메뉴 건너뛰기




Volumn 8, Issue 20, 2013, Pages 1844-1852

Approximate entropy and support vector machines for electroencephalogram signal classification

Author keywords

Approximate en tropy; Automatic real time detection; Brain injury; Classification; Electroencephalogram; Epilepsy; Generalization; Grants supported paper; Neural regeneration; Neuroregeneration; Nonlinear dynamics; Support vector machine

Indexed keywords

ADOLESCENT; ADULT; ALGORITHM; ARTICLE; CASE REPORT; COMPUTER SIMULATION; DIAGNOSTIC ACCURACY; ELECTROENCEPHALOGRAPHY; ENTROPY; EPILEPSY; FEMALE; HUMAN; MALE; SENSITIVITY AND SPECIFICITY; SIGNAL DETECTION; SUPPORT VECTOR MACHINE;

EID: 84889847646     PISSN: 16735374     EISSN: 18767958     Source Type: Journal    
DOI: 10.3969/j.issn.1673-5374.2013.20.003     Document Type: Article
Times cited : (24)

References (24)
  • 2
    • 84864293306 scopus 로고    scopus 로고
    • Epileptic seizure detection with linear and nonlinear features
    • Yuan Q, Zhou WD, Liu YX. Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav. 2012;24(4): 415-421.
    • (2012) Epilepsy Behav. , vol.24 , Issue.4 , pp. 415-421
    • Yuan, Q.1    Zhou, W.D.2    Liu, Y.X.3
  • 3
    • 0037562843 scopus 로고    scopus 로고
    • Epileptic seizure prediction and control
    • Iasemidis LD. Epileptic seizure prediction and control. IEEE Trans Biomed Eng. 2003;50(5):549-558.
    • (2003) IEEE Trans Biomed Eng. , vol.50 , Issue.5 , pp. 549-558
    • Iasemidis, L.D.1
  • 4
    • 84861457199 scopus 로고    scopus 로고
    • A rule-based seizure prediction method for focal neocortical epilepsy
    • Aarabi A, He B. A rule-based seizure prediction method for focal neocortical epilepsy. Clin Neurophysiol. 2012; 123(6):1111-1122.
    • (2012) Clin Neurophysiol. , vol.123 , Issue.6 , pp. 1111-1122
    • Aarabi, A.1    He, B.2
  • 5
    • 70350721621 scopus 로고    scopus 로고
    • Classification of patterns of EEG synchronization for seizure prediction
    • Mirowski P, Madhavan D, Lecun Y, et al. Classification of patterns of EEG synchronization for seizure prediction. Clin Neurophysiol. 2009;120(11):1927-1940.
    • (2009) Clin Neurophysiol. , vol.120 , Issue.11 , pp. 1927-1940
    • Mirowski, P.1    Madhavan, D.2    Lecun, Y.3
  • 6
    • 80052836687 scopus 로고    scopus 로고
    • Epileptic EEG classification based on extreme learning machine and nonlinear features
    • Yuan Q, Zhou W, Li S. Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res. 2011;96(1-2):29-38.
    • (2011) Epilepsy Res. , vol.96 , Issue.1-2 , pp. 29-38
    • Yuan, Q.1    Zhou, W.2    Li, S.3
  • 7
    • 84865710494 scopus 로고    scopus 로고
    • Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG
    • Gadhoumi K, Lina JM, Gotman J. Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG. Clin Neurophysiol. 2012;123(10):1906-1916.
    • (2012) Clin Neurophysiol. , vol.123 , Issue.10 , pp. 1906-1916
    • Gadhoumi, K.1    Lina, J.M.2    Gotman, J.3
  • 8
    • 84879791903 scopus 로고    scopus 로고
    • Application of SVM and wavelet method in classfication of EEG signals
    • Zhao JL, Zhou WD, Liu K, et al. Application of SVM and wavelet method in classfication of EEG signals. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011;28(2):277-279.
    • (2011) Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. , vol.28 , Issue.2 , pp. 277-279
    • Zhao, J.L.1    Zhou, W.D.2    Liu, K.3
  • 9
    • 84869393301 scopus 로고    scopus 로고
    • Automatic seizure detection using wavelet transform and SVM in long-term intra-cranial EEG
    • Liu YX, Zhou WD, Yuan Q, et al. Automatic seizure detection using wavelet transform and SVM in long-term intra-cranial EEG. IEEE Trans Neural Syst Rehabil Eng. 2012;20(6):749-755.
    • (2012) IEEE Trans Neural Syst Rehabil Eng. , vol.20 , Issue.6 , pp. 749-755
    • Liu, Y.X.1    Zhou, W.D.2    Yuan, Q.3
  • 10
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl. 2009;36(2):2027-2036.
    • (2009) Expert Syst Appl. , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1
  • 11
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):2039-2049.
    • (2000) Am J Physiol Heart Circ Physiol. , vol.278 , Issue.6 , pp. 2039-2049
    • Richman, J.S.1    Moorman, J.R.2
  • 13
    • 84859182915 scopus 로고    scopus 로고
    • Application of ap-proximate entropy on dynamic characteristics of epileptic absence seizure
    • Zhou Y, Huang RM, Chen ZY, et al. Application of ap-proximate entropy on dynamic characteristics of epileptic absence seizure. Neural Regen Res. 2012;7(8):572-577.
    • (2012) Neural Regen Res. , vol.7 , Issue.8 , pp. 572-577
    • Zhou, Y.1    Huang, R.M.2    Chen, Z.Y.3
  • 14
    • 10444260267 scopus 로고    scopus 로고
    • Primary application of appropriate entropy(ApEn), Cross-ApEn's property and fast algorithm in EEG and it's recognition reseach
    • Hong B, Tang YQ, Yang FS, et al. Primary application of appropriate entropy(ApEn), Cross-ApEn's property and fast algorithm in EEG and it's recognition reseach. Signal Process. 1999;15(2):100-108.
    • (1999) Signal Process. , vol.15 , Issue.2 , pp. 100-108
    • Hong, B.1    Tang, Y.Q.2    Yang, F.S.3
  • 15
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entro-py-based epileptic EEG detection using artificial neural networks
    • Srinivasan V, Eswaran C, Sriraam N. Approximate entro-py-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed. 2007;11(3): 288-295.
    • (2007) IEEE Trans Inf Technol Biomed. , vol.11 , Issue.3 , pp. 288-295
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 16
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • Guo L, Rivero D, Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods. 2010; 193(1):156-163.
    • (2010) J Neurosci Methods. , vol.193 , Issue.1 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 17
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnik VN, Chapelle O. Bounds on error expectation for support vector machines. Neural Computation. 2000;12(9): 2013-2036.
    • (2000) Neural Computation. , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.N.1    Chapelle, O.2
  • 18
    • 0032594950 scopus 로고    scopus 로고
    • Support vector machines for spam categorization
    • Drucker H, Wu DH, Vapnik VN. Support vector machines for spam categorization. IEEE Trans Neural Netw. 1999; 10(5):1048-1054.
    • (1999) IEEE Trans Neural Netw. , vol.10 , Issue.5 , pp. 1048-1054
    • Drucker, H.1    Wu, D.H.2    Vapnik, V.N.3
  • 19
    • 0032594951 scopus 로고    scopus 로고
    • Support vector machines for histogram-based image classification
    • Chapelle O, Haffner P, Vapnik VN, et al. Support vector machines for histogram-based image classification. IEEE Trans Neural Netw. 1999;10(5):1055-1064.
    • (1999) IEEE Trans Neural Netw. , vol.10 , Issue.5 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.N.3
  • 20
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw. 1999;10(5):988-999.
    • (1999) IEEE Trans Neural Netw. , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 21
    • 73349136765 scopus 로고    scopus 로고
    • Feature selection using stochastic search: An application to system identification
    • Saitta L, Kripakaran P, Raphael B, et al. Feature selection using stochastic search: an application to system identification. J Comput Civil Eng. 2010;24(1):3-10.
    • (2010) J Comput Civil Eng. , vol.24 , Issue.1 , pp. 3-10
    • Saitta, L.1    Kripakaran, P.2    Raphael, B.3
  • 22
    • 84863054258 scopus 로고    scopus 로고
    • Parameter optimizing for support vector machine classification
    • Feng GH. Parameter optimizing for support vector machine classification. Jisuanji Gongcheng yu Yingyong. 2011;47(3):123-124.
    • (2011) Jisuanji Gongcheng yu Yingyong. , vol.47 , Issue.3 , pp. 123-124
    • Feng, G.H.1
  • 23
    • 84866601292 scopus 로고    scopus 로고
    • Choice of kernel function and other parameters in support vector machine
    • Fu YY, Ren D. Choice of kernel function and other parameters in support vector machine. Keji Chuangxin Daobao. 2010;(9):6-7.
    • (2010) Keji Chuangxin Daobao. , Issue.9 , pp. 6-7
    • Fu, Y.Y.1    Ren, D.2
  • 24
    • 79955594660 scopus 로고    scopus 로고
    • Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection
    • Zavar M, Rahati S, Akbarzadeh MR. Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection. Expert Syst Appl. 2011;38(9):10751-10758.
    • (2011) Expert Syst Appl. , vol.38 , Issue.9 , pp. 10751-10758
    • Zavar, M.1    Rahati, S.2    Akbarzadeh, M.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.