메뉴 건너뛰기




Volumn 39, Issue 1, 2012, Pages 202-209

Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines

Author keywords

Electroencephalogram (EEG); Epilepsy; Permutation Entropy (PE); Seizure; Support Vector Machine (SVM)

Indexed keywords

ELECTROENCEPHALOGRAM (EEG); EPILEPSY; PERMUTATION ENTROPY (PE); SEIZURE; SUPPORT VECTOR;

EID: 81855221797     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.07.008     Document Type: Article
Times cited : (485)

References (35)
  • 1
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • R.G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, and C.E. Elger Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state Physical Review E 64 2001 061907
    • (2001) Physical Review e , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Rieke, C.3    Mormann, F.4    David, P.5    Elger, C.E.6
  • 2
    • 4243997063 scopus 로고    scopus 로고
    • Permutation entropy: A natural complexity measure for time series
    • C. Bandt, and B. Pompe Permutation entropy: A natural complexity measure for time series Physical Review Letters 88 2002 174102
    • (2002) Physical Review Letters , vol.88 , pp. 174102
    • Bandt, C.1    Pompe, B.2
  • 3
    • 44449121467 scopus 로고    scopus 로고
    • Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study
    • A.A. Bruzzo, B. Gesierich, M. Santi, C.A. Tassinari, N. Birbaumer, and G. Rubboli Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study Neurological Science 29 2008 3 9
    • (2008) Neurological Science , vol.29 , pp. 3-9
    • Bruzzo, A.A.1    Gesierich, B.2    Santi, M.3    Tassinari, C.A.4    Birbaumer, N.5    Rubboli, G.6
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • U. Fayyad, Kluwer Academic Publishers Boston
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition U. Fayyad, Data Min Knowl Disc 1998 Kluwer Academic Publishers Boston 121 167
    • (1998) Data Min Knowl Disc , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 37649028653 scopus 로고    scopus 로고
    • Detecting dynamical changes in time series using the permutation entropy
    • Y. Cao, W. Tung, J.B. Gao, V.A. Protopopescu, and L.M. Hively Detecting dynamical changes in time series using the permutation entropy Physical Review E 70 2004 046217
    • (2004) Physical Review e , vol.70 , pp. 046217
    • Cao, Y.1    Tung, W.2    Gao, J.B.3    Protopopescu, V.A.4    Hively, L.M.5
  • 8
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • N.F. Güler, E.D. Übeyli, and. Güler Recurrent neural networks employing Lyapunov exponents for EEG signals classification Expert Systems with Applications 29 2005 506 514
    • (2005) Expert Systems with Applications , vol.29 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler3
  • 10
    • 6344246400 scopus 로고    scopus 로고
    • Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizures
    • Klinik für Epileptologie, Universität Bonn. In
    • V.P. Kiymik, A. Subasi, and H.R. Ozcalik Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizures Journal of Medical Systems 28 2004 511 522 Klinik für Epileptologie, Universität Bonn. In
    • (2004) Journal of Medical Systems , vol.28 , pp. 511-522
    • Kiymik, V.P.1    Subasi, A.2    Ozcalik, H.R.3
  • 11
    • 71349088028 scopus 로고    scopus 로고
    • Entropies based detection of epileptic seizures with artificial neural network classifiers
    • S.P. Kumar, N. Sriraam, P.G. Benakop, and B.C. Jinaga Entropies based detection of epileptic seizures with artificial neural network classifiers Expert Systems with Applications 37 2010 3284 3291
    • (2010) Expert Systems with Applications , vol.37 , pp. 3284-3291
    • Kumar, S.P.1    Sriraam, N.2    Benakop, P.G.3    Jinaga, B.C.4
  • 13
    • 0001649501 scopus 로고
    • Can epileptic seizures be predicted? Evidence from nonlinear time series analyses of brain electrical activity
    • K. Lehnertz, and C.E. Elger Can epileptic seizures be predicted? Evidence from nonlinear time series analyses of brain electrical activity Physical Review Letters 80 1988 5019 5023
    • (1988) Physical Review Letters , vol.80 , pp. 5019-5023
    • Lehnertz, K.1    Elger, C.E.2
  • 14
    • 52649088747 scopus 로고    scopus 로고
    • Using Permutation Entropy to measure the electroencephalographic effects of sevoflurane
    • X. Li, S. Cui, and L.J. Voss Using Permutation Entropy to measure the electroencephalographic effects of sevoflurane Anesthesiology 109 2008 448 456
    • (2008) Anesthesiology , vol.109 , pp. 448-456
    • Li, X.1    Cui, S.2    Voss, L.J.3
  • 15
    • 35348925885 scopus 로고    scopus 로고
    • Predictability analysis of absence seizures with permutation entropy
    • X. Li, G. Ouyang, and D.A. Richards Predictability analysis of absence seizures with permutation entropy Epilepsy Research 77 2007 70 74
    • (2007) Epilepsy Research , vol.77 , pp. 70-74
    • Li, X.1    Ouyang, G.2    Richards, D.A.3
  • 17
    • 0012919544 scopus 로고    scopus 로고
    • Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients
    • F. Mormann, R.G. Andrzejak, T. Kreuz, C. Rieke, P. David, and C.E. Elger Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients Physical Review E 67 2003 021912
    • (2003) Physical Review e , vol.67 , pp. 021912
    • Mormann, F.1    Andrzejak, R.G.2    Kreuz, T.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 19
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • V.P. Nigam, and D. Graupe A neural-network-based detection of epilepsy Neurological Research 26 2004 55 60 (56)
    • (2004) Neurological Research , vol.26 , Issue.56 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 20
    • 56449085745 scopus 로고    scopus 로고
    • Permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect
    • E. Olofsen, J.W. Sleigh, and A. Dahan Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect British Journal of Anaesthesia 101 2008 810 821
    • (2008) British Journal of Anaesthesia , vol.101 , pp. 810-821
    • Olofsen, E.1    Sleigh, J.W.2    Dahan, A.3
  • 22
    • 37349026733 scopus 로고    scopus 로고
    • Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals
    • K. Polat, and S. Güne Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals Expert Systems with Applications 34 2008 2039 2048
    • (2008) Expert Systems with Applications , vol.34 , pp. 2039-2048
    • Polat, K.1    Güne, S.2
  • 23
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by an artificial neural network: A preliminary study
    • N. Pradhan, P.K. Sadasivan, and G.R. Arunodaya Detection of seizure activity in EEG by an artificial neural network: A preliminary study Computers and Biomedical Research 29 1996 303 313
    • (1996) Computers and Biomedical Research , vol.29 , pp. 303-313
    • Pradhan, N.1    Sadasivan, P.K.2    Arunodaya, G.R.3
  • 24
    • 0031029383 scopus 로고    scopus 로고
    • A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: Possible use as a warning device
    • H. Qu, and J. Gotman A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: Possible use as a warning device IEEE Transactions on Biomedical Engineering 44 1997 115 122
    • (1997) IEEE Transactions on Biomedical Engineering , vol.44 , pp. 115-122
    • Qu, H.1    Gotman, J.2
  • 25
    • 0034352130 scopus 로고    scopus 로고
    • Kulback-Leibler and renormalized entropies: Applications to electroencephalograms of epilepsy patients
    • R. Quian Quiroga, J. Arnhold, K. Lehnertz, and P. Grassberger Kulback-Leibler and renormalized entropies: Applications to electroencephalograms of epilepsy patients Physical Review E 62 2000 8380 8386
    • (2000) Physical Review e , vol.62 , pp. 8380-8386
    • Quian Quiroga, R.1    Arnhold, J.2    Lehnertz, K.3    Grassberger, P.4
  • 26
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • V. Srinivasan, C. Eswaran, and N. Sriraam Artificial neural network based epileptic detection using time-domain and frequency-domain features Journal of Medical Systems 29 2005 647 660
    • (2005) Journal of Medical Systems , vol.29 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 28
    • 22144480299 scopus 로고    scopus 로고
    • Epileptic seizure detection using dynamic wavelet network
    • A. Subasi Epileptic seizure detection using dynamic wavelet network Expert Systems with Applications 29 2005 343 355
    • (2005) Expert Systems with Applications , vol.29 , pp. 343-355
    • Subasi, A.1
  • 30
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • E.D. Übeyli Combined neural network model employing wavelet coefficients for EEG signals classification Digit Signal Process 19 2009 297 308
    • (2009) Digit Signal Process , vol.19 , pp. 297-308
    • Übeyli, E.D.1
  • 32
    • 0348049705 scopus 로고    scopus 로고
    • Nearest neighbor phase synchronization as a measure to detect seizure activity from scalp EEG recordings
    • M.J.A.M. van Putten Nearest neighbor phase synchronization as a measure to detect seizure activity from scalp EEG recordings Journal of Clinical Neurophysiology 20 2003 320 325
    • (2003) Journal of Clinical Neurophysiology , vol.20 , pp. 320-325
    • Van Putten, M.J.A.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.