메뉴 건너뛰기




Volumn 96, Issue 1-2, 2011, Pages 29-38

Epileptic EEG classification based on extreme learning machine and nonlinear features

Author keywords

Approximate entropy (ApEn); Detrended fluctuation analysis (DFA); Epileptic EEG; Extreme learning machine (ELM); Hurst exponent; Support vector machine (SVM)

Indexed keywords

ACCURACY; ALGORITHM; ANALYTICAL PARAMETERS; ARTICLE; ARTIFICIAL NEURAL NETWORK; BACK PROPAGATION; CONTROLLED STUDY; DETRENDED FLUCTUATION ANALYSIS; DISEASE CLASSIFICATION; ELECTROENCEPHALOGRAM; ENTROPY; EPILEPSY; EXTREME LEARNING MACHINE; HURST EXPONENT; MACHINE LEARNING; NONLINEAR SYSTEM; PRIORITY JOURNAL; SATISFACTION; SCALING EXPONENT; SENSITIVITY AND SPECIFICITY; SIGNAL PROCESSING; SINGLE HIDDEN LAYER FEEDFORWARD NEURAL NETWORK; SUPPORT VECTOR MACHINE;

EID: 80052836687     PISSN: 09201211     EISSN: 18726844     Source Type: Journal    
DOI: 10.1016/j.eplepsyres.2011.04.013     Document Type: Article
Times cited : (273)

References (35)
  • 2
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • 061907-1-061907-8
    • Andrzejak R., Lehnertz K., Mormann F., Rieke C., David P., Elger C. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 2001, 64. 061907-1-061907-8.
    • (2001) Phys. Rev. E , vol.64
    • Andrzejak, R.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.6
  • 3
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44:525-536.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 4
    • 0029452981 scopus 로고
    • Self-adaptive learning rates in backpropagation algorithm improve its function approximation performance
    • Bhattacharya U., Parui S.K. Self-adaptive learning rates in backpropagation algorithm improve its function approximation performance. Conf. Proc. IEEE Neural Netw. 1995, 2784-2788.
    • (1995) Conf. Proc. IEEE Neural Netw. , pp. 2784-2788
    • Bhattacharya, U.1    Parui, S.K.2
  • 7
    • 71349088496 scopus 로고    scopus 로고
    • Expert model for detection of epileptic activity in EEG signature
    • Gandhi T., Panigrahi B.K., Bhatia M., Anand S. Expert model for detection of epileptic activity in EEG signature. Expert Syst. Appl. 2010, 37:3513-3520.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3513-3520
    • Gandhi, T.1    Panigrahi, B.K.2    Bhatia, M.3    Anand, S.4
  • 8
    • 0020382517 scopus 로고
    • Automatic recognition of epileptic seizures in the EEG
    • Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr. Clin. Neurophysiol. 1982, 54:530-540.
    • (1982) Electroencephalogr. Clin. Neurophysiol. , vol.54 , pp. 530-540
    • Gotman, J.1
  • 9
    • 0025049825 scopus 로고
    • Automatic seizure detection: improvements and evaluation
    • Gotman J. Automatic seizure detection: improvements and evaluation. Electroencephalogr. Clin. Neurophysiol. 1990, 76:317-324.
    • (1990) Electroencephalogr. Clin. Neurophysiol. , vol.76 , pp. 317-324
    • Gotman, J.1
  • 10
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: a new learning scheme of feedforward neural networks. Conf. Proc. IEEE Neural Netw. 2004, 985-990.
    • (2004) Conf. Proc. IEEE Neural Netw. , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 11
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 16
    • 0036136309 scopus 로고    scopus 로고
    • Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data
    • Lee J.M., Kim D.J., Kim I.Y., Park K.S., Kim S.I. Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data. Comput. Biol. Med. 2002, 32:37-47.
    • (2002) Comput. Biol. Med. , vol.32 , pp. 37-47
    • Lee, J.M.1    Kim, D.J.2    Kim, I.Y.3    Park, K.S.4    Kim, S.I.5
  • 17
    • 35048874167 scopus 로고    scopus 로고
    • Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls
    • Lee J.S., Yang B.H., Lee J.H., Choi J.H., Choi I.G., Kim S.B. Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls. Clin. Neurophysiol. 2007, 118:2489-2496.
    • (2007) Clin. Neurophysiol. , vol.118 , pp. 2489-2496
    • Lee, J.S.1    Yang, B.H.2    Lee, J.H.3    Choi, J.H.4    Choi, I.G.5    Kim, S.B.6
  • 19
    • 33847400002 scopus 로고    scopus 로고
    • Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis
    • Leistedt S., Dumont M., Lanquart J.P., Jurysta F., Linkowski P. Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis. Clin. Neurophysiol. 2007, 118:940-950.
    • (2007) Clin. Neurophysiol. , vol.118 , pp. 940-950
    • Leistedt, S.1    Dumont, M.2    Lanquart, J.P.3    Jurysta, F.4    Linkowski, P.5
  • 21
    • 80052852327 scopus 로고    scopus 로고
    • Elsevier, a division of Reed Elsevier India Private Limited, Noida
    • Misra U.K., Kalita J. Clinical Electroencephalography 2005, Elsevier, a division of Reed Elsevier India Private Limited, Noida, pp. 130. first ed.
    • (2005) Clinical Electroencephalography , pp. 130
    • Misra, U.K.1    Kalita, J.2
  • 23
    • 57649235333 scopus 로고    scopus 로고
    • Detection of seizures in EEG signal using weighted locally linear embedding and SVM classifier
    • Pan Y., Ge S.S., Al, Mamun A., Tang F.R. Detection of seizures in EEG signal using weighted locally linear embedding and SVM classifier. Conf. Proc. IEEE Cybern. Intell. Syst. 2008, 358-363.
    • (2008) Conf. Proc. IEEE Cybern. Intell. Syst. , pp. 358-363
    • Pan, Y.1    Ge, S.S.2    Al Mamun, A.3    Tang, F.R.4
  • 24
    • 0030025924 scopus 로고    scopus 로고
    • A review of parametric modelling techniques for EEG analysis
    • Pardey J., Roberts S., Tarassenko L. A review of parametric modelling techniques for EEG analysis. Med. Eng. Phys. 1996, 18:2-11.
    • (1996) Med. Eng. Phys. , vol.18 , pp. 2-11
    • Pardey, J.1    Roberts, S.2    Tarassenko, L.3
  • 25
    • 0029434863 scopus 로고
    • Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
    • Peng C.K., Havlin S., Stanley H.E., Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5:82-87.
    • (1995) Chaos , vol.5 , pp. 82-87
    • Peng, C.K.1    Havlin, S.2    Stanley, H.E.3    Goldberger, A.L.4
  • 26
    • 0026015905 scopus 로고
    • Approximate entropy as a measure of system complexity
    • Pincus S. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 1991, 88:2297-2301.
    • (1991) Proc. Natl. Acad. Sci. U.S.A. , vol.88 , pp. 2297-2301
    • Pincus, S.1
  • 27
    • 0032077575 scopus 로고    scopus 로고
    • Estimating regularity in epileptic seizure time-series data
    • Radhakrishnan N., Gangadhar B.N. Estimating regularity in epileptic seizure time-series data. IEEE Eng. Med. Biol. Mag. 1998, 17:89-94.
    • (1998) IEEE Eng. Med. Biol. Mag. , vol.17 , pp. 89-94
    • Radhakrishnan, N.1    Gangadhar, B.N.2
  • 29
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
    • Song Y., Liò P. A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J. Biomed. Sci. Eng. 2010, 3:556-567.
    • (2010) J. Biomed. Sci. Eng. , vol.3 , pp. 556-567
    • Song, Y.1    Liò, P.2
  • 30
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic EEG detection using artificial neural networks
    • Srinivasan V., Eswaran C., Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans. Inf. Technol. Biomed. 2007, 11:288-295.
    • (2007) IEEE Trans. Inf. Technol. Biomed. , vol.11 , pp. 288-295
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 31
    • 56349090499 scopus 로고    scopus 로고
    • Single-class SVM classifier for localization of epileptic focus on the basis of EEG
    • Swiderski B., Osowski S., Cichocki A., Rysz A. Single-class SVM classifier for localization of epileptic focus on the basis of EEG. Conf. Proc. IEEE Neural Netw. 2008, 189-194.
    • (2008) Conf. Proc. IEEE Neural Netw. , pp. 189-194
    • Swiderski, B.1    Osowski, S.2    Cichocki, A.3    Rysz, A.4
  • 32
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • Übeyli E.D. Combined neural network model employing wavelet coefficients for EEG signals classification. Digit. Signal Process. 2009, 19:297-308.
    • (2009) Digit. Signal Process. , vol.19 , pp. 297-308
    • Übeyli, E.D.1
  • 35
    • 0030273681 scopus 로고    scopus 로고
    • An adaptive structure neural networks with application to EEG automatic seizure detection
    • Weng W., Khorasani K. An adaptive structure neural networks with application to EEG automatic seizure detection. Neural Netw. 1996, 9:1223-1240.
    • (1996) Neural Netw. , vol.9 , pp. 1223-1240
    • Weng, W.1    Khorasani, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.