaSree, S. Chattopadhyay, W. Yu, and A.P.C. Alvin Application of recurrence quantification analysis for the automated identification of epileptic EEG signals Int. J. Neural Syst. 21 3 2011 199 211
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.3 , pp. 199-211
    • Acharya, U.R.1    VinithaSree, S.2    Chattopadhyay, S.3    Yu, W.4    Alvin, A.P.C.5
  • 6
    • 84859351360 scopus 로고    scopus 로고
    • Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals
    • U.R. Acharya, S. VinithaSree, A.P.C. Alvin, and J.S. Suri Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals Int. J. Neural Syst. 22 2 2012 1250002-1 1250002-14
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.2 , pp. 12500021-125000214
    • Acharya, U.R.1    VinithaSree, S.2    Alvin, A.P.C.3    Suri, J.S.4
  • 9
    • 84896855032 scopus 로고    scopus 로고
    • Detection of epileptic seizure event and onset using EEG
    • N. Ahammad, T. Fathima, and P. Jospeh Detection of epileptic seizure event and onset using EEG BioMed Res. Int. 2014 7 450573
    • (2014) BioMed Res. Int. , pp. 7
    • Ahammad, N.1    Fathima, T.2    Jospeh, P.3
  • 10
    • 84905642627 scopus 로고    scopus 로고
    • EEG signal classification for epilepsy seizure detection using improved approximate entropy
    • S. Akareddy, and P.K. Kulkarni EEG signal classification for epilepsy seizure detection using improved approximate entropy Int. J. Pub. Health Sci. (IJPHS) 2 1 2013 23 32
    • (2013) Int. J. Pub. Health Sci. (IJPHS) , vol.2 , Issue.1 , pp. 23-32
    • Akareddy, S.1    Kulkarni, P.K.2
  • 11
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • R.G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, and C.E. Elger Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state Phys. Rev. E 64 2001 061907
    • (2001) Phys. Rev. e , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Rieke, C.3    Mormann, F.4    David, P.5    Elger, C.E.6
  • 13
    • 4243997063 scopus 로고    scopus 로고
    • Permutation entropy: A natural complexity measure for time series
    • C. Bandt, and B. Pompe Permutation entropy: a natural complexity measure for time series Rev. Lett. 88 2002 174102
    • (2002) Rev. Lett. , vol.88 , pp. 174102
    • Bandt, C.1    Pompe, B.2
  • 14
    • 67349192949 scopus 로고    scopus 로고
    • The descriptive epidemiology of epilepsy - A review
    • P.N. Banerjee, D. Filippi, and H.W. Allen The descriptive epidemiology of epilepsy - a review Epilepsy Res. 85 1 2009 31 45
    • (2009) Epilepsy Res. , vol.85 , Issue.1 , pp. 31-45
    • Banerjee, P.N.1    Filippi, D.2    Allen, H.W.3
  • 15
    • 0037224478 scopus 로고    scopus 로고
    • Time-dependent entropy estimation of EEG rhythm changes following brain ischemia
    • A. Bezerianos, S. Tong, and N. Thakor Time-dependent entropy estimation of EEG rhythm changes following brain ischemia Ann. Biomed. Eng. 31 2 2003 221 232
    • (2003) Ann. Biomed. Eng. , vol.31 , Issue.2 , pp. 221-232
    • Bezerianos, A.1    Tong, S.2    Thakor, N.3
  • 17
    • 44449121467 scopus 로고    scopus 로고
    • Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study
    • A.A. Bruzzo, B. Gesierich, M. Santi, C.A. Tassinari, N. Birbaumer, and G. Rubboli Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study Neurol. Sci. 29 1 2008 3 9
    • (2008) Neurol. Sci. , vol.29 , Issue.1 , pp. 3-9
    • Bruzzo, A.A.1    Gesierich, B.2    Santi, M.3    Tassinari, C.A.4    Birbaumer, N.5    Rubboli, G.6
  • 18
    • 84957375876 scopus 로고    scopus 로고
    • Smooth entropy and Renyi entropy
    • Springer Berlin Heidelberg
    • C. Cachin Smooth entropy and Renyi entropy Advances in Cryptology-EUROCRYPT '97 vol. 1233 2001 Springer Berlin Heidelberg 193 208
    • (2001) Advances in Cryptology-EUROCRYPT '97 , vol.1233 , pp. 193-208
    • Cachin, C.1
  • 19
    • 37649028653 scopus 로고    scopus 로고
    • Detecting dynamical changes in time series using the permutation entropy
    • Y. Cao, W. Tung, J.B. Gao, V.A. Protopopescu, and L.M. Hively Detecting dynamical changes in time series using the permutation entropy Phys. Rev. E 70 2004 046217
    • (2004) Phys. Rev. e , vol.70 , pp. 046217
    • Cao, Y.1    Tung, W.2    Gao, J.B.3    Protopopescu, V.A.4    Hively, L.M.5
  • 21
    • 56349116249 scopus 로고    scopus 로고
    • Automated seizure onset detection for accurate onset time determination in intracranial EEG
    • A.M. Chan, F.T. Sun, E.H. Boto, and B.M. Wingeier Automated seizure onset detection for accurate onset time determination in intracranial EEG Clin. Neurophysiol. 119 2008 2687 2696
    • (2008) Clin. Neurophysiol. , vol.119 , pp. 2687-2696
    • Chan, A.M.1    Sun, F.T.2    Boto, E.H.3    Wingeier, B.M.4
  • 22
    • 84941602511 scopus 로고    scopus 로고
    • CHB-MIT database
    • CHB-MIT database. < http://physionet.org/cgi-bin/atm/ATM >.
  • 23
    • 39749182703 scopus 로고    scopus 로고
    • Cardiac state diagnosis using higher order spectra of heart rate variability
    • K.C. Chua, V. Chandran, U.R. Acharya, and C.M. Lim Cardiac state diagnosis using higher order spectra of heart rate variability J. Med. Eng. Technol. 3232 2 2008 145 155
    • (2008) J. Med. Eng. Technol. , vol.3232 , Issue.2 , pp. 145-155
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 24
    • 67449161052 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using higher order spectra
    • K.C. Chua, V. Chandran, U.R. Acharya, and C.M. Lim Automatic identification of epileptic EEG signals using higher order spectra J. Eng. Med. 223 4 2009 485 495
    • (2009) J. Eng. Med. , vol.223 , Issue.4 , pp. 485-495
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 25
    • 84856227784 scopus 로고    scopus 로고
    • Application of higher order spectra to identify epileptic EEG
    • K.C. Chua, V. Chandran, U.R. Acharya, and C.M. Lim Application of higher order spectra to identify epileptic EEG J. Med. Syst. 35 6 2011 1563 1571
    • (2011) J. Med. Syst. , vol.35 , Issue.6 , pp. 1563-1571
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 28
    • 84875803856 scopus 로고    scopus 로고
    • date accessed 04.27.15
    • K.G. Derpanis, The Bhattacharyya Measure. < http://www.cse.yorku.ca/~kosta/CompVis-Notes/bhattacharyya.pdf >, 2008 (date accessed 04.27.15).
    • (2008) The Bhattacharyya Measure
    • Derpanis, K.G.1
  • 29
    • 84941602512 scopus 로고    scopus 로고
    • EoM- Encyclopaedia of Mathematics, Bhattacharyya distance. (date accessed 04.27.15)
    • EoM- Encyclopaedia of Mathematics, Bhattacharyya distance. < http://www.encyclopediaofmath.org/index.php/Bhattacharyya-distance > (date accessed 04.27.15).
  • 30
    • 84874513488 scopus 로고    scopus 로고
    • Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information
    • B. Fadlallah, B. Chen, A. Keil, and J. Principe Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87 2 2013 022911
    • (2013) Phys. Rev. e Stat. Nonlin. Soft Matter Phys. , vol.87 , Issue.2 , pp. 022911
    • Fadlallah, B.1    Chen, B.2    Keil, A.3    Principe, J.4
  • 31
    • 84933533614 scopus 로고    scopus 로고
    • On the connections of generalized entropies with Shannon and Kolmogorov-Sinai entropies
    • F. Falniowski On the connections of generalized entropies with Shannon and Kolmogorov-Sinai entropies Entropy 16 2014 3732 3753
    • (2014) Entropy , vol.16 , pp. 3732-3753
    • Falniowski, F.1
  • 32
    • 0040335709 scopus 로고
    • Information dimension and the probabilistic structure of chaos
    • J.D. Farmer Information dimension and the probabilistic structure of chaos Z. Naturforsch 37A 1982 1304 1325
    • (1982) Z. Naturforsch , vol.37 A , pp. 1304-1325
    • Farmer, J.D.1
  • 33
    • 0003037199 scopus 로고    scopus 로고
    • Measures of statistical complexity: Why?
    • D.P. Feldman, and J.P. Crutchfield Measures of statistical complexity: Why? Phys. Lett. A 238 1998 244 252
    • (1998) Phys. Lett. A , vol.238 , pp. 244-252
    • Feldman, D.P.1    Crutchfield, J.P.2
  • 34
    • 0342398227 scopus 로고    scopus 로고
    • Discrimination of sleep stages: A comparison between spectral and nonlinear EEG measures
    • J. Fell, J. Roschke, K. Mann, and C. Schaffner Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures Electroencephalogr. Clin. Neurophysiol. 98 5 1996 401 410
    • (1996) Electroencephalogr. Clin. Neurophysiol. , vol.98 , Issue.5 , pp. 401-410
    • Fell, J.1    Roschke, J.2    Mann, K.3    Schaffner, C.4
  • 35
    • 0031858128 scopus 로고    scopus 로고
    • Seizure detection using a self-organizing neural network: Validation and comparison with other detection strategies
    • A.J. Gabor Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies Electroencephalogr. Clin. Neurophysiol. 107 1 1998 27 32
    • (1998) Electroencephalogr. Clin. Neurophysiol. , vol.107 , Issue.1 , pp. 27-32
    • Gabor, A.J.1
  • 36
    • 82255179061 scopus 로고    scopus 로고
    • Discrete harmony search based expert model for epileptic seizure detection in electroencephalography
    • T. Gandhi, B.K. Panigrahi, M. Bhatia, and S. Anand Discrete harmony search based expert model for epileptic seizure detection in electroencephalography Expert Syst. Appl. 39 4 2012 4055 4062
    • (2012) Expert Syst. Appl. , vol.39 , Issue.4 , pp. 4055-4062
    • Gandhi, T.1    Panigrahi, B.K.2    Bhatia, M.3    Anand, S.4
  • 38
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • I. Guler, and E.D. Ulbeyi Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients J. Neurosci. Methods 148 2005 113 121
    • (2005) J. Neurosci. Methods , vol.148 , pp. 113-121
    • Guler, I.1    Ulbeyi, E.D.2
  • 39
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • L. Guo, D. Rivero, and A. Pazos Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks J. Neurosci. Methods 193 1 2010 156 163
    • (2010) J. Neurosci. Methods , vol.193 , Issue.1 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 40
    • 77249083227 scopus 로고    scopus 로고
    • FiGS: A filter-based gene selection workbench for microarray data
    • (date accessed 04.10.15)
    • T. Hwang, C.H. Sun, T. Yun, and G.S. Yi FiGS: a filter-based gene selection workbench for microarray data BMC Bioinform. 11 2010 < http://www.biomedcentral.com/1471-2105/11/50 >, (date accessed 04.10.15)
    • (2010) BMC Bioinform. , vol.11
    • Hwang, T.1    Sun, C.H.2    Yun, T.3    Yi, G.S.4
  • 41
    • 33846256580 scopus 로고    scopus 로고
    • Adjusting spatial-entropy measures for scale and resolution effects
    • E.J. Hekkila, and L. Hu Adjusting spatial-entropy measures for scale and resolution effects Environ. Plann. B: Plann. Des. 33 2006 845 861
    • (2006) Environ. Plann. B: Plann. Des. , vol.33 , pp. 845-861
    • Hekkila, E.J.1    Hu, L.2
  • 50
    • 0022982937 scopus 로고
    • Fuzzy entropy and conditioning
    • B. Kosko Fuzzy entropy and conditioning Inf. Sci. 40 1986 165 174
    • (1986) Inf. Sci. , vol.40 , pp. 165-174
    • Kosko, B.1
  • 51
    • 85028093897 scopus 로고    scopus 로고
    • Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network
    • Y. Kumar, M.L. Dewal, and R.S. Anand Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network SIViP 8 7 2012 1323 1334
    • (2012) SIViP , vol.8 , Issue.7 , pp. 1323-1334
    • Kumar, Y.1    Dewal, M.L.2    Anand, R.S.3
  • 52
    • 84894582585 scopus 로고    scopus 로고
    • Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine
    • Y. Kumar, M.L. Dewal, and R.S. Anand Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine Neurocomputing 133 2014 271 279
    • (2014) Neurocomputing , vol.133 , pp. 271-279
    • Kumar, Y.1    Dewal, M.L.2    Anand, R.S.3
  • 53
    • 71349088028 scopus 로고    scopus 로고
    • Entropies based detection of epileptic seizures with artificial neural network classifiers
    • S.P. Kumar, N. Sriraam, P.G. Benakop, and B.C. Jinaga Entropies based detection of epileptic seizures with artificial neural network classifiers Expert Syst. Appl. 37 4 2010 3284 3291
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 3284-3291
    • Kumar, S.P.1    Sriraam, N.2    Benakop, P.G.3    Jinaga, B.C.4
  • 55
    • 35348925885 scopus 로고    scopus 로고
    • Predictability analysis of absence seizures with permutation entropy
    • X. Li, G. Ouyang, and D.A. Richards Predictability analysis of absence seizures with permutation entropy Epilepsy Res. 77 2007 70
    • (2007) Epilepsy Res. , vol.77 , pp. 70
    • Li, X.1    Ouyang, G.2    Richards, D.A.3
  • 56
    • 84985896457 scopus 로고    scopus 로고
    • Using permutation entropy to measure the changes in EEG signals during absence seizures
    • J. Li, J. Yan, X. Liu, and G. Ouyang Using permutation entropy to measure the changes in EEG signals during absence seizures Entropy 16 2014 3049 3061
    • (2014) Entropy , vol.16 , pp. 3049-3061
    • Li, J.1    Yan, J.2    Liu, X.3    Ouyang, G.4
  • 57
    • 77954612893 scopus 로고    scopus 로고
    • Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
    • S.F. Liang, H.C. Wang, and W.L. Chang Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection EURASIP J. Adv. Signal Process. 2010 2010 853434
    • (2010) EURASIP J. Adv. Signal Process. , vol.2010 , pp. 853434
    • Liang, S.F.1    Wang, H.C.2    Chang, W.L.3
  • 59
    • 84870547200 scopus 로고    scopus 로고
    • Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals
    • R.J. Martis, U.R. Acharya, J.H. Tan, A. Petznick, R. Yanti, K.C. Chua, E.Y.K. Ng, and L. Tong Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals Int. J. Neural Syst. 22 6 2012 1250027-1 1250027-16
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.6 , pp. 12500271-125002716
    • Martis, R.J.1    Acharya, U.R.2    Tan, J.H.3    Petznick, A.4    Yanti, R.5    Chua, K.C.6    Ng, E.Y.K.7    Tong, L.8
  • 60
    • 84882278346 scopus 로고    scopus 로고
    • Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction
    • R.J. Martis, U.R. Acharya, J.H. Tan, A. Petznick, L. Tong, C.K. Chua, and E.Y. Ng Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction Int. J. Neural Syst. 23 2013 1350023
    • (2013) Int. J. Neural Syst. , vol.23 , pp. 1350023
    • Martis, R.J.1    Acharya, U.R.2    Tan, J.H.3    Petznick, A.4    Tong, L.5    Chua, C.K.6    Ng, E.Y.7
  • 61
    • 33646980132 scopus 로고    scopus 로고
    • Recurrence plot based measures of complexity and its application to heart rate variability data
    • N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths Recurrence plot based measures of complexity and its application to heart rate variability data Phys. Rev. E 66 2 2002 026702
    • (2002) Phys. Rev. e , vol.66 , Issue.2 , pp. 026702
    • Marwan, N.1    Wessel, N.2    Meyerfeldt, U.3    Schirdewan, A.4    Kurths, J.5
  • 63
    • 44649182792 scopus 로고    scopus 로고
    • Detecting epileptic seizures in long-term human EEG: A new approach to automatic online and real-time detection and classification of polymorphic seizure patterns
    • R. Meier, H. Dittrich, A. Schulze-Bonhage, and A. Aertsen Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patterns J. Clin. Neurophysiol. 25 2008 119 131
    • (2008) J. Clin. Neurophysiol. , vol.25 , pp. 119-131
    • Meier, R.1    Dittrich, H.2    Schulze-Bonhage, A.3    Aertsen, A.4
  • 65
    • 0000203008 scopus 로고
    • + action on a compact space
    • + action on a compact space Asterisque 40 1976 147 157
    • (1976) Asterisque , vol.40 , pp. 147-157
    • Misiurewicz, M.1
  • 67
    • 33846638294 scopus 로고    scopus 로고
    • Seizure prediction: The long and winding road
    • F. Mormann, R.G. Andrzejak, C.E. Elger, and K. Lehnertz Seizure prediction: the long and winding road Brain 130 Pt 2 2007 314 333
    • (2007) Brain , vol.130 , pp. 314-333
    • Mormann, F.1    Andrzejak, R.G.2    Elger, C.E.3    Lehnertz, K.4
  • 68
    • 81855221797 scopus 로고    scopus 로고
    • Detection of epileptic electroencephalogram based on permutation entropy and support vector machine
    • N. Nicolaou, and J. Georgiou Detection of epileptic electroencephalogram based on permutation entropy and support vector machine Expert Syst. Appl. 39 2012 202 209
    • (2012) Expert Syst. Appl. , vol.39 , pp. 202-209
    • Nicolaou, N.1    Georgiou, J.2
  • 70
    • 0023383894 scopus 로고
    • Bispectrum estimation - A digital signal processing framework
    • C.L. Nikias, and M.R. Raghuveer Bispectrum estimation - a digital signal processing framework Proc. IEEE 75 1987 869 891
    • (1987) Proc. IEEE , vol.75 , pp. 869-891
    • Nikias, C.L.1    Raghuveer, M.R.2
  • 71
    • 85032751474 scopus 로고
    • Signal Processing with higher order spectra
    • C.L. Nikias, and J.M. Mendel Signal Processing with higher order spectra IEEE Signal Process. Mag. 10 3 1993 10 37
    • (1993) IEEE Signal Process. Mag. , vol.10 , Issue.3 , pp. 10-37
    • Nikias, C.L.1    Mendel, J.M.2
  • 73
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • H. Ocak Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy Expert Syst. Appl. 36 2 2009 2027 2036
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1
  • 75
    • 0026015905 scopus 로고
    • Appoximate entropy as a measure of system complexity
    • S.M. Pincus Appoximate entropy as a measure of system complexity Proc. Natl. Acad. Sci. 88 1991 2297 2301
    • (1991) Proc. Natl. Acad. Sci. , vol.88 , pp. 2297-2301
    • Pincus, S.M.1
  • 76
    • 0001263361 scopus 로고
    • Approximate entropy (ApEn) as a complexity measure
    • S.M. Pincus Approximate entropy (ApEn) as a complexity measure Chaos 5 1 1995 110 117
    • (1995) Chaos , vol.5 , Issue.1 , pp. 110-117
    • Pincus, S.M.1
  • 77
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • K. Polat, and S. Gunes Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform Appl. Math. Comput. 187 2 2007 1017 1026
    • (2007) Appl. Math. Comput. , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Gunes, S.2
  • 78
    • 0034352130 scopus 로고    scopus 로고
    • Kulback-Leibler and renormalized entropies: Applications to electroencephalograms of epilepsy patients
    • R.Q. Quiroga, J. Arnhold, K. Lehnertz, and P. Grassberger Kulback-Leibler and renormalized entropies: applications to electroencephalograms of epilepsy patients Phys. Rev. E 42 6 2000 8380 8386
    • (2000) Phys. Rev. e , vol.42 , Issue.6 , pp. 8380-8386
    • Quiroga, R.Q.1    Arnhold, J.2    Lehnertz, K.3    Grassberger, P.4
  • 80
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • J.S. Richman, and J.R. Moorman Physiological time-series analysis using approximate entropy and sample entropy Am. J. Physiol. - Heart Circ. Physiol. 278 2000 2039 2049
    • (2000) Am. J. Physiol. - Heart Circ. Physiol. , vol.278 , pp. 2039-2049
    • Richman, J.S.1    Moorman, J.R.2
  • 81
    • 84879730277 scopus 로고    scopus 로고
    • Practical considerations of permutation entropy
    • M. Riedl, A. Müller, and N. Wessel Practical considerations of permutation entropy Eur. Phys. J. Spec. Top. 222 2013 249 262
    • (2013) Eur. Phys. J. Spec. Top. , vol.222 , pp. 249-262
    • Riedl, M.1    Müller, A.2    Wessel, N.3
  • 84
    • 84941602513 scopus 로고    scopus 로고
    • ROC - The Area Under an ROC curve. (date accessed 04.27.15)
    • ROC - The Area Under an ROC curve. < http://gim.unmc.edu/dxtests/roc3.htm > (date accessed 04.27.15).
  • 85
    • 11344256331 scopus 로고    scopus 로고
    • Complex systems and the technology of variability analysis
    • A.J.E. Seely, and P.T. Macklem Complex systems and the technology of variability analysis Crit Care 8 6 2004 R367 R384
    • (2004) Crit Care , vol.8 , Issue.6 , pp. R367-R384
    • Seely, A.J.E.1    Macklem, P.T.2
  • 86
    • 84940644968 scopus 로고
    • A mathematical theory of communication
    • C.E. Shannon A mathematical theory of communication Bell Syst. Tech. J. 27 3 1948 379 423
    • (1948) Bell Syst. Tech. J. , vol.27 , Issue.3 , pp. 379-423
    • Shannon, C.E.1
  • 87
    • 84923365662 scopus 로고    scopus 로고
    • Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals
    • R. Sharma, R.B. Pachori, and U.R. Acharya Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals Entropy 17 2015 669 691
    • (2015) Entropy , vol.17 , pp. 669-691
    • Sharma, R.1    Pachori, R.B.2    Acharya, U.R.3
  • 89
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: Sample entropy based feature extraction and extreme learning machine
    • Y. Song, and P. Lio A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine J. Biomed. Sci. Eng. 3 2010 556 567
    • (2010) J. Biomed. Sci. Eng. , vol.3 , pp. 556-567
    • Song, Y.1    Lio, P.2
  • 90
    • 84865313417 scopus 로고    scopus 로고
    • Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
    • Y. Song, J. Crowcroft, and J. Zhang Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine J. Neurosci. Methods 210 2 2012 132 146
    • (2012) J. Neurosci. Methods , vol.210 , Issue.2 , pp. 132-146
    • Song, Y.1    Crowcroft, J.2    Zhang, J.3
  • 92
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic EEG detection using artificial neural networks
    • V. Srinivasan, C. Eswaran, and N. Sriraam Approximate entropy-based epileptic EEG detection using artificial neural networks IEEE Trans. Inform. Technol. Biomed. 11 3 2007 288 295
    • (2007) IEEE Trans. Inform. Technol. Biomed. , vol.11 , Issue.3 , pp. 288-295
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 93
    • 33751396389 scopus 로고    scopus 로고
    • Signal classification using wavelet feature extraction and a mixture of expert model
    • A. Subasi Signal classification using wavelet feature extraction and a mixture of expert model Expert Syst. Appl. 32 4 2007 1084 1093
    • (2007) Expert Syst. Appl. , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 94
    • 67649977471 scopus 로고    scopus 로고
    • Beyond shannon: Characterizing internet traffic with generalized entropy metrics
    • S.B. Moon, LNCS Springer-Verlag Berlin Heidelberg
    • B. Tellenbach, M. Burkhart, D. Sornette, and T. Maillart Beyond shannon: characterizing internet traffic with generalized entropy metrics S.B. Moon, PAM LNCS vol. 5448 2009 Springer-Verlag Berlin Heidelberg 239 248
    • (2009) PAM , vol.5448 , pp. 239-248
    • Tellenbach, B.1    Burkhart, M.2    Sornette, D.3    Maillart, T.4
  • 95
    • 4444277301 scopus 로고    scopus 로고
    • Advances in quantitative electroencephalogram analysis methods
    • N.V. Thakor, and S. Tong Advances in quantitative electroencephalogram analysis methods Ann. Rev. 6 2004 453 495
    • (2004) Ann. Rev. , vol.6 , pp. 453-495
    • Thakor, N.V.1    Tong, S.2
  • 96
    • 0041662020 scopus 로고    scopus 로고
    • Parameterized entropy analysis of EEG following hypoxic-ischemic brain injury
    • S. Tong, A. Bezerianos, A. Malhotra, Y. Zhu, and N. Thakor Parameterized entropy analysis of EEG following hypoxic-ischemic brain injury Phys. Lett. A 314 5-6 2003 354 361
    • (2003) Phys. Lett. A , vol.314 , Issue.5-6 , pp. 354-361
    • Tong, S.1    Bezerianos, A.2    Malhotra, A.3    Zhu, Y.4    Thakor, N.5
  • 97
    • 77955359832 scopus 로고    scopus 로고
    • Quantitative EEG analysis methods and applications
    • Artech House Boston London
    • S. Tong, N.V. Thakor, Quantitative EEG analysis methods and applications, Engineering in medicine and biology, Artech House Boston London, 2009.
    • (2009) Engineering in Medicine and Biology
    • Tong, S.1    Thakor, N.V.2
  • 98
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • A.T. Tzallas, M.G. Tsipouras, and D.I. Fotiadis Automatic seizure detection based on time-frequency analysis and artificial neural networks Comput. Intell. Neurosci. 2007 2007 80510
    • (2007) Comput. Intell. Neurosci. , vol.2007 , pp. 80510
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 100
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • E.D. Ubeyli Combined neural network model employing wavelet coefficients for EEG signals classification Digit. Signal Process. 19 2 2009 297 308
    • (2009) Digit. Signal Process. , vol.19 , Issue.2 , pp. 297-308
    • Ubeyli, E.D.1
  • 102
    • 79959978998 scopus 로고    scopus 로고
    • Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
    • D. Wang, D. Miao, and C. Xie Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection Expert Syst. Appl. 38 2011 14314 14320
    • (2011) Expert Syst. Appl. , vol.38 , pp. 14314-14320
    • Wang, D.1    Miao, D.2    Xie, C.3
  • 104
    • 84941602514 scopus 로고    scopus 로고
    • WHO, World Health Organization, Epilepsy, 2012
    • WHO, World Health Organization, Epilepsy, 2012, URL: http://www.who.int/mediacentre/factsheets/fs999/en/.
  • 106
    • 80052836687 scopus 로고    scopus 로고
    • Epileptic EEG classification based on extreme learning machine and nonlinear features
    • Q. Yuan, W. Zhou, S. Li, and D. Cai Epileptic EEG classification based on extreme learning machine and nonlinear features Epilepsy Res. 96 2011 29 38
    • (2011) Epilepsy Res. , vol.96 , pp. 29-38
    • Yuan, Q.1    Zhou, W.2    Li, S.3    Cai, D.4
  • 107
    • 84903940391 scopus 로고    scopus 로고
    • Assessing the clinical utility of cancer genomic and proteomic data across tumor types
    • Y. Yuan, E.M. van Allen, L. Omberg, N. Wagle, A. Amin-Mansour, and et al. Assessing the clinical utility of cancer genomic and proteomic data across tumor types Nat. Biotechnol. 32 2014 644 652
    • (2014) Nat. Biotechnol. , vol.32 , pp. 644-652
    • Yuan, Y.1    Van Allen, E.M.2    Omberg, L.3    Wagle, N.4    Amin-Mansour, A.5
  • 108
    • 84867479144 scopus 로고    scopus 로고
    • Permutation entropy and its main biomedical and econophysics application: A review
    • M. Zanin, L. Zunino, O.A. Rosso, and D. Papo Permutation entropy and its main biomedical and econophysics application: a review Entropy 14 2012 1553 1577
    • (2012) Entropy , vol.14 , pp. 1553-1577
    • Zanin, M.1    Zunino, L.2    Rosso, O.A.3    Papo, D.4
  • 109
    • 0000688735 scopus 로고
    • Embeddings and delays as derived from quantification of recurrence plots
    • J.P. Zbilut, and C.L. Webber Jr. Embeddings and delays as derived from quantification of recurrence plots Phys. Lett. A 171 3-4 1992 199 203
    • (1992) Phys. Lett. A , vol.171 , Issue.3-4 , pp. 199-203
    • Zbilut, J.P.1    Webber, C.L.2
  • 110
    • 84889847646 scopus 로고    scopus 로고
    • Approximate entropy and support vector machines for electroencephalogram signal classification
    • Z. Zhang, Y. Zhou, Z. Chen, S. Du, and R. Huang Approximate entropy and support vector machines for electroencephalogram signal classification Neural Regen. Res. 8 20 2013 1844 1852
    • (2013) Neural Regen. Res. , vol.8 , Issue.20 , pp. 1844-1852
    • Zhang, Z.1    Zhou, Y.2    Chen, Z.3    Du, S.4    Huang, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.