메뉴 건너뛰기




Volumn 210, Issue 2, 2012, Pages 132-146

Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine

Author keywords

Electroencephalogram (EEG); Epileptic seizure detection; Extreme learning machine (ELM); Optimized sample entropy (O SampEn)

Indexed keywords

ARTICLE; AUTOMATION; CLINICAL ARTICLE; CONTROLLED STUDY; DIAGNOSTIC ACCURACY; ELECTROENCEPHALOGRAM; ENTROPY; EPILEPSY; HUMAN; MACHINE LEARNING; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; SEIZURE;

EID: 84865313417     PISSN: 01650270     EISSN: 1872678X     Source Type: Journal    
DOI: 10.1016/j.jneumeth.2012.07.003     Document Type: Article
Times cited : (238)

References (50)
  • 1
    • 32144448333 scopus 로고    scopus 로고
    • Entropy analysis of the EEG background activity in Alzheimer's disease patients
    • Abásolo D., Hornero R., Espino P., Grant C., Ludbrook G. Entropy analysis of the EEG background activity in Alzheimer's disease patients. Physiol Meas 2006, 27:241-253.
    • (2006) Physiol Meas , vol.27 , pp. 241-253
    • Abásolo, D.1    Hornero, R.2    Espino, P.3    Grant, C.4    Ludbrook, G.5
  • 3
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • Andrzejak R., Lehnertz K., Rieke C., Mormann F., David P., Elger C. Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 2001, 64:061907.
    • (2001) Phys Rev E , vol.64 , pp. 061907
    • Andrzejak, R.1    Lehnertz, K.2    Rieke, C.3    Mormann, F.4    David, P.5    Elger, C.6
  • 4
    • 0035023402 scopus 로고    scopus 로고
    • The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy
    • Andrzejak R., Widman G., Lehnertz K., Rieke C., David P., Elger C. The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy. Epilepsy Res 2001, 44(2):129-140.
    • (2001) Epilepsy Res , vol.44 , Issue.2 , pp. 129-140
    • Andrzejak, R.1    Widman, G.2    Lehnertz, K.3    Rieke, C.4    David, P.5    Elger, C.6
  • 5
    • 0001632845 scopus 로고
    • On the capabilities of multilayer perceptrons
    • Baum E. On the capabilities of multilayer perceptrons. J Complex 1988, 4:193-215.
    • (1988) J Complex , vol.4 , pp. 193-215
    • Baum, E.1
  • 6
    • 84866150412 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weight is more important than the size of the network
    • Barlett P. The sample complexity of pattern classification with neural networks: the size of the weight is more important than the size of the network. IEEE Trans Neural Netw 1998, 5:989-993.
    • (1998) IEEE Trans Neural Netw , vol.5 , pp. 989-993
    • Barlett, P.1
  • 7
    • 44449121467 scopus 로고    scopus 로고
    • Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients: a preliminary study
    • Bruzzo A., Gesierich B., Santi M., Tassinari C., Birbaumer N., Rubboli G. Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients: a preliminary study. J Neurol Sci 2008, 29:3-9.
    • (2008) J Neurol Sci , vol.29 , pp. 3-9
    • Bruzzo, A.1    Gesierich, B.2    Santi, M.3    Tassinari, C.4    Birbaumer, N.5    Rubboli, G.6
  • 8
    • 37649028653 scopus 로고    scopus 로고
    • Detecting dynamical changes in time series using the permutation entropy
    • Cao Y., Tung W., Gao J., Protopopescu V., Hively L. Detecting dynamical changes in time series using the permutation entropy. Phys Rev E 2004, 70:046217.
    • (2004) Phys Rev E , vol.70 , pp. 046217
    • Cao, Y.1    Tung, W.2    Gao, J.3    Protopopescu, V.4    Hively, L.5
  • 10
    • 84856227784 scopus 로고    scopus 로고
    • Application of higher order spectra to identify epileptic EEG
    • Chua C., Chandran V., Acharya U., Lim C. Application of higher order spectra to identify epileptic EEG. J Med Syst 2010, 35:1563-1571.
    • (2010) J Med Syst , vol.35 , pp. 1563-1571
    • Chua, C.1    Chandran, V.2    Acharya, U.3    Lim, C.4
  • 12
    • 44049117207 scopus 로고
    • Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems
    • Eckmann J., Ruelle D. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 1992, 56:185-187.
    • (1992) Physica D , vol.56 , pp. 185-187
    • Eckmann, J.1    Ruelle, D.2
  • 14
    • 33745235087 scopus 로고    scopus 로고
    • One-class novelty detection for seizure analysis from intracranial EEG
    • Gardner A., Krieger A., Vachtsevanos G., Litt B. One-class novelty detection for seizure analysis from intracranial EEG. J Mach Learn Res 2006, 7:1025-1044.
    • (2006) J Mach Learn Res , vol.7 , pp. 1025-1044
    • Gardner, A.1    Krieger, A.2    Vachtsevanos, G.3    Litt, B.4
  • 15
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    • Ghosh-Dastidar S., Adeli H., Dadmehr N. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 2007, 54(9):1545-1551.
    • (2007) IEEE Trans Biomed Eng , vol.54 , Issue.9 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 16
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • Guo L., Rivero D., Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 2010, 193:156-163.
    • (2010) J Neurosci Methods , vol.193 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 17
    • 77955054723 scopus 로고    scopus 로고
    • Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
    • Guo L., Rivero D., Dorado J., Rabuñal J., Pazos A. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Methods 2010, 191:101-109.
    • (2010) J Neurosci Methods , vol.191 , pp. 101-109
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Rabuñal, J.4    Pazos, A.5
  • 18
    • 34548820704 scopus 로고    scopus 로고
    • Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome
    • Haitham M., Al-Angari Sahakian A. Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Trans Biomed Eng 2007, 54:1900-1904.
    • (2007) IEEE Trans Biomed Eng , vol.54 , pp. 1900-1904
    • Haitham, M.1    Al-Angari Sahakian, A.2
  • 20
    • 77957252563 scopus 로고    scopus 로고
    • Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm
    • Hsu K., Yu S. Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput Biol Med 2010, 40:823-830.
    • (2010) Comput Biol Med , vol.40 , pp. 823-830
    • Hsu, K.1    Yu, S.2
  • 21
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G., Chen L., Siew C. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 2006, 17(4):879-892.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.1    Chen, L.2    Siew, C.3
  • 23
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G., Zhu Q., Siew C. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Siew, C.3
  • 27
    • 79961172206 scopus 로고    scopus 로고
    • Classifying epilepsy diseases using artificial neural networks and genetic algorithm
    • Koçer S., Canal M. Classifying epilepsy diseases using artificial neural networks and genetic algorithm. J Med Syst 2011, 35:489-498.
    • (2011) J Med Syst , vol.35 , pp. 489-498
    • Koçer, S.1    Canal, M.2
  • 28
    • 0002285568 scopus 로고    scopus 로고
    • Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures
    • Lasemidis L., Pardalos P., Sackellares J., Shiau D. Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J Comb Optim 2001, 5:9-26.
    • (2001) J Comb Optim , vol.5 , pp. 9-26
    • Lasemidis, L.1    Pardalos, P.2    Sackellares, J.3    Shiau, D.4
  • 29
    • 35348925885 scopus 로고    scopus 로고
    • Predictability analysis of absence seizures with permutation entropy
    • Li X., Ouyang G., Richards D. Predictability analysis of absence seizures with permutation entropy. Epilepsy Res 2007, 77:70-74.
    • (2007) Epilepsy Res , vol.77 , pp. 70-74
    • Li, X.1    Ouyang, G.2    Richards, D.3
  • 30
    • 33646835788 scopus 로고    scopus 로고
    • Classification of mental tasks from EEG signals using extreme learning machine
    • Liang N., Saratchandran P., Huang G., Sundararajan N. Classification of mental tasks from EEG signals using extreme learning machine. Int J Neural Syst 2006, 16(1):29-38.
    • (2006) Int J Neural Syst , vol.16 , Issue.1 , pp. 29-38
    • Liang, N.1    Saratchandran, P.2    Huang, G.3    Sundararajan, N.4
  • 31
    • 77952547242 scopus 로고    scopus 로고
    • A fast recognition framework based on extreme learning machine using hybrid object information
    • Minhas R., Mohammed A., Wu Q. A fast recognition framework based on extreme learning machine using hybrid object information. Neurocomputing 2010, 73:1831-1839.
    • (2010) Neurocomputing , vol.73 , pp. 1831-1839
    • Minhas, R.1    Mohammed, A.2    Wu, Q.3
  • 32
    • 81855221797 scopus 로고    scopus 로고
    • Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
    • Nicolaou N., Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst Appl 2012, 39:202-209.
    • (2012) Expert Syst Appl , vol.39 , pp. 202-209
    • Nicolaou, N.1    Georgiou, J.2
  • 33
    • 41249099701 scopus 로고    scopus 로고
    • Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
    • Ocak H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process 2008, 88:1858-1867.
    • (2008) Signal Process , vol.88 , pp. 1858-1867
    • Ocak, H.1
  • 34
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 2009, 36:2027-2036.
    • (2009) Expert Syst Appl , vol.36 , pp. 2027-2036
    • Ocak, H.1
  • 35
    • 0026015905 scopus 로고
    • Approximate entropy as a measure of system complexity
    • Pincus S. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 1991, 88(6):297-301.
    • (1991) Proc Natl Acad Sci USA , vol.88 , Issue.6 , pp. 297-301
    • Pincus, S.1
  • 36
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by an artificial neural network: a preliminary study
    • Pradhan N., Sadasivan P., Arunodaya G. Detection of seizure activity in EEG by an artificial neural network: a preliminary study. Comput Biomed Res 1996, 29:303-313.
    • (1996) Comput Biomed Res , vol.29 , pp. 303-313
    • Pradhan, N.1    Sadasivan, P.2    Arunodaya, G.3
  • 37
    • 0026462367 scopus 로고
    • Complex dynamics underlying the human electrocardiogram
    • Ravelli F., Antolini R. Complex dynamics underlying the human electrocardiogram. Biol Cybern 1992, 67(1):57-65.
    • (1992) Biol Cybern , vol.67 , Issue.1 , pp. 57-65
    • Ravelli, F.1    Antolini, R.2
  • 38
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time series analysis using approximate entropy and sample entropy
    • Richman J., Moorman J. Physiological time series analysis using approximate entropy and sample entropy. Am J Physiol 2000, 278(6):2039-2049.
    • (2000) Am J Physiol , vol.278 , Issue.6 , pp. 2039-2049
    • Richman, J.1    Moorman, J.2
  • 39
    • 84860227271 scopus 로고    scopus 로고
    • Employment and comparison of different artificial neural networks for epilepsy diagnosis from EEG signals
    • Sezer E., Işik H., Saracoĝlu E. Employment and comparison of different artificial neural networks for epilepsy diagnosis from EEG signals. J Med Syst 2012, 36:347-362.
    • (2012) J Med Syst , vol.36 , pp. 347-362
    • Sezer, E.1    Işik, H.2    Saracoĝlu, E.3
  • 40
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
    • Song Y., Liò P. A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J Biomed Sci Eng 2010, 6:556-567.
    • (2010) J Biomed Sci Eng , vol.6 , pp. 556-567
    • Song, Y.1    Liò, P.2
  • 41
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic EEG detection using artificial neural networks
    • Srinivasan V., Eswaran C., Sriaam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 2007, 11(3):288-295.
    • (2007) IEEE Trans Inf Technol Biomed , vol.11 , Issue.3 , pp. 288-295
    • Srinivasan, V.1    Eswaran, C.2    Sriaam, N.3
  • 42
    • 0032885966 scopus 로고    scopus 로고
    • Dynamics of the human alpha rhythm: evidence for non-linearity
    • Stam C., Pijn J., Suffczynski P., Lopez da Silva F. Dynamics of the human alpha rhythm: evidence for non-linearity. Clin Neurophysiol 1999, 110(10):1801-1813.
    • (1999) Clin Neurophysiol , vol.110 , Issue.10 , pp. 1801-1813
    • Stam, C.1    Pijn, J.2    Suffczynski, P.3    Lopez da Silva, F.4
  • 43
    • 50249106239 scopus 로고    scopus 로고
    • Online estimation of complexity using variable forgetting factor
    • Sugisaki K., Ohmori H. Online estimation of complexity using variable forgetting factor. SICE annual conference 2007, 1-6.
    • (2007) SICE annual conference , pp. 1-6
    • Sugisaki, K.1    Ohmori, H.2
  • 44
    • 37049007663 scopus 로고    scopus 로고
    • Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
    • Übeyli E. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput Biol Med 2008, 38:14-22.
    • (2008) Comput Biol Med , vol.38 , pp. 14-22
    • Übeyli, E.1
  • 45
    • 60849087328 scopus 로고    scopus 로고
    • Automatic detection of electroencephalographic changes using adaptive neuro-fuzzy inference system employing Lyapunov exponents
    • Übeyli E. Automatic detection of electroencephalographic changes using adaptive neuro-fuzzy inference system employing Lyapunov exponents. Expert Syst Appl 2009, 36:9031-9038.
    • (2009) Expert Syst Appl , vol.36 , pp. 9031-9038
    • Übeyli, E.1
  • 47
    • 79959978998 scopus 로고    scopus 로고
    • Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
    • Wang D., Miao D., Xie C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl 2011, 38(11):14314-14320.
    • (2011) Expert Syst Appl , vol.38 , Issue.11 , pp. 14314-14320
    • Wang, D.1    Miao, D.2    Xie, C.3
  • 49
    • 80052836687 scopus 로고    scopus 로고
    • Epileptic EEG classification based on extreme learning machine and nonlinear features
    • Yuan Q., Zhou W., Li S., Cai D. Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 2011, 96:29-38.
    • (2011) Epilepsy Res , vol.96 , pp. 29-38
    • Yuan, Q.1    Zhou, W.2    Li, S.3    Cai, D.4
  • 50
    • 34547992213 scopus 로고    scopus 로고
    • Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
    • Zhang R., Huang G., Sundararajan N., Saratchandran P. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans Comput Biol Bioinform 2007, 4(3):485-495.
    • (2007) IEEE/ACM Trans Comput Biol Bioinform , vol.4 , Issue.3 , pp. 485-495
    • Zhang, R.1    Huang, G.2    Sundararajan, N.3    Saratchandran, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.