-
2
-
-
84864293306
-
Epileptic seizure detection with linear and nonlinear features
-
Yuan Q, Zhou WD, Liu YX. Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav. 2012;24(4): 415-421.
-
(2012)
Epilepsy Behav.
, vol.24
, Issue.4
, pp. 415-421
-
-
Yuan, Q.1
Zhou, W.D.2
Liu, Y.X.3
-
3
-
-
0037562843
-
Epileptic seizure prediction and control
-
Iasemidis LD. Epileptic seizure prediction and control. IEEE Trans Biomed Eng. 2003;50(5):549-558.
-
(2003)
IEEE Trans Biomed Eng.
, vol.50
, Issue.5
, pp. 549-558
-
-
Iasemidis, L.D.1
-
4
-
-
84861457199
-
A rule-based seizure prediction method for focal neocortical epilepsy
-
Aarabi A, He B. A rule-based seizure prediction method for focal neocortical epilepsy. Clin Neurophysiol. 2012; 123(6):1111-1122.
-
(2012)
Clin Neurophysiol.
, vol.123
, Issue.6
, pp. 1111-1122
-
-
Aarabi, A.1
He, B.2
-
5
-
-
70350721621
-
Classification of patterns of EEG synchronization for seizure prediction
-
Mirowski P, Madhavan D, Lecun Y, et al. Classification of patterns of EEG synchronization for seizure prediction. Clin Neurophysiol. 2009;120(11):1927-1940.
-
(2009)
Clin Neurophysiol.
, vol.120
, Issue.11
, pp. 1927-1940
-
-
Mirowski, P.1
Madhavan, D.2
Lecun, Y.3
-
6
-
-
80052836687
-
Epileptic EEG classification based on extreme learning machine and nonlinear features
-
Yuan Q, Zhou W, Li S. Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res. 2011;96(1-2):29-38.
-
(2011)
Epilepsy Res.
, vol.96
, Issue.1-2
, pp. 29-38
-
-
Yuan, Q.1
Zhou, W.2
Li, S.3
-
7
-
-
84865710494
-
Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG
-
Gadhoumi K, Lina JM, Gotman J. Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG. Clin Neurophysiol. 2012;123(10):1906-1916.
-
(2012)
Clin Neurophysiol.
, vol.123
, Issue.10
, pp. 1906-1916
-
-
Gadhoumi, K.1
Lina, J.M.2
Gotman, J.3
-
8
-
-
84879791903
-
Application of SVM and wavelet method in classfication of EEG signals
-
Zhao JL, Zhou WD, Liu K, et al. Application of SVM and wavelet method in classfication of EEG signals. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011;28(2):277-279.
-
(2011)
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.
, vol.28
, Issue.2
, pp. 277-279
-
-
Zhao, J.L.1
Zhou, W.D.2
Liu, K.3
-
9
-
-
84869393301
-
Automatic seizure detection using wavelet transform and SVM in long-term intra-cranial EEG
-
Liu YX, Zhou WD, Yuan Q, et al. Automatic seizure detection using wavelet transform and SVM in long-term intra-cranial EEG. IEEE Trans Neural Syst Rehabil Eng. 2012;20(6):749-755.
-
(2012)
IEEE Trans Neural Syst Rehabil Eng.
, vol.20
, Issue.6
, pp. 749-755
-
-
Liu, Y.X.1
Zhou, W.D.2
Yuan, Q.3
-
10
-
-
56349101801
-
Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
-
Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl. 2009;36(2):2027-2036.
-
(2009)
Expert Syst Appl.
, vol.36
, Issue.2
, pp. 2027-2036
-
-
Ocak, H.1
-
11
-
-
0033949457
-
Physiological time-series analysis using approximate entropy and sample entropy
-
Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):2039-2049.
-
(2000)
Am J Physiol Heart Circ Physiol.
, vol.278
, Issue.6
, pp. 2039-2049
-
-
Richman, J.S.1
Moorman, J.R.2
-
13
-
-
84859182915
-
Application of ap-proximate entropy on dynamic characteristics of epileptic absence seizure
-
Zhou Y, Huang RM, Chen ZY, et al. Application of ap-proximate entropy on dynamic characteristics of epileptic absence seizure. Neural Regen Res. 2012;7(8):572-577.
-
(2012)
Neural Regen Res.
, vol.7
, Issue.8
, pp. 572-577
-
-
Zhou, Y.1
Huang, R.M.2
Chen, Z.Y.3
-
14
-
-
10444260267
-
Primary application of appropriate entropy(ApEn), Cross-ApEn's property and fast algorithm in EEG and it's recognition reseach
-
Hong B, Tang YQ, Yang FS, et al. Primary application of appropriate entropy(ApEn), Cross-ApEn's property and fast algorithm in EEG and it's recognition reseach. Signal Process. 1999;15(2):100-108.
-
(1999)
Signal Process.
, vol.15
, Issue.2
, pp. 100-108
-
-
Hong, B.1
Tang, Y.Q.2
Yang, F.S.3
-
15
-
-
34248567678
-
Approximate entro-py-based epileptic EEG detection using artificial neural networks
-
Srinivasan V, Eswaran C, Sriraam N. Approximate entro-py-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed. 2007;11(3): 288-295.
-
(2007)
IEEE Trans Inf Technol Biomed.
, vol.11
, Issue.3
, pp. 288-295
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, N.3
-
16
-
-
77957685691
-
Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
-
Guo L, Rivero D, Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods. 2010; 193(1):156-163.
-
(2010)
J Neurosci Methods.
, vol.193
, Issue.1
, pp. 156-163
-
-
Guo, L.1
Rivero, D.2
Pazos, A.3
-
17
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Vapnik VN, Chapelle O. Bounds on error expectation for support vector machines. Neural Computation. 2000;12(9): 2013-2036.
-
(2000)
Neural Computation.
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.N.1
Chapelle, O.2
-
18
-
-
0032594950
-
Support vector machines for spam categorization
-
Drucker H, Wu DH, Vapnik VN. Support vector machines for spam categorization. IEEE Trans Neural Netw. 1999; 10(5):1048-1054.
-
(1999)
IEEE Trans Neural Netw.
, vol.10
, Issue.5
, pp. 1048-1054
-
-
Drucker, H.1
Wu, D.H.2
Vapnik, V.N.3
-
19
-
-
0032594951
-
Support vector machines for histogram-based image classification
-
Chapelle O, Haffner P, Vapnik VN, et al. Support vector machines for histogram-based image classification. IEEE Trans Neural Netw. 1999;10(5):1055-1064.
-
(1999)
IEEE Trans Neural Netw.
, vol.10
, Issue.5
, pp. 1055-1064
-
-
Chapelle, O.1
Haffner, P.2
Vapnik, V.N.3
-
20
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw. 1999;10(5):988-999.
-
(1999)
IEEE Trans Neural Netw.
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
21
-
-
73349136765
-
Feature selection using stochastic search: An application to system identification
-
Saitta L, Kripakaran P, Raphael B, et al. Feature selection using stochastic search: an application to system identification. J Comput Civil Eng. 2010;24(1):3-10.
-
(2010)
J Comput Civil Eng.
, vol.24
, Issue.1
, pp. 3-10
-
-
Saitta, L.1
Kripakaran, P.2
Raphael, B.3
-
22
-
-
84863054258
-
Parameter optimizing for support vector machine classification
-
Feng GH. Parameter optimizing for support vector machine classification. Jisuanji Gongcheng yu Yingyong. 2011;47(3):123-124.
-
(2011)
Jisuanji Gongcheng yu Yingyong.
, vol.47
, Issue.3
, pp. 123-124
-
-
Feng, G.H.1
-
23
-
-
84866601292
-
Choice of kernel function and other parameters in support vector machine
-
Fu YY, Ren D. Choice of kernel function and other parameters in support vector machine. Keji Chuangxin Daobao. 2010;(9):6-7.
-
(2010)
Keji Chuangxin Daobao.
, Issue.9
, pp. 6-7
-
-
Fu, Y.Y.1
Ren, D.2
-
24
-
-
79955594660
-
Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection
-
Zavar M, Rahati S, Akbarzadeh MR. Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection. Expert Syst Appl. 2011;38(9):10751-10758.
-
(2011)
Expert Syst Appl.
, vol.38
, Issue.9
, pp. 10751-10758
-
-
Zavar, M.1
Rahati, S.2
Akbarzadeh, M.R.3
|