메뉴 건너뛰기




Volumn 243, Issue , 2015, Pages 18-25

The detection of epileptic seizure signals based on fuzzy entropy

Author keywords

Epilepsy detection; Fuzzy entropy; Sample entropy; SVM

Indexed keywords

ACCURACY; ADOLESCENT; ADULT; ARTICLE; CHILD; CLASSIFICATION; CLINICAL ARTICLE; ELECTROENCEPHALOGRAM; ENTROPY; EPILEPTIC STATE; FEMALE; FUZZY ENTROPY; HUMAN; MALE; PRIORITY JOURNAL; SEIZURE; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; BRAIN; COMPARATIVE STUDY; ELECTROENCEPHALOGRAPHY; EPILEPSY; FACTUAL DATABASE; INFANT; NONLINEAR SYSTEM; PATHOPHYSIOLOGY; PRESCHOOL CHILD; PROCEDURES; SIGNAL PROCESSING; YOUNG ADULT;

EID: 84924274370     PISSN: 01650270     EISSN: 1872678X     Source Type: Journal    
DOI: 10.1016/j.jneumeth.2015.01.015     Document Type: Article
Times cited : (220)

References (34)
  • 2
    • 84905642627 scopus 로고    scopus 로고
    • EEG signal classification for Epilepsy Seizure Detection using Improved Approximate Entropy
    • Engineering PDACo
    • Akareddy S., Kulkarni P.K. EEG signal classification for Epilepsy Seizure Detection using Improved Approximate Entropy. Int J Public Health Sci 2013, 2:23-32. Engineering PDACo.
    • (2013) Int J Public Health Sci , vol.2 , pp. 23-32
    • Akareddy, S.1    Kulkarni, P.K.2
  • 3
    • 80955125266 scopus 로고    scopus 로고
    • Investigation of mental fatigue through EEG signal processing based on nonlinear analysis: symbolic dynamics
    • Azarnoosh M., Motie Nasrabadi A., Mohammadi M.R., Firoozabadi M. Investigation of mental fatigue through EEG signal processing based on nonlinear analysis: symbolic dynamics. Chaos, Solitons Fractals 2011, 44:1054-1062.
    • (2011) Chaos, Solitons Fractals , vol.44 , pp. 1054-1062
    • Azarnoosh, M.1    Motie Nasrabadi, A.2    Mohammadi, M.R.3    Firoozabadi, M.4
  • 4
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal ν in support vector regression for different noise models and parameter settings
    • Chalimourda A., Schölkopf B., Smola A.J. Experimentally optimal ν in support vector regression for different noise models and parameter settings. Neural Netw 2004, 17:127-141.
    • (2004) Neural Netw , vol.17 , pp. 127-141
    • Chalimourda, A.1    Schölkopf, B.2    Smola, A.J.3
  • 5
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Chang C.C., Lin C.J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011, 2(3):27.
    • (2011) ACM Trans Intell Syst Technol , vol.2 , Issue.3 , pp. 27
    • Chang, C.C.1    Lin, C.J.2
  • 6
    • 34250774365 scopus 로고    scopus 로고
    • Characterization of surface EMG signal based on fuzzy entropy
    • Chen W., Wang Z., Xie H., Yu W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Syst Rehabil Eng 2007, 15:266-272.
    • (2007) IEEE Trans Neural Syst Rehabil Eng , vol.15 , pp. 266-272
    • Chen, W.1    Wang, Z.2    Xie, H.3    Yu, W.4
  • 7
    • 57849119711 scopus 로고    scopus 로고
    • Measuring complexity using FuzzyEn, ApEn, and SampEn
    • Chen W., Zhuang J., Yu W., Wang Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med Eng Phys 2009, 31:61-68.
    • (2009) Med Eng Phys , vol.31 , pp. 61-68
    • Chen, W.1    Zhuang, J.2    Yu, W.3    Wang, Z.4
  • 9
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • Guo L., Rivero D., Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Meth 2010, 193:156-163.
    • (2010) J Neurosci Meth , vol.193 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 10
    • 34249861970 scopus 로고    scopus 로고
    • A new method of detecting nonlinear for time series based on KS test
    • Hou S., Li Y., Liu G. A new method of detecting nonlinear for time series based on KS test. J Electron Inf Technol 2007, 29(4):808-810.
    • (2007) J Electron Inf Technol , vol.29 , Issue.4 , pp. 808-810
    • Hou, S.1    Li, Y.2    Liu, G.3
  • 15
    • 84903756405 scopus 로고    scopus 로고
    • Optimization of SVM parameters using high dimensional model representation and its application to hyperspectral images
    • Kaya G.T., Kaya H. Optimization of SVM parameters using high dimensional model representation and its application to hyperspectral images. 22nd Signal processing and communications applications conference (SIU) 2014, 642-645.
    • (2014) 22nd Signal processing and communications applications conference (SIU) , pp. 642-645
    • Kaya, G.T.1    Kaya, H.2
  • 16
    • 58949089389 scopus 로고    scopus 로고
    • Intraventricular orexin-a improves arousal and early EEG entropy in rats after cardiac arrest
    • Koenig M.A., Jia X., Kang X., Velasquez A., Thakor N.V., Geocadin R.G. Intraventricular orexin-a improves arousal and early EEG entropy in rats after cardiac arrest. Brain Res 2009, 1255:153-161.
    • (2009) Brain Res , vol.1255 , pp. 153-161
    • Koenig, M.A.1    Jia, X.2    Kang, X.3    Velasquez, A.4    Thakor, N.V.5    Geocadin, R.G.6
  • 18
    • 71349088028 scopus 로고    scopus 로고
    • Entropies based detection of epileptic seizures with artificial neural network classifiers
    • Kumar S.P., Sriraam N., Benakop P.G., Jinaga B.C. Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst Appl 2010, 37:3284-3291.
    • (2010) Expert Syst Appl , vol.37 , pp. 3284-3291
    • Kumar, S.P.1    Sriraam, N.2    Benakop, P.G.3    Jinaga, B.C.4
  • 19
    • 84894582585 scopus 로고    scopus 로고
    • Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine
    • Kumar Y., Dewal M.L., Anand R.S. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 2014, 133:271-279.
    • (2014) Neurocomputing , vol.133 , pp. 271-279
    • Kumar, Y.1    Dewal, M.L.2    Anand, R.S.3
  • 20
    • 84919821692 scopus 로고    scopus 로고
    • Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine
    • Li S., Zhang Y., Xu J., Li L., Zeng Q., Lin L., et al. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Appl Phys Lett 2014, 105.
    • (2014) Appl Phys Lett , pp. 105
    • Li, S.1    Zhang, Y.2    Xu, J.3    Li, L.4    Zeng, Q.5    Lin, L.6
  • 21
    • 84921978502 scopus 로고    scopus 로고
    • Research on Kernel parameter optimization of support vector machine in speaker recognition
    • Liu X., Jia D., LI H., Jiang J. Research on Kernel parameter optimization of support vector machine in speaker recognition. Sci Technol Eng 2010, 10:1669-1673.
    • (2010) Sci Technol Eng , vol.10 , pp. 1669-1673
    • Liu, X.1    Jia, D.2    LI, H.3    Jiang, J.4
  • 23
    • 80051745063 scopus 로고    scopus 로고
    • Automatic seizure detection in ECoG by differential operator and windowed variance
    • Majumdar K., Vardhan P. Automatic seizure detection in ECoG by differential operator and windowed variance. IEEE Trans Neural Syst Rehabil Eng 2011, 19:356-365.
    • (2011) IEEE Trans Neural Syst Rehabil Eng , vol.19 , pp. 356-365
    • Majumdar, K.1    Vardhan, P.2
  • 24
    • 81855221797 scopus 로고    scopus 로고
    • Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
    • Nicolaou N., Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst Appl 2012, 39:202-209.
    • (2012) Expert Syst Appl , vol.39 , pp. 202-209
    • Nicolaou, N.1    Georgiou, J.2
  • 25
    • 41249099701 scopus 로고    scopus 로고
    • Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
    • Ocak H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process 2008, 88:1858-1867.
    • (2008) Signal Process , vol.88 , pp. 1858-1867
    • Ocak, H.1
  • 26
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000, 278:H2039-H2049.
    • (2000) Am J Physiol Heart Circ Physiol , vol.278 , pp. H2039-H2049
    • Richman, J.S.1    Moorman, J.R.2
  • 27
    • 84879056024 scopus 로고    scopus 로고
    • A physiology-based seizure detection system for multichannel EEG
    • Shen C., Liu S., Zhou W., Lin F., Lam A., Sung H., et al. A physiology-based seizure detection system for multichannel EEG. PLoS ONE 2013, 8:e65862.
    • (2013) PLoS ONE , vol.8 , pp. e65862
    • Shen, C.1    Liu, S.2    Zhou, W.3    Lin, F.4    Lam, A.5    Sung, H.6
  • 28
    • 84865313417 scopus 로고    scopus 로고
    • Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
    • Song Y., Crowcroft J., Zhang J. Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Meth 2012, 210:132-146.
    • (2012) J Neurosci Meth , vol.210 , pp. 132-146
    • Song, Y.1    Crowcroft, J.2    Zhang, J.3
  • 29
    • 77950531998 scopus 로고    scopus 로고
    • Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis
    • Takahashi T., Cho R., Mizuno T., Kikuchi M., Murata T., Takahashi K., et al. Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis. NeuroImage 2010, 51:173-182.
    • (2010) NeuroImage , vol.51 , pp. 173-182
    • Takahashi, T.1    Cho, R.2    Mizuno, T.3    Kikuchi, M.4    Murata, T.5    Takahashi, K.6
  • 30
    • 84870870680 scopus 로고    scopus 로고
    • Multi-class motor imagery EEG decoding for brain-computer interfaces
    • Wang D., Miao D., Blohm G. Multi-class motor imagery EEG decoding for brain-computer interfaces. Front Neurosci 2012, 6:151.
    • (2012) Front Neurosci , vol.6 , pp. 151
    • Wang, D.1    Miao, D.2    Blohm, G.3
  • 31
    • 84874586327 scopus 로고    scopus 로고
    • A new method for EEG-based concealed information test
    • Wang D., Miao D., Blohm G. A new method for EEG-based concealed information test. IEEE Trans Inf. Forensics Secur 2013, 8:520-527.
    • (2013) IEEE Trans Inf. Forensics Secur , vol.8 , pp. 520-527
    • Wang, D.1    Miao, D.2    Blohm, G.3
  • 33
    • 79955594660 scopus 로고    scopus 로고
    • Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection
    • Zavar M., Rahati S., Akbarzadeh-T M.R., Ghasemifard H. Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection. Expert Syst Appl 2011, 38:10751-10758.
    • (2011) Expert Syst Appl , vol.38 , pp. 10751-10758
    • Zavar, M.1    Rahati, S.2    Akbarzadeh-T, M.R.3    Ghasemifard, H.4
  • 34
    • 84927177063 scopus 로고    scopus 로고
    • Construction of rules for seizure prediction based on approximate entropy
    • Zhang Z., Chen Z., Zhou Y., Du S., Zhang Y., Mei T., et al. Construction of rules for seizure prediction based on approximate entropy. Clin Neurophysiol 2014, 125:1959-1966.
    • (2014) Clin Neurophysiol , vol.125 , pp. 1959-1966
    • Zhang, Z.1    Chen, Z.2    Zhou, Y.3    Du, S.4    Zhang, Y.5    Mei, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.