메뉴 건너뛰기




Volumn 23, Issue 5, 2013, Pages

Application of intrinsic Time-scale decomposition (ITD) to EEG signals for automated seizure prediction

Author keywords

classifier; Electroencephalogram (EEG); energy; fractal dimension; Hurst exponent; ictal; interictal; sample entropy

Indexed keywords

ELECTRO-ENCEPHALOGRAM (EEG); ENERGY; HURST EXPONENTS; ICTAL; INTERICTAL; SAMPLE ENTROPY;

EID: 84882278346     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065713500238     Document Type: Article
Times cited : (117)

References (72)
  • 2
    • 27844600056 scopus 로고    scopus 로고
    • World Health Organization
    • Fact Sheets, World Health Organization (2012).
    • (2012) Fact Sheets
  • 5
    • 0026760299 scopus 로고
    • High-frequency EEGactivity at the start of seizures
    • S. Arroyo and S. Uematsu, High-frequency EEGactivity at the start of seizures, J. Clin. Neurophysiol.9 (1992) 441-448.
    • (1992) J. Clin. Neurophysiol.9 , pp. 441-448
    • Arroyo, S.1    Uematsu, S.2
  • 6
    • 0028414110 scopus 로고
    • Data compression bylinear prediction for storage and transmission ofEEG signals
    • N. Pradhan and D. N. Dutt, Data compression bylinear prediction for storage and transmission ofEEG signals, Int. J. Biomed. Comput. 35 (1994)207-217.
    • (1994) Int. J. Biomed. Comput , vol.35 , pp. 207-217
    • Pradhan, N.1    Dutt, D.N.2
  • 8
    • 77951577412 scopus 로고    scopus 로고
    • Automatic identification of epileptic and backgroundEEG signals using frequency domain parameters
    • O. Faust, U. R. Acharya, L. C. Min and B. H. Sputh,Automatic identification of epileptic and backgroundEEG signals using frequency domain parameters,Int. J. Neural Syst. 20 (2010) 159-176.
    • (2010) Int J. Neural Syst , vol.20 , pp. 159-176
    • Faust, O.1    Acharya, U.R.2    Min, L.C.3    Sputh, B.H.4
  • 9
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEGrecords in an epileptic patient using wavelet transform
    • H. Adeli, Z. Zhou and N. Dadmehr, Analysis of EEGrecords in an epileptic patient using wavelet transform,J. Neurosci. Meth. 123 (2003) 69.
    • (2003) J. Neurosci. Meth , vol.123 , pp. 69
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 10
  • 11
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automaticseizure detection in intracerebral electroencephalogram,Clin
    • Y. Khan and J. Gotman, Wavelet based automaticseizure detection in intracerebral electroencephalogram,Clin. Neurophysiol. 114 (2003) 898-908.
    • (2003) Neurophysiol , vol.114 , pp. 898-908
    • Khan, Y.1    Gotman, J.2
  • 12
    • 84856227784 scopus 로고    scopus 로고
    • Application of higher order spectra to identifyepileptic EEG
    • K. C. Chua, V. Chandran, U. R. Acharya and C.Lim, Application of higher order spectra to identifyepileptic EEG, J. Med. Syst. 35 (2011) 1563-1571.
    • (2011) J. Med. Syst , vol.35 , pp. 1563-1571
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.4
  • 13
    • 79960037752 scopus 로고    scopus 로고
    • Application of recurrence quantificationanalysis for the automated identification ofepileptic EEG signals
    • U. R. Acharya, S. V. Sree, S. Chattopadhyay, W. Yuand P. C. A. Ang, Application of recurrence quantificationanalysis for the automated identification ofepileptic EEG signals, Int. J. Neural Syst. 21 (2011)199-211.
    • (2011) Int. J. Neural Syst , vol.21 , pp. 199-211
    • Acharya, U.R.1    Sree, S.V.2    Chattopadhyay, S.3    Yuand, P.C.A.4    Ang, W.5
  • 14
    • 21444435892 scopus 로고    scopus 로고
    • Alzheimer's disease and models of computation:Imaging, classification, and neural models
    • H. Adeli, S. Ghosh-Dastidar and N. Dadmehr,Alzheimer's disease and models of computation:Imaging, classification, and neural models, J.Alzheimer's Disease 7 (2005) 187-199.
    • (2005) J.Alzheimer's Disease , vol.7 , pp. 187-199
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 15
    • 23844473285 scopus 로고    scopus 로고
    • Alzheimer's disease: Models of computation andanalysis of EEGs
    • H. Adeli, S. Ghosh-Dastidar and N. DadmehR,Alzheimer's disease: Models of computation andanalysis of EEGs, Clin. EEG Neurosci. 36 (2005)131-140.
    • (2005) Clin. EEG Neurosci , vol.36 , pp. 131-140
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 17
    • 33846672121 scopus 로고    scopus 로고
    • Awavelet-chaos methodology for analysis of EEGs andEEG subbands to detect seizure and epilepsy
    • H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, Awavelet-chaos methodology for analysis of EEGs andEEG subbands to detect seizure and epilepsy, IEEETrans. Biomed. Eng. 54 (2007) 205-211.
    • (2007) IEEETrans. Biomed. Eng , vol.54 , pp. 205-211
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 18
    • 77749242546 scopus 로고    scopus 로고
    • Wavelet-synchronizationmethodology: A New Approach for EEG-baseddiagnosis of ADHD
    • M. Ahmadlou and H. Adeli, Wavelet-synchronizationmethodology: A new approach for EEG-baseddiagnosis of ADHD, Clin. EEG Neurosci. 41 (2010)1-10.
    • (2010) Clin. EEG Neurosci , vol.41 , pp. 1-10
    • Ahmadlou, M.1    Adeli, H.2
  • 19
    • 77956469969 scopus 로고    scopus 로고
    • New diagnosticEEG markers of the Alzheimer's disease usingvisibility graph
    • M. Ahmadlou, H. Adeli and A. Adeli, New diagnosticEEG markers of the Alzheimer's disease usingvisibility graph, J. Neural Transmission 117 (2010)1099-1109.
    • J. Neural Transmission , vol.117 , Issue.2010 , pp. 1099-1109
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 20
    • 77958187047 scopus 로고    scopus 로고
    • Fractalityand a wavelet-chaos-neural network methodology forEEG-based diagnosis of autistic spectrum disorder
    • M. Ahmadlou, H. Adeli and A. Adeli, Fractalityand a wavelet-chaos-neural network methodology forEEG-based diagnosis of autistic spectrum disorder,J. Clin. Neurophysiol. 27 (2010) 328-333.
    • (2010) J. Clin. Neurophysiol , vol.27 , pp. 328-333
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 21
    • 78651087475 scopus 로고    scopus 로고
    • Fuzzy synchronizationlikelihood with application to attentiondeficit/ hyperactivity disorder
    • M. Ahmadlou and H. Adeli, Fuzzy synchronizationlikelihood with application to attentiondeficit/hyperactivity disorder, Clini. EEG Neurosci.42 (2011) 6-13.
    • (2011) Clini. EEG Neurosci , vol.42 , pp. 6-13
    • Ahmadlou, M.1    Adeli, H.2
  • 22
    • 79953032936 scopus 로고    scopus 로고
    • Probabilistic neural networksfor diagnosis of Alzheimer's disease using conventionaland wavelet coherence
    • Z. Sankari and H. Adeli, Probabilistic neural networksfor diagnosis of Alzheimer's disease using conventionaland wavelet coherence, J. Neurosci. Meth.197 (2011) 165-170.
    • (2011) J. Neurosci. Meth. , vol.197 , pp. 165-170
    • Sankari, Z.1    Adeli, H.2
  • 23
    • 78651088422 scopus 로고    scopus 로고
    • Intrahemisphericinterhemispheric and Distal EEG coherencein alzheimer's disease
    • Z. Sankari, H. Adeli and A. Adeli, Intrahemispheric,interhemispheric, and distal EEG coherencein Alzheimer's disease, Clini. Neurophysiol. 122(2011) 897-906.
    • (2011) Clini. Neurophysiol , vol.122 , pp. 897-906
    • Sankari, Z.1    Adeli, H.2    Adeli, A.3
  • 24
    • 80051801656 scopus 로고    scopus 로고
    • Functional communityanalysis of brain: A new approach for EEG-basedinvestigation of the brain pathology
    • M. Ahmadlou and H. Adeli, Functional communityanalysis of brain: A new approach for EEG-basedinvestigation of the brain pathology, Neuroimage 58(2011) 401-408.
    • (2011) Neuroimage , vol.58 , pp. 401-408
    • Ahmadlou, M.1    Adeli, H.2
  • 25
    • 84859370936 scopus 로고    scopus 로고
    • Graph theoreticalanalysis of organization of functional brainnetworks in ADHD
    • M. Ahmadlou, H. Adeli and A. Adeli, Graph theoreticalanalysis of organization of functional brainnetworks in ADHD, Clin. EEG Neurosci. 43 (2012)5-13.
    • (2012) Clin. EEG Neurosci , vol.43 , pp. 5-13
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 26
    • 84863434872 scopus 로고    scopus 로고
    • Improved visibilitygraph fractality with application for diagnosisof autism spectrum disorder
    • M. Ahmadlou, H. Adeli and A. Adeli, Improved visibilitygraph fractality with application for diagnosisof autism spectrum disorder, Phys. A: Stat. Mech.Appl. 391 (2012) 4720-4726.
    • (2012) Phys. A: Stat. Mech.Appl , vol.391 , pp. 4720-4726
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 27
    • 84867341025 scopus 로고    scopus 로고
    • Fuzzy synchronizationlikelihood-wavelet methodology for diagnosisof autism spectrum disorder
    • M. Ahmadlou, H. Adeli and A. Adeli, Fuzzy synchronizationlikelihood- wavelet methodology for diagnosisof autism spectrum disorder, J. Neurosci. Meth.211 (2012) 203-209.
    • (2012) J. Neurosci. Meth. , vol.211 , pp. 203-209
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 28
    • 84870532507 scopus 로고    scopus 로고
    • Wavelet coherencemodel for diagnosis of Alzheimer disease
    • Z. Sankari, H. Adeli and A. Adeli,Wavelet coherencemodel for diagnosis of Alzheimer disease, Clin. EEGNeurosci. 43 (2012) 268-278.
    • (2012) Clin. EEGNeurosci , vol.43 , pp. 268-278
    • Sankari, Z.1    Adeli, H.2    Adeli, A.3
  • 29
    • 84855200287 scopus 로고    scopus 로고
    • Visibility graph similarity:A new measure of generalized synchronization incoupled dynamic systems
    • M. Ahmadlou and H. Adeli, Visibility graph similarity:A new measure of generalized synchronization incoupled dynamic systems, Phys. D: Nonlinear Phenomena241 (2012) 326-332.
    • (2012) Phys D: Nonlinear Phenomena , vol.241 , pp. 326-332
    • Ahmadlou, M.1    Adeli, H.2
  • 30
    • 84865375785 scopus 로고    scopus 로고
    • Fractalityanalysis of frontal brain in major depressive disorder
    • M. Ahmadlou, H. Adeli and A. Adeli, Fractalityanalysis of frontal brain in major depressive disorder,Int. J. Psychophysiol. 85(2) (2012) 206-211.
    • (2012) Int J. Psychophysiol , vol.85 , Issue.2 , pp. 206-211
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 32
    • 84859354964 scopus 로고    scopus 로고
    • A new parametric feature descriptorfor the classification of epileptic and control EEGrecords in pediatric population
    • M. Cabrerizo, M. Ayala, M. Goryawala, P. Jayakarand M. Adjouadi, A new parametric feature descriptorfor the classification of epileptic and control EEGrecords in pediatric population, Int. J. Neural Syst.22 (2012) 1250001.
    • (2012) Int. J. Neural Syst. , vol.22 , pp. 1250001
    • Cabrerizo, M.1    Ayala, M.2    Goryawala, M.3    Jayakar, P.4    Adjouadi, M.5
  • 33
    • 84862063341 scopus 로고    scopus 로고
    • A novel electrical stimulationparadigm for the suppression of epileptiformactivity in an in vivo model of mesial temporallobe status epilepticus
    • Y. Tang and D. M. Durand, A novel electrical stimulationparadigm for the suppression of epileptiformactivity in an in vivo model of mesial temporallobe status epilepticus, Int. J. Neural Sys. 22 (2012)1250006.
    • (2012) Int J. Neural Sys , vol.22 , pp. 1250006
    • Tang, Y.1    Durand, D.M.2
  • 34
    • 84870547200 scopus 로고    scopus 로고
    • Application of empirical mode decomposition(EMD) for automated detection of epilepsy usingEEG signals
    • R. J. Martis, U. R. Acharya, J. H. Tan, A. Petznick,R. Yanti, C. K. Chua, E. Y. K. Ng and L.Tong, Application of empirical mode decomposition(EMD) for automated detection of epilepsy usingEEG signals, Int. J. Neural Syst. 22 (2012) 1250027-1-1250027-16.
    • (2012) Int. J. Neural Syst , vol.22 , pp. 12500271-125002716
    • Martis, R.J.1    Acharya, U.R.2    Tan, J.H.3    Petznickr. Yanti, A.4    Chua, C.K.5    Ng, E.Y.K.6    Tong, L.7
  • 35
    • 79953213343 scopus 로고    scopus 로고
    • Abnormal interictal gamma activity may manifest aseizure onset zone in temporal lobe epilepsy
    • A. V. Medvedev, A. M. Murro and K. J. Meador,Abnormal interictal gamma activity may manifest aseizure onset zone in temporal lobe epilepsy, Int. J.Neural Syst. 21 (2011) 103-114.
    • (2011) Int. J.Neural Syst , vol.21 , pp. 103-114
    • Medvedev, A.V.1    Murro, A.M.2    Meador, K.J.3
  • 36
    • 79953195541 scopus 로고    scopus 로고
    • Phase resetting of spikingepileptiform activity by electrical stimulation inthe CA3 region of the rat hippocampus
    • A. Jahangiri and D. Durand, Phase resetting of spikingepileptiform activity by electrical stimulation inthe CA3 region of the rat hippocampus, Int. J. NeuralSyst. 21 (2011) 127-138.
    • (2011) Int. J. NeuralSyst , vol.21 , pp. 127-138
    • Jahangiri, A.1    Durand, D.2
  • 37
    • 79953180563 scopus 로고    scopus 로고
    • Transcutaneous focal electrical stimulationvia concentric ring electrodes reduces synchronyinduced by pentylenetetrazole in beta andgamma bands in rats
    • W. G. Besio, X. Liu, L. Wang, A. V. Medvedevand K. Koka, Transcutaneous focal electrical stimulationvia concentric ring electrodes reduces synchronyinduced by pentylenetetrazole in beta andgamma bands in rats, Int. J. Neural Syst. 21 (2011)139-149.
    • (2011) Int. J. Neural Syst , vol.21 , pp. 139-149
    • Besio, W.G.1    Liu, X.2    Wang, L.3    Medvedev, A.V.4    Koka, K.5
  • 38
    • 79953213681 scopus 로고    scopus 로고
    • Effect of stimulusparameters in the treatment of seizures by electricalstimulation in the kainate animal model
    • P. Rajdev, M. Ward and P. Irazoqui, Effect of stimulusparameters in the treatment of seizures by electricalstimulation in the kainate animal model, Int.J. Neural Syst. 21 (2011) 151-162.
    • (2011) Int.J. Neural Syst , vol.21 , pp. 151-162
    • Rajdev, P.1    Ward, M.2    Irazoqui, P.3
  • 39
    • 79953169148 scopus 로고    scopus 로고
    • Closed-loop seizure control with very high frequencyelectrical stimulation at seizure onset in theGAERS model of absence epilepsy
    • T. S. Nelson, C. L. Suhr, D. R. Freestone, A. Lai, A.J. Halliday, K. J. Mclean, A. N. Burkitt and M. J.Cook, Closed-loop seizure control with very high frequencyelectrical stimulation at seizure onset in theGAERS model of absence epilepsy, Int. J. NeuralSyst. 21 (2011) 163-173.
    • (2011) Int. J. NeuralSyst , vol.21 , pp. 163-173
    • Nelson, T.S.1    Suhr, C.L.2    Freestone, D.R.3    Lai, A.4    Halliday, A.J.5    McLean, K.J.6    Burkitt, A.N.7    Cook, M.J.8
  • 40
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizureand non-seizure EEG signals using empirical modedecomposition
    • V. Bajaj and R. Pachori, Classification of seizureand non-seizure EEG signals using empirical modedecomposition, IEEE Transactions on InformationTechnology in Biomedicine 16 (2012) 1135-1142.
    • (2012) IEEE Transactions on InformationTechnology in Biomedicine , vol.16 , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.2
  • 41
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structuresin time series of brain electrical activity:Dependence on recording region and brain state
    • R. G. Andrzejak, K. Lehnertz, F. Mormann, C.Rieke, P. David and C. E. Elger, Indications ofnonlinear deterministic and finite-dimensional structuresin time series of brain electrical activity:Dependence on recording region and brain state,Phys. Rev. E 64 (2001) 061907.
    • (2001) Phys. Rev , vol.E 64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 42
    • 0035023402 scopus 로고    scopus 로고
    • The epileptic process as nonlineardeterministic dynamics in a stochastic environment:An evaluation on mesial temporal lobeepilepsy
    • R. Andrzejak, G. Widman, K. Lehnertz, C. Rieke,P. David and C. Elger, The epileptic process as nonlineardeterministic dynamics in a stochastic environment:An evaluation on mesial temporal lobeepilepsy, Epilepsy Res. 44 (2001) 129-140.
    • (2001) Epilepsy Res , vol.44 , pp. 129-140
    • Andrzejak, R.1    Widman, G.2    Lehnertz, C.3    Rieke, P.4    David, K.5    Elger, C.6
  • 43
    • 36349007672 scopus 로고    scopus 로고
    • Intrinsic time-scale decomposition: Time-frequency-energy analysis and realtimefiltering of non-stationary signals
    • M. G. Frei and I. Osorio, Intrinsic time-scale decomposition:Time- frequency-energy analysis and realtimefiltering of non-stationary signals, Proc. R. Soc.A 463 (2007) 321-342.
    • (2007) Proc. R. Soc.A , vol.463 , pp. 321-342
    • Frei, M.G.1    Osorio, I.2
  • 44
    • 45549113571 scopus 로고
    • Approach to an irregular time series onthe basis of the fractal theory
    • T. Higuchi, Approach to an irregular time series onthe basis of the fractal theory, Phys. D: NonlinearPhenomena 31 (1988) 277-283.
    • (1988) Phys D: NonlinearPhenomena , vol.31 , pp. 277-283
    • Higuchi, T.1
  • 45
    • 0000798411 scopus 로고
    • Relationship between the fractal dimensionand the power law index for a time series: Anumerical investigation
    • T. Higuchi, Relationship between the fractal dimensionand the power law index for a time series: Anumerical investigation, Phys. D: Nonlinear Phenomena46 (1990) 254-264.
    • (1990) Phys D: Nonlinear Phenomena , vol.46 , pp. 254-264
    • Higuchi, T.1
  • 46
    • 0033949457 scopus 로고    scopus 로고
    • Physiologicaltime-series analysis using approximate entropy andsample entropy
    • J. S. Richman and J. R. Moorman, Physiologicaltime-series analysis using approximate entropy andsample entropy, Am. J. Physiol. Heart Circ. Physiol.278 (2000) H2039-H2049.
    • (2000) Am. J. Physiol. Heart Circ. Physiol. , vol.278
    • Richman, J.S.1    Moorman, R.J.2
  • 47
    • 0026015905 scopus 로고
    • Approximate entropy as a measure ofsystem complexity
    • S. M. Pincus, Approximate entropy as a measure ofsystem complexity, Proc. Natl. Acad. Sci. 88 (1991)2297-2301.
    • (1991) Proc. Natl. Acad. Sci , vol.88 , pp. 2297-2301
    • Pincus, S.M.1
  • 49
    • 4444277301 scopus 로고    scopus 로고
    • Advances in quantitativeelectroencephalogram analysis methods
    • N. V. Thakor and S. Tong, Advances in quantitativeelectroencephalogram analysis methods, Annu. Rev.Biomed. Eng. 6 (2004) 453-495.
    • (2004) Annu. Rev.Biomed. Eng , vol.6 , pp. 453-495
    • Thakor, N.V.1    Tong, S.2
  • 52
    • 82655173325 scopus 로고    scopus 로고
    • Rankingbasedkernels in applied biomedical diagnostics usinga support vector machine
    • V. Jumutc, P. Zayakin and A. Borisov, Rankingbasedkernels in applied biomedical diagnostics usinga support vector machine, Int. J. Neural Syst. 21(2011) 459-473.
    • (2011) Int. J. Neural Syst , vol.21 , pp. 459-473
    • Jumutc, V.1    Zayakin, P.2    Borisov, A.3
  • 53
    • 84865792748 scopus 로고    scopus 로고
    • Structuralreliability assessment by local approximation of limitstate functions using adaptive markov chain simulationand support vector regression
    • H. Dai, H. Zhang, W. Wang and G. Xue, Structuralreliability assessment by local approximation of limitstate functions using adaptive Markov chain simulationand support vector regression, Comput.-AidedCivil Infrastruct. Eng. 27 (2012) 676-686.
    • (2012) Comput.-AidedCivil Infrastruct. Eng , vol.27 , pp. 676-686
    • Dai, H.1    Zhang, H.2    Wang, W.3    Xue, G.4
  • 55
    • 79960062885 scopus 로고    scopus 로고
    • Foreground detection in video sequenceswith probabilistic self-organizing maps
    • E. López-Rubio, R. M. Luque-Baena and E.Domínguez, Foreground detection in video sequenceswith probabilistic self-organizing maps, Int. J. NeuralSyst. 21 (2011) 225-246.
    • (2011) Int. J. NeuralSyst. , vol.21 , pp. 225-246
    • López-Rubio, E.1    Luque-Baena, R.M.2    Domínguez, E.3
  • 56
    • 69449101508 scopus 로고    scopus 로고
    • A probabilistic neuralnetwork for earthquake magnitude prediction
    • H. Adeli and A. Panakkat, A probabilistic neuralnetwork for earthquake magnitude prediction, NeuralNetw. 22 (2009) 1018-1024.
    • (2009) NeuralNetw , vol.22 , pp. 1018-1024
    • Adeli, H.1    Panakkat, A.2
  • 57
    • 77958031946 scopus 로고    scopus 로고
    • Enhanced probabilisticneural network with local decision circles: A robustclassifier integr
    • M. Ahmadlou and H. Adeli, Enhanced probabilisticneural network with local decision circles: A robustclassifier, Integr. Comput.-Aided Eng. 17 (2010)197-210.
    • (2010) Comput.-Aided Eng , vol.17 , pp. 197-210
    • Ahmadlou, M.1    Adeli, H.2
  • 58
    • 77956402613 scopus 로고    scopus 로고
    • Hybridizingprinciples of TOPSIS with Case-based reasoning forbusiness failure prediction
    • H. Li, H. Adeli, J. Sun and J.-G. Han, Hybridizingprinciples of TOPSIS with case-based reasoning forbusiness failure prediction, Comput. and Oper. Res.38 (2011) 409-419.
    • (2011) Comput and Oper Res , vol.38 , pp. 409-419
    • Li, H.1    Adeli, H.2    Sun, J.3    Han, J.-G.4
  • 60
    • 1242343781 scopus 로고    scopus 로고
    • Dynamical resettingof the human brain at epileptic seizures: Applicationof nonlinear dynamics and global optimizationtechniques
    • L. D. Iasemidis, D. S. Shiau, J. C. Sackellares,P. M. Pardalos and A. Prasad, Dynamical resettingof the human brain at epileptic seizures: Applicationof nonlinear dynamics and global optimizationtechniques, IEEE Trans. Biomed. Eng. 51 (2004)493-506.
    • (2004) IEEE Trans. Biomed. Eng , vol.51 , pp. 493-506
    • Iasemidis, L.D.1    Shiau, D.S.2    Sackellares, J.C.3    Pardalos, P.M.4    Prasad, A.5
  • 61
    • 67449161052 scopus 로고    scopus 로고
    • Automatic identification of epileptic electroencephalographysignals using higher-order spectra
    • K. Chua, V. Chandran, U. Acharya and C. Lim,Automatic identification of epileptic electroencephalographysignals using higher-order spectra,Proc. IME H: J. Eng. Med. 223 (2009)485-495.
    • (2009) Proc. IME H: J. Eng. Med , vol.223 , pp. 485-495
    • Chua, K.1    Chandran, V.2    Acharya, U.3    Lim, C.4
  • 62
    • 34547597104 scopus 로고    scopus 로고
    • Improved spikingneural networks for EEG classification and epilepsyand seizure detection
    • S. Ghosh-Dastidar and H. Adeli, Improved spikingneural networks for EEG classification and epilepsyand seizure detection, Integr. Comput.-Aided Eng.14 (2007) 187-212.
    • (2007) Integr. Comput.-Aided Eng. , vol.14 , pp. 187-212
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 63
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodologyfor epilepsy and epileptic seizure detection
    • S. Ghosh-Dastidar, H. Adeli and N. Dadmehr,Mixed-band wavelet-chaos-neural network methodologyfor epilepsy and epileptic seizure detection,IEEE Trans. Biomed. Eng. 54 (2007) 1545-1551.
    • (2007) IEEE Trans. Biomed. Eng , vol.54 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 64
    • 38349123053 scopus 로고    scopus 로고
    • Principalcomponent analysis-enhanced cosine radialbasis function neural network for robust epilepsyand seizure detection
    • S. Ghosh-Dastidar, H. Adeli and N. Dadmehr, Principalcomponent analysis-enhanced cosine radialbasis function neural network for robust epilepsyand seizure detection, IEEE Trans. Biomed. Eng. 55(2008) 512-518.
    • (2008) IEEE Trans. Biomed. Eng , vol.55 , pp. 512-518
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 65
    • 71049128082 scopus 로고    scopus 로고
    • A new supervisedlearning algorithm for multiple spiking neural networkswith application in epilepsy and seizure detection
    • S. Ghosh-Dastidar and H. Adeli, A new supervisedlearning algorithm for multiple spiking neural networkswith application in epilepsy and seizure detection,Neural Netw. 22 (2009) 1419-1431.
    • (2009) Neural Netw , vol.22 , pp. 1419-1431
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 66
    • 84870547200 scopus 로고    scopus 로고
    • Application of empirical mode decomposition(EMD) for automated detection of epilepsyusing EEG signals
    • R. J. Martis, U. R. Acharya, J. H. Tan, A. Petznick,R. Yanti, C. K. Chua, E. Y. K. Ng andL. Tong, Application of empirical mode decomposition(EMD) for automated detection of epilepsyusing EEG signals, Int. J. Neural Syst. 22(6) (2012)1250027-1-1250027-16.
    • (2012) Int. J. Neural Syst , vol.22 , Issue.6 , pp. 12500271-125002716
    • Martis, R.J.1    Acharya, U.R.2    Tan, J.H.3    Petznickr. Yanti, A.4    Chua, C.K.5    Ng, E.Y.K.6    Tong, L.7
  • 67
    • 24144470790 scopus 로고    scopus 로고
    • Recurrentneural networks employing Lyapunov exponentsfor EEG signals classification
    • N. F. Güler, E. D. Übeyli and I. Güler, Recurrentneural networks employing Lyapunov exponentsfor EEG signals classification, Exp. Syst. Appl. 29(2005) 506-514.
    • (2005) Exp. Syst. Appl , vol.29 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 68
    • 76449108621 scopus 로고    scopus 로고
    • Automatic identification of epilepticEEG signals using nonlinear parameters\
    • U. R. Acharya, C. K. Chua, L. Teik-Cheng, Dorithyand S. Jasjit, Automatic identification of epilepticEEG signals using nonlinear parameters, J. Mech.Med. Biol. 9 (2009) 539-553.
    • (2009) J Mech.Med. Biol , vol.9 , pp. 539-553
    • Acharya, U.R.1    Chua, C.K.2    Teik-Cheng, L.3    Jasjit, D.S.4
  • 69
    • 84859351360 scopus 로고    scopus 로고
    • Application of non-linear and waveletbased features for the automated identification ofepileptic EEG signals
    • U. R. Acharya, S. V. Sree, P. C. A. Ang, R. Yantiand S. Jasjit, Application of non-linear and waveletbased features for the automated identification ofepileptic EEG signals, Int. J. Neural Syst. 22 (2012)1250002-1-1250002-14.
    • (2012) Int. J. Neural Syst , vol.22 , pp. 12500021-125000214
    • Acharya, U.R.1    Sree, S.V.2    Ang, P.C.A.3    Yanti, R.4    Jasjit, S.5
  • 71
    • 80053348045 scopus 로고    scopus 로고
    • Automaticdetection of epileptic EEG signals using higher ordercumulant features
    • U. R. Acharya, S. V. Sree and S. Jasjit, Automaticdetection of epileptic EEG signals using higher ordercumulant features, Int. J. Neural Syst. 21 (2011)403-414.
    • (2011) Int. J. Neural Syst , vol.21 , pp. 403-414
    • Acharya, U.R.1    Sree, S.V.2    Jasjit, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.